Chapter 4

Manifestation of ray chaos in optical cavities

Susumu Shinohara and Takahisa Harayama

Abstract

The correspondence between ray and wave descriptions for twodimensional chaotic open billiards describing optical cavities is reviewed. Focusing on the stadium-shaped cavity, which is well-known for its fully chaotic ray dynamics, we show how ray chaos is manifested in emission patterns, or eigenfunctions of resonances (decaying eigenmodes). The flux phase-space distribution is introduced, which not only enables one to understand the relation between ray dynamics and emission directionality, but also provides a suitable stage to study the ray-wave correspondence. We observe intrinsic localization phenomenon in each resonance, which causes discrepancies with the ray description. Nonetheless, we demonstrate that the average of many low-loss resonances reproduces the ray description very well, where one can clearly observe that signature of ray chaos (i.e., long-term effects of stretching and folding) is embedded in resonance eigenfunctions.

Total Pages: 62-108 (47)

Purchase Chapter  Book Details

RELATED BOOKS

.Intelligent Technologies for Automated Electronic Systems.
.Multistage Interconnection Network Design for Engineers.
. Mechanical Engineering Technologies and Applications Vol. 3.
.Mechanical Engineering Technologies and Applications Vol. 2.
.Liquid Crystal Light Modulators: Revised Edition.
.Liutex-based and Other Mathematical, Computational and Experimental Methods for Turbulence Structure.
.Applied Digital Imaging.
.Industrial Applications of Laser Remote Sensing.