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PREFACE

In 1897, at a meeting of the Society of Russian Physicians, Ivan Pavlov predicted that the last
stage of the life sciences would be the physiology of the living molecule. Nowadays the last
stages of molecular approaches are theoretical quantum-chemical calculational techniques and
experimental patch-clamp method which really can describe the behavior of living molecules.
An attempt of combined application of quantum-chemical calculations and the patch-clamp
method to investigation of the nociceptive system is presented in this volume. The crosstalk
between drug substances and membrane receptors is conducted in the language of molecules.
The behavior of single molecules upon their ligand-receptor binding should be investigated at
physiologically adequate conditions during development of new analgesics. The requirement
of physiological adequacy was always taken into account when the authors tried to explain
the  background  mechanisms  governing  the  effects  of  powerful  analgesics.  This  approach
makes it possible to elucidate how the chemical structure of labile attacking molecules should
be finely tuned to provide effective binding to their membrane receptor. The authors hope that
this  review  will  open  a  new  perspective  to  application  of  molecular  methods  in  the  drug
design of pain relievers. The urgent need for the development of novel analgesics is dictated
by the  lack of  safe  and effective  drugs  in  this  field  of  medicine,  especially  when the  pain
becomes  intolerable  and  incurable.  The  arsenal  of  practical  medicine  includes  an  array  of
analgesics, which have to be applied basing on the severity of pathological conditions of the
organism. Step 1 of the World Health Organization analgesic ladder consists of non-opioids,
administered with or without adjuvants depending on the type of pain. Step 2 comprises step
1 agents plus opioids which can relieve mild to moderate pain. Step 3 involves step 2 agents
with  addition  of  opioids  for  moderate  to  severe  pain  relief.  It  is  a  matter  of  common
knowledge that administration of opioid substances results in irreversible adverse side effects
in humans. The major objective of the authors is to solve this underlying problem by creating
novel analgesics which could replace opioids in clinical practice, while remaining completely
safe.

This  book  presents  our  main  result  in  elucidation  of  the  physiological  role  of  a  novel
membrane  signaling  pathway  involving  the  opioid-like  receptor  coupled  to  slow  sodium
channels (Nav1.8) via Na+,K+-ATPase as the signal transducer. This pathway is distinct from
and additional to the known mechanism of the opioidergic system functioning that involves G
proteins.  Activation  of  the  opioid-like  receptor  further  triggering  the  signaling  pathway
directed towards Nav1.8 channels provides the effectiveness and safety of our novel analgesic
which  is  potent  enough  to  relieve  severe  pain  otherwise  relieved  exclusively  by  Step  3
opioids.

It is nowadays almost inevitable for reviewers of scientific material in the field of nociception
to make excuses for omissions. We are sincerely sorry for not having been able to discuss all
the findings in physiology of nociception and in practical medicine that would have merited
attention. To include all would have defeated the purpose of this volume by making it grow
out of all proportions.

i



ii

Boris V. Krylov
Ilia V. Rogachevskii
Tatiana N. Shelykh

Vera B. Plakhova
I.P. Pavlov Institute of Physiology

Russian Academy of Sciences
St. Petersburg,

Russia

This book presents an informative and valuable for physiologists and clinicians overview of
primary molecular mechanisms involved in functioning of the peripheral nociceptive system.
This material can be used in courses given to students specializing in physiology, psychology,
and medicine, as well as to physicians training in neurology, neurosurgery, and psychiatry.
The principles presented in the current volume may also be of interest to molecular biologists
engaged in the drug design.
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CHAPTER 1

Introduction and Methodology

Abstract:  Discovery of NaV1.8 channels has opened a new perspective to study the
mechanisms of nociception. A remarkable feature of these channels is their ability to be
modulated  by  binding  of  various  endogenous  and  exogenous  agents  to  membrane
receptors coupled to NaV1.8 channels. The behavior of their activation gating system
was patch-clamp recorded and analyzed by the Almers’ limiting slope method. It was
established  that  opioid-like  membrane  receptors  could  control  the  functioning  of
NaV1.8 channels. A novel role in this mechanism is played by Na+,K+-ATPase, which
serves  as  the  signal  transducer  instead  of  G  proteins.  Switching  on  the  opioid-like
receptors one can selectively decrease the effective charge of NaV1.8 channel activation
gating  device.  As  a  result,  only  the  high-frequency  component  of  nociceptive
membrane impulse firing is inhibited. This is the component that transfers nociceptive
information to CNS.

The  three  units  involved  in  the  described  membrane  signaling  cascade  (opioid-like
receptor  →  Na+,K+-ATPase  →  NaV1.8  channel)  are  potential  targets  for  novel
analgesics.  Investigation  of  this  mechanism  of  nociceptive  signal  modulation  is  of
major importance not only for fundamental physiology but also for clinical medicine.

Keywords: Impulse firing, Limiting slope procedure, NaV1.8 channels, Na+,K+-
ATPase, Nociception, Opioid-like receptor, Patch-clamp method.

PHYSIOLOGY OF PRIMARY SENSORY CODING

The  universal  language  of  the  brain  is  the  language  of  nerve  impulses.  In  the
1920s Edgar Adrian was the first who discovered that discharge frequency of an
afferent fiber innervating feline mechanoreceptors increased as a consequence of
an  increase  in  the  stimulus  intensity.  The  input-output  function  of  the  primary
afferent  fiber  describes  the  relationship  between  the  stimulus  intensity  and  the
number and frequency of evoked action potentials [1]. Different forms of energy
are  transformed  by  the  nervous  system  into  different  sensations  of  sensory
modalities.  Five  major  sensory  modalities  have  been  recognized  since  ancient
times: vision, hearing, touch, taste, and smell. In 1844 Johannes Müller advanced
his  “laws  of  specific  sense  energies”  [2].  He  proposed  that  modality  was  a
property of the sensory nerve fiber.  Each fiber is  activated by a certain type of
stimulus because different stimuli activate different nerve fibers. In turn, the nerve

Boris V. Krylov, Ilia V. Rogachevskii, Tatiana N. Shelykh, Vera B. Plakhova
All rights reserved-© 2017 Bentham Science Publishers
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fibers  make  specific  connections  within  the  nervous  system,  and  it  is  these
specific  connections  that  are  responsible  for  specific  sensations.  A  unique
stimulus that  activates a  specific  receptor  and therefore a particular  nerve fiber
was  called  an  adequate  stimulus  by  Charles  Sherrington  [3].  In  1967  Vernon
Mountcastle advanced the idea of the brain as a “linear operator” [4, 5]. It means
that  the  input-output  functions  of  sense  organs  should  be  congruent  with
psychophysical functions relating the magnitude of the stimulus to the sensation.
For instance, the function of central pathways mediating simple sensory events in
the somatosensory system is thought to conserve the presentation of a stimulus
dictated by the peripheral sensory apparatus. Said differently, one could assign for
each  discriminable  quality  of  sensation  a  specific  set  of  nerve  fibers  whose
excitation would express that one quality (modality) and no other. The alternative
view  stated  that  quality  was  a  matter  of  the  pattern  or  of  the  spatio-temporal
distribution of excitation in a whole array of fibers. As a result, the “labeled line”
theory was opposed to the alternative “pattern” theory (see review) [6].

The  “sixth”  sensory  modality,  i.e.  pain,  up  to  now  attracts  special  attention  of
physiologists  and  clinicians.  It  is  difficult  to  overestimate  the  significance  of
attempts to control the mechanisms of pain sensation in order to achieve practical
results  regarding chronic pain relief  in humans.  The first  steps in this  direction
have been done by researchers who laid the foundations of nociception as one of
the most important branches of sensory physiology.

Alfred Goldscheider (1920) [7] was the first to advance the idea that the pain was
not modality-specific but rather evoked by an additional excitation of any sense
organ.

Ivan Pavlov (1927) [8] showed how the brain could be trained, through repetition,
to invoke certain reactions in certain circumstances. Pavlov distinguished between
food stimulations which called out the reaction of salivation and electric current
noxious stimulations which called out the defense reaction. Destructive (noxious)
stimuli provoke the defense reflex. Food calls for a positive reaction – grasping of
the substance and eating it.  Pavlov has shown that the defense reflex of skin is
second in importance to the food reflex. An animal exposed simultaneously to an
electric  current  acting upon his  skin  and to  a  food stimulus  would  respond not
with  defense  but  with  food  reaction.  These  findings  show  that  mediation  of
nociceptive  signals  does  not  strictly  obey the  “labeled line” law.  This  “line” is
under control of some other physiological processes of living organism.

Investigating  the  physiological  nature  of  sleep  Pavlov  stated  that  sleep,  or
inhibition, prevented undue fatigue of the cortical elements, allowing them, after
they  had  been  subjected  to  noxious  stimulation,  to  recover  their  normal  state.
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Inhibition is occurring all the time, even in a seemingly alert animal, but it exists
only in scattered areas of the cortex. When it irradiates from these areas over the
entire brain, the animal falls asleep. In Pavlov’s words, “internal inhibition in the
alert state of the animal represents a regional distribution of sleep which is kept
within  bounds  by  antagonistic  nervous  process  of  excitation”  (Pavlov,
Conditioned reflexes, p. 253) [8]. Pavlov has demonstrated that the nature of the
stimulus itself is less important than the inhibition associated with it. “As there is
practically no stimulus of whatever strength that cannot, under certain conditions,
become  subjected  to  internal  inhibition,  so  also  there  is  none  which  cannot
produce sleep” (Pavlov, Conditioned reflexes, p.252) [8]. He mentions an instance
in which a powerful electric shock applied to the skin was used as a conditioned
alimentary stimulus that totally relieved pain (see also [9]).

There are three main consequences of Pavlov’s findings. The first one is that his
results corroborate the “pattern” theory, because as it was mentioned above, the
“noxious labeled line” could be easily disrupted by signals of other modalities in
an  alert  organism.  The  second  consequence  is  the  suggestion  that  nociceptive
signals  can  be  controlled  somewhere  at  spinal  and/or  supraspinal  levels.  And
finally,  nowadays  we  can  predict  that  endogenous  substances  which  should
control  pain  sensation  on  the  molecular  level  are  expressed  in  human  brain.

A starting point of any sensation is the reception of signals evoked by activation
of specialized sensory receptors (including nociceptors) providing information to
CNS. Nociceptors inform us mainly about harmful external and internal stimuli or
about tissue injury. Pain is the perception of an aversive or unpleasant sensation
that originates from a damaged region of the body. Our “sixth sense” is a vitally
important  sensory  experience  that  warns  us  on  danger.  Modern  findings
concerning  the  relationship  between  perception  of  pain  and  mechanisms  of
functioning  of  nociceptors  show  that  any  nociceptive  perception  involves  an
interconnection  and  elaboration  of  sensory  inputs  and  pathways.  Highly
subjective and complicated nature of pain makes it difficult to diagnose and treat a
number of chronic pain phenomena.

A noxious stimulus activates the nociceptor fiber by the fundamental mechanism
of  excitation  of  living  cell.  It  is  well  known  that  nerve  excitation  evoked  by
mechanical  stimulation  results  in  production  of  gradual  receptor  current  in
primary receptors [10, 11] or generator current in secondary receptors [12] that
elicits the single action potential or trains of nerve impulses. Insights into neural
mechanisms  for  fine  coding  of  tactile  information  in  humans  come  from  the
works  of  Ake  Vallbo  and  his  colleagues  who  have  systematically  studied
mechanoreceptors innervating the human hand skin. On the basis of information
obtained on alert subjects they have proven that even single extra action potential
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CHAPTER 2

Possible  Mechanisms  of  Binding  of  Gamma-
Pyrones to the Opioid-Like Receptor

Abstract: Derivatives of gamma-pyrone show their remarkable ability to trigger the
novel  mechanism  of  NaV1.8  channels  modulation  described  in  Chapter  1.  Unlike
morphine,  which  activates  both  opioid  and  opioid-like  receptors,  comenic  acid
specifically switches on the latter mechanism involving Na+,K+-ATPase as the signal
transducer.  It  is  extremely  important  that  not  any  gamma-pyrone  derivative  can
decrease the voltage sensitivity of NaV1.8 channels, though all molecules studied herein
share a rather similar chemical structure. A very productive approach which makes it
possible to elucidate the peculiarities of ligand-receptor binding on the molecular level
is  combined  application  of  quantum-chemical  calculations  and  the  patch-clamp
method. Below we present our findings that explain a totally unevident result of highly
selective  binding  of  gamma-pyrone  derivatives  to  the  opioid-like  receptor.
Understanding of this mechanism opens up opportunities for creation of a novel class
of analgesics.

Keywords:  Ca2+  chelate  complex,  Gamma-pyrone  derivatives,  Limiting  slope
procedure,  NaV1.8  channels,  Nociception,  Opioid-like  receptor,  Patch-clamp
method,  Quantum-chemical  calculations.

Pharmacological effects of gamma-pyrone derivatives, including radioprotective
[1 - 3], antiviral [4], antidiabetic [5], and anticonvulsant [6] effects, were recently
examined.  Kojic  acid  was  demonstrated  to  be  able  to  protect  human skin  from
pigmentation [7, 8]. Gamma-pyrones are regarded as potential anticancer drugs
[9]. They also exhibit antileishmanial activity [10].

Kojic acid derivatives were found to effectively modulate histamine H3 receptors
(H3R).  The  most  affine  compounds  showed  receptor  binding  in  the  low
nanomolar concentration range [11]. The authors suggest that antagonists/inverse
agonists of the H3R are able to increase the neurotransmitter content and may find
their  application  in  the  therapy  of  cognitive  diseases,  sleep/wake  disorders,
epilepsy, obesity, pain, or allergic rhinitis. Several substances are progressing in
clinical trials [11].

Boris V. Krylov, Ilia V. Rogachevskii, Tatiana N. Shelykh, Vera B. Plakhova
All rights reserved-© 2017 Bentham Science Publishers
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Fundamentally  new  opportunities  for  clinical  use  of  gamma-pyrones  were
discovered by Alexey Shurygin who developed food additive Baliz-2 [12, 13]. Its
main  ingredients,  comenic  and  meconic  acids,  exhibit  a  profound  antibiotic,
antibacterial,  and  regenerative  activity.  It  is  worth  noting  that  Baliz-2  never
expressed any negative side effects during its long history of clinical application
in  Russia.  Our  starting  investigations  of  probable  molecular  mechanisms  of
meconic and comenic acid targeting were inspiring: the agents decreased voltage
sensitivity  of  NaV1.8  channels  [14].  These  findings  opened  a  promising
perspective for research of the role of gamma-pyrone derivatives in nociception
(see also [15]).

PATCH-CLAMP INVESTIGATION OF GAMMA-PYRONES

The families of NaV1.8 currents in the control experiment and after extracellular
application  of  comenic  acid  (5-hydroxy-gamma-pyrone-2-carboxylic  acid,
substance  A)  are  presented  in  Fig.  (2.1.a).  It  is  clearly  seen  that  the  amplitude
values of the currents are decreased, which can find its partial explanation in the
existence  of  “run-down”  effect  inherent  to  the  patch-clamp  method  [16,  17].
However,  the  decrease  of  the  channels  density  may  also  take  place.  The  peak
current-voltage curve shifts in the depolarizing direction after comenic acid has
been applied (Fig. 2.1.b). The left branch of the current-voltage function is steeper
as  a  result  of  comenic  acid  application  than  in  the  control  experiments.  The
voltage  dependencies  of  normalized  GNa_s(E)  functions  also  differ  between  the
control  and  comenic  acid  data  at  negative  E  (Fig.  2.2.a).  When  GNa_s(E)
dependencies are obtained, the Almers' limiting slope procedure can be applied,
making it possible to evaluate Zeff at the most negative potentials E (Fig. 2.2.b). A
very pronounced decrease in Zeff  after  extracellular  application of comenic acid
occurs  due  to  activation  of  the  receptor-coupled  membrane  mechanism  (Fig.
1.17). Indeed, a nonspecific opioid antagonist naltrexone (NTX) switched off the
effect  of  comenic  acid  (Fig.  2.3).  Zeff  also  remained  fairly  unchanged  after
combined application of comenic acid and a specific blocker of Na+,K+-ATPase,
ouabain, at 200 μM (Fig. 2.3). Ouabain applied at this rather high concentration
totally inhibits Na+,K+-ATPase, therefore interrupting transduction of the signal
triggered  by  binding  of  comenic  acid  to  the  opioid-like  receptor  and  sent  to
NaV1.8  channels  according  to  the  mechanism proposed  earlier  [18].  Moreover,
these  findings  indicate  that  comenic  acid  can  be  compared  to  morphine  in  its
efficiency  of  NaV1.8  channel  modulation.  It  switches  on  the  three  background
mechanisms:  reduces  the  channels  density,  positively  shifts  NaV1.8  channel
activation  gating  process,  and,  most  importantly,  markedly  decreases  Zeff.  The
latter process is of dose-dependent nature, showing opioid-like receptor binding in
the nanomolar concentration range. The binding process is characterized by Kd =
100 nM and the Hill coefficient n = 0.5 [14].
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Fig. (2.1).  Effects of comenic acid on NaV1.8 channels.
a – Families of sodium currents measured in the control experiment (top) and after application of comenic
acid at 100 nM (bottom);
b – Positive shift of the normalized peak current-voltage curve after application of comenic acid.
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CHAPTER 3

Possible  Mechanisms  of  Binding  of  Gamma-
Pyridones to the Opioid-Like Receptor

Abstract:  The  nociceptive  system  codes  noxious  signals  by  increasing  its  impulse
firing. NaV1.8 channels play a central role in the process of primary sensory coding.
The Almers’ method is almost ideal for the study of behavior of their gating device.
Application of this method makes it possible to elucidate the mechanism of receptor-
coupled modulation of NaV1.8 channels by opioid-like receptors, which exhibit high
affinity to some gamma-pyrone and gamma-pyridone derivatives. A remarkable feature
characterizing these substances is their ability to chelate calcium. That is why opioid-
like  receptors  recognize  these  attacking  molecules  in  physiologically  appropriate
conditions  by  activation  of  a  very  important  additional  mechanism  of  ion-ionic
interactions switched on by attacking molecules with chelated calcium. This conclusion
is  confirmed  by  the  study  of  the  effects  of  gamma-pyridone  derivatives,  which  are
structurally  very  close  to  gamma-pyrones  and,  in  addition,  also  have  an  ability  to
chelate calcium.

The results discussed in this and the previous chapters open a new approach to solve
the problem of recognition of medicinal analgesic substances. Our quantum-chemical
calculations  demonstrate  that  calcium  chelation  process  plays  an  important  role  in
ligand-receptor binding and it is energetically allowed not only in vacuum but also in
the adequate physiological environment. Conclusions concerning the probable structure
of opioid-like receptor binding pocket are presented.

Keywords: Ca2+  chelate complex, Gamma-pyridone derivatives, Limiting slope
procedure,  NaV1.8  channels,  Nociception,  Opioid-like  receptor,  Patch-clamp
method,  Quantum-chemical  calculations.

The  main  result  obtained  in  Chapter  2  of  this  book  is  elucidation  of  the
physiological  role of calcium chelation by gamma-pyrone derivatives,  which is
fundamentally important for ligand-receptor binding. Participation of the calcium
ion  in  binding  of  gamma-pyrones  to  the  opioid-like  receptor  is  completely  not
obvious,  and  it  allows  introducing  a  new  approach  to  analyze  physiological
activity of potential  analgesics.  This conclusion can be additionally verified by
investigation  of  physiological  effects  of  molecules  relating  to  a  class  of
substances,  similar  in  structure  to  gamma-pyrones.   We  have  chosen  for  our
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further  studies  gamma-pyridone  derivatives,  which  are  distinguished  from
gamma-pyrones by the nature of the ring heteroatom (gamma-pyridones contain a
nitrogen atom, as opposed to an oxygen atom in gamma-pyrones).

Many gamma-pyridones are demonstrated to be of pharmacological importance:
they  can  exhibit  analgesic  activity  [1  -  5],  display  anti-inflammatory  [3,  4,  6],
antitumor [7, 8], antibacterial [9, 10], antimicrobial [11], antimalarial effects [12],
positively influence the cardiovascular system [13] and can also be applied for the
treatment of Parkinson’s disease [14].

3-Hydroxy-gamma-pyridone  derivatives  are  widely  used  in  various  fields  of
medicinal  chemistry  to  treat  the  diseases  caused  by  excess  microelements  in
serum  [15  -  17],  as  well  as  to  design  radioactive  and  fluorescent  labels  for
diagnostics [17]. These applications of 3-hydroxy-gamma-pyridones are based on
their  ability to chelate doubly and triply charged cations (Al3+,  Fe3+,  Ga3+,  Zn2+,
Cu2+,  Ca2+,  Mg2+)  [17  -  20]  through  the  carbonyl  and  hydroxyl  groups  at
contiguous  positions  of  the  pyridone  ring.

PATCH-CLAMP INVESTIGATION OF GAMMA-PYRIDONES

Insofar as gamma-pyridones are structurally related to gamma-pyrones discussed
in Chapter 2,  it  is of interest to investigate the effect of the ring heteroatom on
physiological and structural properties of these compounds in order to find a new
mechanism or new agents capable of acting as analgesics by selective modulation
of  NaV1.8  channels.  Two  molecules  were  chosen  to  examine  their  ability  to
decrease  the  effective  charge  of  NaV1.8  channel  activation  gating  device:  5-
hydroxy-1-methyl-gamma-pyridone-2-carboxylic  acid  (substance  E)  and  5-
hydroxy-2-hydroxymethyl-gamma-pyridone  (substance  F).  Their  structural
formulae are presented in Fig. (3.1). It is important that the latter compound is a
structural  analog  of  kojic  acid  (substance  D,  Fig.  2.8)  which  showed  no
appreciable  activity  in  our  patch-clamp experiments,  while  the  former  one  is  a
structural  analog  of  comenic  acid  (substance  А,  Fig.  2.8)  which  is  capable  to
activate the opioid-like receptor being applied at nanomolar concentrations.

The families of NaV1.8 currents in the control experiment and after extracellular
application of substance E are presented in Fig. (3.2.a). It is clearly seen that the
amplitude values of the currents are reduced, indicating that the decrease of the
channels  density  may  take  place.  The  peak  current-voltage  curve  shifts  in  the
depolarizing direction after substance E has been applied (Fig. 3.2.b). The voltage
dependencies  of  normalized  GNa_s(E)  functions  differ  between  the  control  and
substance E data at negative potentials. In the latter case this function is steeper
(Fig. 3.3.a). When GNa_s(E) dependencies are obtained, the Almers' limiting slope
procedure can be applied, making it possible to evaluate Zeff at the most negative
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potentials (Fig. 3.3.b). Our experimental results demonstrate that substance F is
also able to decrease Zeff of NaV1.8 channel activation gating system. Its action is
characterized by only two manifestations of inhibitory properties: it reduces the
amplitude  values  of  the  currents  (Fig.  3.4.a)  and  decreases  Zeff  (Fig.  3.5).
Somewhat  unexpected  in  this  case  is  the  lack  of  the  voltage  shift  of  NaV1.8
channels  activation  gating  process  (Fig.  3.4.b).  On  the  contrary,  the  effects  of
substance E are absolutely of the same character as those observed after morphine
or  comenic  acid  application  (Figs.  1.13,  2.2).  The  decrease  in  Zeff  after
extracellular application of substance E occurs due to activation of the receptor-
coupled membrane mechanism (Fig. 1.17). Indeed, this conclusion is based on the
fact that nonspecific opioid antagonist naloxone (NLX) switched off the effect of
substance E (Fig. 3.6). Fig. (3.7) summarizes the effects of investigated gamma-
pyridone  derivatives.  Both  substances  E  and  F  decrease  Zeff,  which  makes  it
possible  to  predict  their  antinociceptive  action  on  the  organismal  level.

Fig. (3.1).  Structural formulae of gamma-pyridones.
a – 5-hydroxy-1-methyl-gamma-pyridone-2-carboxylic acid (substance E), NH-form;
b – 5-hydroxy-1-methyl-gamma-pyridone-2-carboxylic acid (substance E), OH-form;
c – 5-hydroxy-2-hydroxymethyl-gamma-pyridone (substance F), NH-form;
d – 5-hydroxy-2-hydroxymethyl-gamma-pyridone (substance F), OH-form.
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CHAPTER 4

Possible  Mechanisms  of  Ligand-Receptor  Binding
of Cardiotonic Steroids

Abstract: Cardiotonic steroids are a recently discovered class of hormones synthesized
in the adrenal cortex and hypothalamus and circulating in the blood. It is well known
that the target molecule for these agents is Na+,K+-ATPase. A direct consequence of the
proposed mechanism of NaV1.8 channels modulation in Chapter 1 is the prediction of a
special signaling function of the sodium pump. In other words, Na+,K+-ATPase should
be involved in  the  processing of  nociceptive  information.  The data  presented in  the
current  chapter  support  this  idea.  According  to  our  findings,  ouabain  as  a  newly
recognized  hormone  plays  the  role  of  endogenous  analgesic  at  subnanomolar
concentrations. Its target site is located directly on Na+,K+-ATPase and it recognizes
ouabain, only in the form of its calcium chelate complex. The most significant result
discussed  in  this  chapter  is  explanation  of  the  dual  effect  of  ouabain:  two  distinct
attacking  molecules  (ouabain  and  its  calcium chelate  complex)  bind  to  two  distinct
sites  of  Na+,K+-ATPase,  thus  modulating  two  distinct  functions  of  the  enzyme:
pumping and non-pumping (signal-transducing). Another newly recognized hormone,
marinobufagenin,  also  exhibits  analgesic  effect  at  low  concentrations  but  it  is  of
principally different nature. This molecule lacks the ability to form marinobufagenin‒
Са2+ chelate complex in 1:1 stoichiometry which could activate the signal-transducing
function of Na+,K+-ATPase upon binding to the enzyme. The decrease of Zeff of NaV1.8
channel  activation  gating  device  induced  by  application  of  marinobufagenin  at
nanomolar  concentrations  results  from  activation  of  the  “modulated  receptor”
mechanism, i.e., this molecule binds directly to the aminoacid sequence of the channel
without involvement of Ca2+.

Keywords:  Ca2+  chelate  complex,  Limiting  slope  procedure,  Marinobufagenin,
NaV1.8  channels,  Na+,K+-ATPase,  Nociception,  Ouabagenin,  Ouabain,  Patch-
clamp  method,  Quantum-chemical  calculations.

Endogenous  cardiotonic  steroids  have  various  physiological  functions.  In
particular, it was demonstrated that abnormal concentrations of these agents [1]
could  evoke  different  pathological  states:  congestive  heart  failure,  cardiac
arrhythmias [2, 3], hypertension [4], cancer [5], and depressive disorders [6, 7].
An  increase of  concentration of  cardiotonic steroids  was detected in  the blood
and  subcutaneous water  upon  stress,  lassitude,  inflammatory  processes  in  the
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organism [8],  pregnancy [9],  and as  a  result  of  nephrectomy [10].  Endogenous
cardiotonic  steroids  also  influence  cell  growth  and  proliferation  [11  -  13].
Ouabain exhibits anti-apoptosis action on endothelial cells [14]. Bufadienolides
may  induce  apoptosis  in  human  leukemia  cells  [15]  and  they  also  display
antiproliferative activity and immunosuppressive activity upon action on T cells
[16].

PATCH-CLAMP INVESTIGATION OF CARDIOTONIC STEROIDS

A direct consequence of our working hypothesis (Fig. 1.17) is the prediction of a
new mechanism of action of cardiotonic steroids, which should play an important
role  in  nociception.  When  these  agents  activate  the  transducing  function  of
Na+,K+-ATPase, they might produce an analgesic effect. In our opinion, the most
interesting  objects  to  study  are  endogenous  substances,  such  as  ouabain  and
marinobufagenin.  Obviously,  these  agents  can  exert  their  analgesic  properties
only  in  vanishingly  small  “endogenous”  concentrations,  since  it  is  known  that
high  concentrations  of  cardiotonic  steroids  are  extremely  toxic.  Endogenous
ouabain was found in blood plasma in subnanomolar concentrations [17 - 19]. The
designation  “ouabain–Ca2+”  is  used  further  to  distinguish  low  (endogenous)
concentrations  of  ouabain  from  its  high  concentrations,  as  in  physiologically
adequate  conditions  endogenous  ouabain  should  exist  in  the  form  of  calcium
chelate complex (see below). Fig. (4.1) illustrates NaV1.8 currents in the control
experiment  and  after  extracellular  application  of  ouabain–Ca2+  at  1  nM.  It  is
clearly seen that the amplitude values of the currents are decreased (Fig. 4.1.a).
The peak current-voltage curve shifts in the depolarizing direction (Fig. 4.1.b) and
the left branch of this function becomes steeper at negative E after ouabain–Ca2+

has been applied, which results in a very pronounced decrease in Zeff (Fig. 4.2.a)
due  to  activation  of  the  transducer-coupled  membrane  mechanism described  in
Chapter 1 (Fig. 1.17). Indeed, a nonspecific opioid antagonist naltrexone (NTX)
does not switch off the effect of ouabain–Ca2+ (Fig. 4.2.b). These findings indicate
that ouabain–Ca2+ can be compared to comenic acid or morphine in efficiency of
NaV1.8  channel  modulation.  It  switches  on  the  three  background  mechanisms
discussed  in  Chapters  1-3  that  should  lead  to  pain  relief:  reduces  the  channels
density,  positively  shifts  NaV1.8  channel  activation  gating  process  and,  most
importantly,  markedly  decreases  Zeff.  The  latter  process  is  of  dose-dependent
nature,  showing  monotonic  transducer-coupled  ligand-receptor  binding  of
ouabain–Ca2+ in subnanomolar and nanomolar concentration range from 100 pM
to  10  nM  (Fig.  4.3).  This  binding  process  is  characterized  by  Kd  =  7  nM:
extremely  ouabain-sensitive  branch  of  the  dose-dependence  curve  reflects
modulation of the signal-transducing function of Na+,K+-ATPase at the membrane
level.  As  it  was  mentioned  above,  ouabain  concentrations  detected  in  human
blood plasma are of the same order of magnitude (close to Kd). Thus, according to
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our  results,  neuronal  Na+,K+-ATPase  as  a  signal  transducer  should  be  under
effective control of endogenous ouabain. On the contrary, the right branch of Zeff
dependence  on  ouabain  concentration  is  governed  by  a  radically  different
background mechanism. An increase of ouabain concentration leads to inhibition
of  the  pumping  function  of  Na+,K+-ATPase.  The  second  process  can  also  be
approximated by the Hill equation, the Kd  value in this case being much higher
(0.1 mM) (Fig. 4.3). This fact leads to raising a very important question. How can
one and the same enzyme (Na+,K+-ATPase) distinguish between its pumping and
non-pumping functions modulated by one and the same molecule (ouabain)? The
answer is partly given above: endogenous ouabain exists in the form of calcium
chelate  complex  due  to  the  presence  of  free  calcium  in  small  amounts  in
physiological medium. An increase of ouabain concentration, given that calcium
concentration  remains  the  same,  results  in  an  important  effect:  “free”  ouabain
binds to a completely different site of Na+,K+-ATPase. This fact will be explained
below on the basis of our quantum-chemical calculations. Here it is worth noting
that experimental evaluation of ouabain Kd carried out by different methods never
led  to  unequivocal  results,  which  could  be  in  part  accounted  for  by  the
heterogeneity  of  Na+,K+-ATPase  isoforms.  Four  isoforms  of  its  α  subunit  are
known to exist,  and they are expressed in a cell  type-specific manner in higher
vertebrates.  Adult  rat  kidney  and  liver  cells  express  the  α1  isoform;  glial  and
skeletal muscle, both α1 and α2; sperm cells, both α1 and α4. Unlike most other
cells, neurons may express α1, α2, α3, or any combination of these isoforms. With
rare exceptions, the α3 isoform of Na+,K+-ATPase is detected in neurons of adult
vertebrates  only  [20].  Therefore  it  is  not  surprising  that  quantitative  data
concerning the mechanisms of binding of cardiotonic steroids to Na+,K+-ATPase
scatter significantly. The Kd values describing these processes vary with isoform
type  and  they  are  different  in  rodents  and  humans.  Human  α1,  α2,  α3,  and  α4
isoforms have Kd in the range of 10−9 to 10−8 M [21 - 23]. One of these isoforms
(α1) is ouabain-insensitive in rodents and has a very high Kd value of about 10−6 M
[24, 25]. Furthermore, binding of cardiotonic steroids to the α subunit of Na+,K+-
ATPase is affected by the particular β subunit associated with it [26]. Taking into
account  the  three  α  subunits  (α4  appears  to  be  present  specifically  in
spermatozoa), the three β subunits and the seven FXYD subunits that have been
shown to associate with Na+,K+-ATPase, there are potentially 63 different receptor
complexes with which cardiotonic steroids can interact [27].

Our patch-clamp data indicate that there are at least two different ouabain binding
sites in Na+,K+-ATPase (Fig. 4.3). Investigations of ouabain-sensitive current of
Na+,K+-ATPase  in  small  neurons  from  adult  rat  dorsal  root  ganglia  also
demonstrated the existence of two ouabain binding sites, which were suggested to
be located on two functionally distinct Na+,K+-ATPase isozymes, α1β1 and α3β1,
with ouabain dissociation constants of 0.2 and 140.1 μM, respectively [28].
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CHAPTER 5

Concluding Remarks

Abstract:  Molecular  mechanisms of  the  nociceptive  information control  in  primary
sensory neuron are  described based on our  investigation of  the  membrane signaling
cascade (opioid-like receptor → Na+,K+-ATPase → NaV1.8 channel). Summarizing the
data  presented  in  this  volume  it  is  possible  to  conclude  that  modulation  of  NaV1.8
channels responsible for the coding of noxious signals can be carried out due to two
novel targeting mechanisms. The first of these is the activation of opioid-like receptors;
the  second  is  the  activation  of  the  Na+,K+-ATPase  signal-transducing  function.
Development of a novel class of analgesics that trigger these mechanisms should lead
in the near future to successful solution of the problem of chronic pain relief.

Keywords:  Analgesic,  Modulated  receptor,  NaV1.8  channels,  Na+,K+-ATPase,
nociception,  Opioid-like  receptor,  Signal  transducer.

It is known that pain is unpleasant but necessary. It signals of danger, preventing
us  from  harming  ourselves,  and  alerts  on  possible  damage  to  our  bodies.  Too
much pain is crippling and can make everyday living an agony. That is why pain
and suicide are related. Even “good” pain can turn bad, when the pain caused by
an injury persists after the damage has healed. Chronic pain dramatically reduces
the  quality  of  life  for  millions  of  people.  There  is  no  doubt  that  any  steps  to
develop  potent  and  safe  analgesics  are  of  major  importance.  Unfortunately,  no
analgesics  in  the  arsenal  of  practical  medicine  satisfy  these  two  criteria  at  the
same time. However, there is always hope that other opportunities to fight pain
are hidden within the human body. Even the smallest practical result in finding
them is  very  important,  because  endogenous  mechanisms  of  pain  relief  should
have no negative side effects. In our opinion, to elucidate them it is necessary to
link  physiology,  which  is  the  basis  of  medical  science,  with  calculational
chemistry that makes it possible to describe physiological events on the detailed
molecular level.

The basic physiological principles should be applied to analyze the fundamental
mechanisms  of  nociception.  Ivan  Pavlov  was  the  first  who  revealed  a  strong
coupling between internal inhibition processes and antagonistic nervous process
of excitation [1]. Intensity  of sensory signals in  the peripheral nervous system  is
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simply coded by frequency of nerve impulses. This principle discovered by Edgar
Adrian [2] is widely used by us in this book. We also rely on the assumption of
Vernon Mountcastle, who formulated it as the linear operator principle [3, 4]. We
take  this  principle  into  consideration  when  we  quantitatively  describe  the
processes of receptor- or transducer-coupled modulation of NaV1.8 channels. In
other words, we postulate that the process of ligand-receptor binding that occurs
in  neighboring  protein  molecule  linearly  (or  monotonically)  influences  the
effective  charge  value  of  NaV1.8  channels  activation  gating  system.

We  believe  that  the  novel  mechanism  of  NaV1.8  channels  modulation  in
nociceptive neuron (Fig. 1.7) will open a new approach to solve the problem of
chronic pain. Fig. (1.7) indicates the presence of three separate molecular targets.
Each of them can interact with its “own” agonists and antagonists, some of which
should be endogenous. It can be thus argued that the physiological effects of these
interactions should result in the control of nociceptive signals. In accordance with
our approach, antinociceptive response of sensory neuron can be obtained through
activation  of  three  different  molecular  mechanisms  triggered  by  three  different
targets: opioid-like receptor, Na+,K+-ATPase as a signal transducer, and NaV1.8
channel.

OPIOID-LIKE  RECEPTOR-COUPLED  MECHANISM  OF  NAV1.8
CHANNELS MODULATION

Several unexpected manifestations of morphine action were presented in Chapter
1.  We  propose  a  completely  new  additional  explanation  of  powerful  analgesic
effect  produced  by  this  substance.  It  is  assumed  that  the  opioid-like  receptor-
coupled mechanism is also responsible for the analgesic effect of morphine. Of
course,  the  agent  runs  the  well-studied opioidergic  system,  activation of  which
leads to pain relief. One terrible disadvantage property intrinsic to opioid receptor
agonists, however, does not allow morphine to become an ideal analgesic. This
disadvantage is the appearance of multiple negative side effects as a result of its
systematic  application.  It  is  tempting to speculate  that  the cause of  the adverse
side effects of the agent at the molecular level is its ability to activate G proteins
coupled  to  classic  opioid  receptors.  We  have  found  a  fundamentally  different
mechanism  of  morphine  action,  the  role  of  signal  transducer  in  which  is
performed by Na+,K+-ATPase of  nociceptive neuron [5].  Now it  becomes clear
that  the  analgesic  effect  of  morphine is  of  dual  nature:  it  activates  both  classic
opioid receptors and opioid-like receptors physiologically described in the present
book. Our results suggest that a selective agonist of novel opioid-like receptors
will  be free of negative side effects,  since in this  case the transducing function
would be performed by Na+,K+-ATPase and not by G proteins. As it was shown in
Chapters 1-3, activation of the Na+,K+-ATPase transducing function is a marker of
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involvement  of  opioid-like  receptors  in  modulation  of  NaV1.8  channels.
Identification  of  the  selective  agonist  of  opioid-like  receptors  which  differs
essentially from morphine both structurally and physiologically is the important
result  of  our  work.  This  agent  is  comenic  acid,  which,  unlike  morphine,  binds
selectively only to opioid-like receptors, thus resulting in modulation of NaV1.8
channels responsible for coding of nociceptive signals.

Combined  application  of  the  patch-clamp  method  and  quantum-chemical
calculations  made  it  possible  to  clarify  the  difference  between  morphine  and
comenic acid in their receptor-coupled ability to modulate NaV1.8 channels. The
latter substance, being of a significantly smaller molecular volume than morphine,
specifically activates only opioid-like receptors due to its remarkable property: it
can chelate calcium ions from the surrounding physiological medium. Our study
on  the  effects  of  gamma-pyrone  and  gamma-pyridone  derivatives  presented  in
Chapters  2  and  3  allows  to  describe  the  probable  characteristics  of  opioid-like
receptor  binding  pocket  and  get  an  insight  on  molecular  structure  of  the
endogenous  agonist  of  these  receptors,  which  is  not  yet  identified.

Four of six studied molecules (substances A, B, E, and F) displayed the ability to
modulate  NaV1.8  channels,  while  the  other  two  (substances  C  and  D)  were
inactive. Our results made it possible to establish that the active substances should
bind  to  the  opioid-like  receptor  being  in  the  form  of  calcium  salt  of  calcium
chelate complex and to consequently formulate the structural criteria determining
the  possibility  for  formation  of  ligand-receptor  complexes  between  gamma-
pyridones or gamma-pyrones and the opioid-like receptor: (1) in position 5 of the
heterocycle should be present a hydroxyl or methoxy group which is capable, in
combination with the carbonyl group in position 4, to chelate Ca2+ cation; (2) the
second  Ca2+  cation  serves  as  the  counterion  at  the  deprotonated  carboxyl  or
hydroxymethyl group in position 2 of the heterocycle; (3) intercationic distance
r(Ca2+∙∙∙Ca2+) may range from 9.4 to 10.0 Å; and (4) Ca2+ cations should occupy
specific positions with respect to the heterocycle. The major contribution to the
energy  of  ligand-receptor  binding  of  gamma-pyrones  and  gamma-pyridones  is
provided by strong ion-ionic interactions between bound calcium cations of the
ligand and negatively charged aspartate residues of the opioid-like receptor. It is
also  found  that  the  nature  of  the  ring  heteroatom  may  influence  the  ability  of
ligands  to  bind  to  the  opioid-like  receptor.  Substance  F,  a  structural  gamma-
pyridone  analog  of  inactive  gamma-pyrone  D,  exhibits  NaV1.8  channel-
modulating effect due to the presence of intramolecular hydrogen bond between
the heterocycle nitrogen atom and the oxygen atom of the hydroxymethyl group
in  position  2  of  the  pyridone  ring,  which  fixates  this  substituent  in  the
conformation  appropriate  for  ligand-receptor  binding.  Several  observations  are
made regarding the structure  of  opioid-like receptor  binding pocket:  it  is,  most
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