Chapter 1

Neurons: From Ions and Molecules to Messages Transformations

Pierre Nelson and Gérard Lot

Abstract

The excitability of neurons is due to electrical and chemical phenomena. Motion of ions is described by currents and potential, moreover intricate chemical cycles are described by amplitudes and delays. Starting from what is usually known about synapses and Hodgkin-Huxley axon, we describe first all the parts of a standard neuron (from its input till the input of the following neuron). Then, looking at various physical constraints, we generalize to any kind of neuron. Thus, the synthesis of the physicochemical properties of the cell enables us to compute when spikes occur. Now, we show that the firing rate is the significant nervous message. So, from the input – output relations, we are able to compute the processing abilities of any neuron (some of them make linear additions; others exhibit an ON-OFF behavior, and so on). The next step is to evaluate limitations caused by noise and to study little sets of neurons (of simple animals or very well localized in man, for instance the center controlling breathing). Then, we begin to look the three main functions of huge neuronal sets: to code sensorial message, to choose between competitive signals, to modulate other neuronal sets.

Total Pages: 3-78 (76)

Purchase Chapter  Book Details

RELATED BOOKS

.Frontiers in Clinical Drug Research - CNS and Neurological Disorders.
.Frontiers in Clinical Drug Research - CNS and Neurological Disorders.
.Neurodegenerative Diseases: Multifactorial Degenerative Processes, Biomarkers and Therapeutic Approaches.
.Frontiers in Clinical Drug Research - CNS and Neurological Disorders.
.Traditional Medicine for Neuronal Health.
.Recent Advances in the Treatment of Neurodegenerative Disorders.
.Alzheimer
.Advances in Alzheimer Research.