Chapter 7

Marker-Free Plant Transformation

Ming Cheng, Yin-Fu Chang, Paula M. Olhoft, Vinitha Cardoza, Fai-Ming Lai, Todd J. Jones, Allan R. Wenck, Vibha Srivastava, M. Aydın Akbudak and Soumen Nandy

Abstract

Selection marker genes perform a critical function of identifying transformed cells or tissues in the plant transformation processes. The commonly used marker genes confer resistance to antibiotics or herbicides that suppress the growth of untransformed cells and allow the transformed cells to grow. Therefore, most transformation processes involve introduction of a marker gene along with the gene-of-interest. However, this marker gene serves no purpose once the transgenic clone has been isolated, and many regulatory agencies worldwide recommend removal of the marker genes from commercially applicable transgenic plants. To address this issue, plant biotechnologists have developed a number of approaches for removing marker genes from transgenic clones. This chapter provides a review of these methods and technical details of the two most commonly used approaches. Site-specific recombination systems such as E. coli phage P1 derived Cre-lox system have been widely used as a molecular scissor to precisely excise marker genes from the transgene locus. Similarly, dual T-DNA vector system, consisting of separate vectors for marker genes and the gene-of-interest to develop genetically segregated loci for each gene, has been widely practiced.

Total Pages: 108-122 (15)

Purchase Chapter  Book Details

RELATED BOOKS

.Data Science for Agricultural Innovation and Productivity.
.Future Farming: Advancing Agriculture with Artificial Intelligence.
.Agricultural Benefits of Postharvest Banana Plants.
.Antibiotic Alternatives in Poultry and Fish Feed..
.Micropropagation of Medicinal Plants - Volume 2.
.In Vitro Propagation and Secondary Metabolite Production from Medicinal Plants: Current Trends (Part 2).
.Molecular and Physiological Insights into Plant Stress Tolerance and Applications in Agriculture - Part-2.
.In Vitro Propagation and Secondary Metabolite Production from Medicinal Plants: Current Trends (Part 1).