eISBN 978-1-68108-100-7
ISBN 978-1-68108-101-4

Counting Moles ...

Nigel P. Freestone

COUNTING MOLES

SIMPLE SOLUTIONS CHEMISTRY COUNTING MOLES

Edited By

Nigel P. Freestone
The University of Northampton
UK

Simple Solutions in Chemistry - Counting Moles

Author: Nigel P. Freestone
eISBN (eBook): 978-1-68108-100-7
ISBN (Print): 978-1-68108-101-4
© 2016, Bentham eBooks imprint.
Published by Bentham Science Publishers - Sharjah, UAE. All Rights Reserved.
First Published in 2016

BENTHAM SCIENCE PUBLISHERS LTD.

End User License Agreement (for non-institutional, personal use)

This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the ebook/echapter/ejournal ("Work"). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: permission@benthamscience.org.

Usage Rules:

1. All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit the Work or make the Work available for others to do any of the same, in any form or by any means, in whole or in part, in each case without the prior written permission of Bentham Science Publishers, unless stated otherwise in this License Agreement.
2. You may download a copy of the Work on one occasion to one personal computer (including tablet, laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it. The following DRM (Digital Rights Management) policy may also be applicable to the Work at Bentham Science Publishers' election, acting in its sole discretion:

- 25 'copy' commands can be executed every 7 days in respect of the Work. The text selected for copying cannot extend to more than a single page. Each time a text 'copy' command is executed, irrespective of whether the text selection is made from within one page or from separate pages, it will be considered as a separate / individual 'copy' command.
- 25 pages only from the Work can be printed every 7 days.

3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights.

Disclaimer:

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction,
advertisements or ideas contained in the Work.

Limitation of Liability:

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

General:

1. Any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims) will be governed by and construed in accordance with the laws of the U.A.E. as applied in the Emirate of Dubai. Each party agrees that the courts of the Emirate of Dubai shall have exclusive jurisdiction to settle any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims).
2. Your rights under this License Agreement will automatically terminate without notice and without the need for a court order if at any point you breach any terms of this License Agreement. In no event will any delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement constitute a waiver of any of its rights.
3. You acknowledge that you have read this License Agreement, and agree to be bound by its terms and conditions. To the extent that any other terms and conditions presented on any website of Bentham Science Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail.

Bentham Science Publishers Ltd.

Executive Suite Y-2
PO Box 7917, Saif Zone
Sharjah, U.A.E.
Email: subscriptions@benthamscience.org

CONTENTS

FOREWORD i
PREFACE iii
CONFLICT OF INTEREST iii
ACKNOWLEDGEMENTS iv
CHAPTER 1 RELATIVE ATOMIC \& FORMULA MASS, PERCENTAGE COMPOSITION, EMPIRICAL\& MOLECULAR FORMULAE 3
1.1. RELATIVE ATOMIC MASS (A_{R}) 3
Selected Relative Atomic Mass Values 3
Isotopes 4
Three Isotopes of Carbon 4
Calculating Average Relative Atomic Mass 5
Exercise 1.1 7
1.2. RELATIVE FORMULA MASS $\left(M_{R}\right)$ 7
Relative Formula Mass (Mr) Calculating Frame 8
Exercise 1.2 12
1.3 PERCENTAGE COMPOSITION (\%) 13
Percentage Composition Calculating Frame 14
Exercise 1.3 16
1.4. EMPIRICAL AND MOLECULAR FORMULA 17
Empirical Formula from Molecular Formula 17
Exercise 1.4 17
Molecular Formula from Empirical Formula 18
Exercise 1.5 18
Empirical and Molecular Formulas from \% Composition 19
Exercise 1.6 22
ANSWERS 23
Exercise 1.1 23
Exercise 1.2 25
Exercise 1.3 31
Exercise 1.4 34
Exercise 1.5 36
Exercise 1.6 39
CHAPTER 2 THE MOLE 46
Exercise 2.1 51
Exercise 2.2 52
Exercise 2.3 52
Exercise 2.4 53
ANSWERS 53
Exercise 2.1 53
Exercise 2.2 54
Exercise 2.3 56
Exercise 2.4 58
CHAPTER 3 MOLES \& BALANCED CHEMICAL EQUATIONS 61
3.1. CHEMICAL EQUATIONS 61
Exercise 3.1 64
3.2. MOLES CALCULATING FRAME 65
Introducing the 'Moles Calculating Frame' 65
3.3. MOLE, MASSES AND CHEMICAL EQUATIONS 67
Exercise 3.2 75
ANSWERS 77
Exercise 3.1 77
Exercise 3.2 78
CHAPTER 4 MOLARITY \& CONCENTRATION 88
4.1. CONCENTRATION 88
4.2. MOLARITY 89
Exercise 4.1 92
Exercise 4.2 93
Exercise 4.3 93
4.3. PERCENTAGE BY MASS (M/M \%) AND MASS FRACTION (M/M) 93
Mass Fraction 94
4.4. PERCENT MASS/VOLUME (M/V \%) 95
4.5. PERCENT BY VOLUME (V/V \%) 96
4.6. PARTS PER MILLION (PPM) 96
Exercise 4.4 98
ANSWERS 99
Exercise 4.1 99
Exercise 4.2 102
Exercise 4.3 105
Exercise 4.4 107
CHAPTER 5 VOLUMETRIC ANALYSIS 113
5.1 INTRODUCTION 113
Exercise 5.1 121
Exercise 5.2 122
ANSWERS 124
Exercise 5.1 124
Exercise 5.2 130
CHAPTER 6 MOLAR VOLUMES \& REACTING VOLUMES 138
6.1. MOLES \& GASES 138
6.2. MOLES TO VOLUME 139
Exercise 6.1 140
6.3. VOLUME TO MOLES (AND MASS) 140
Exercise 6.2 141
Exercise 6.3 141
6.4. RELATIVE MOLECULAR MASS FROM VOLUME \& MASS 142
Exercise 6.4 142
6.5. MOLAR VOLUME FROM MASS 143
6.6. VOLUME OF ONE GAS, FROM ANOTHER GAS 143
6.7. EQUATIONS, MOLES AND VOLUMES 144
Exercise 6.5 145
Exercise 6.6 147
ANSWERS 148
Exercise 6.1 148
Exercise 6.2 150
Exercise 6.3 153
Exercise 6.4 156
Exercise 6.5 159
Exercise 6.6 163
MOLE DRIVING TEST NO. I 170
MOLE DRIVING TEST NO. II 173
MOLE DRIVING TEST NO. III 176
MOLE DRIVING TEST ANSWERS 179
PERIODIC TABLE 208
LICENSE 209
SUBJECT INDEX 210

FOREWORD

When people I meet ask me what I do and I mention that I trained as a chemist, they usually wince. This is often followed by a comment such as, "there's too much maths in chemistry"; "learning chemistry is like learning a foreign language"; "there's a lot to learn". People very rarely say, "I wish I'd learned more chemistry at school" or "chemistry is so interesting". This is hugely frustrating for me as chemistry is everywhere - everything we see, touch, taste, smell and even hear involves chemicals and chemistry. I think it is a brilliant, fascinating, complex and simple subject that shapes and changes our world for the better.

However, having taught various aspects of (mainly environmental) chemistry from primary school to PhD levels for more than a quarter of a century, I'm very aware that chemistry can be viewed as difficult, theoretical and even irrelevant to people's everyday lives. This is a terrible shame and may have unforeseen adverse consequences. The world is facing a large number of global challenges that include anthropogenic climate change, sustainable development, the need for adequate supplies of clean water and other key resources such as metals, growing energy demands, concerns about food supply and quality, and the impacts on nutrition and health. Chemistry can make a significant contribution to helping us to mitigate or solve these challenges - but for that to happen, we need more chemists.

I know from talking to colleagues in industry, business and academia that there is a potential shortage of human resources in key scientific professions. There have been numerous pleas for the rejuvenation of science teaching and initiatives to increase the interest and attainment of students in science and mathematics. Basic scientific skills such as communication, classification, measurement, observation, inference and prediction contribute to a larger purpose - problem solving. These skills allow scientists to conduct systematic, objective investigations and to reach conclusions based on the results. Such skills are vital in chemistry. We need young people who are mathematically and scientifically literate and who engage with scientific problems in an orderly, "can-do" fashion. We cannot allow a shortfall in these skills to emerge simply through neglect or fatalism or worse - because subjects such as chemistry are "hard", "dangerous", "geeky", "too mathematical" or require "too much work".

Therefore I'm delighted to welcome Nigel Freestone's refreshing book "Counting Moles" to the stable of chemistry textbooks. Nigel has a wealth of experience in delivering chemical concepts to young people in an engaging and inspiring fashion. This book is designed to provide multiple opportunities for students to develop a firm understanding of chemical concepts that underpin the whole subject. Students will be able to use the multiple worked examples and calculating frame to hone their skills and become more confident in fundamental problem-solving activities, culminating in the award of a Counting Moles

ii

Driving Licence that confirms their achievement.
I'm sure Nigel's book will make a significant contribution to addressing the chemistry skills shortage and to ensuring that this wonderful subject continues to make its distinct contribution to solving the world's challenges.

Ian Williams

University of Southampton
UK
I.D.Williams@soton.ac.uk

PREFACE

Students studying chemistry often struggle with the MOLE. This user-friendly self-teach package provides an effective aid to learning by giving clear and confident presentation of the essentials of the mole needed by those starting chemistry courses. This self teach package contains over 200 questions, with detailed solutions, so if you get stuck, you can see where you went wrong.

After successfully completing Counting Moles, you will be able to:

- understand what is meant by the terms relative atomic mass and relative formula mass
- calculate average atomic mass from isotope abundance;
- determine relative formula mass;
- define of the chemical term, the 'mole';
- calculate the molar mass of a substance from its chemical formula;
- calculate percentage composition;
- interconvert between mass, number of molecules, and moles;
- calculate the amount (mass or moles) of product expected to be formed in a chemical reaction, given the amounts of reactants used;
- calculate the amount (mass or moles) of reactants which need to be used in a chemical reaction in order to produce a specified amount of product;
- define the term concentration, and calculate the molarity of solutions from volumetric analysis and other data;
- determine the mass and/or volume of gases consumed or formed in a chemical reaction.

Counting Moles is split into SIX (6) Chapter. Each Chapter should be thought of as a separate lesson that should take between 15 and 45 minutes to complete. It is ESSENTIAL that you answer each question. The Counting Moles approach to learning is based on understanding developed through repetition and introduces the 'mole calculating frame' to help you solve problems. Answers to ALL questions, with full explanations are provided, should you get into difficulty.

The Chapters prepare you for the Counting Moles Driving Test. If you PASS, you can throw you M-plate away and claim your Counting Moles Driving Licence. You will then be able to answer moles-based coursework and examination questions correctly and with confidence.

CONFLICT OF INTEREST

The author confirms that author has no conflict of interest to declare for this publication.

ACKNOWLEDGEMENTS

Declared none.

Copyright: Nigel P Freestone 2016

CHAPTER 1

Relative Atomic \& Formula Mass, Percentage Composition, Empirical \& Molecular Formulae

Keywords: Atoms, Average relative atomic mass, Calculations, Empirical and molecular formula, Isotopes, Percentage composition, Relative atomic mass $\left(A_{r}\right)$, Relative formula mass $\left(M_{r}\right)$.

1.1. RELATIVE ATOMIC MASS (A_{R})

Chemical elements are the building blocks from which everything is constructed, from specks of dust to mobile phones and from flora and fauna to the clothes we wear. There are over a 100 known elements. An element is a pure substance that cannot be chemically broken down. The smallest unit of an element is the atom. Different atoms have different masses. The mass of an atom is so small that it is more convenient to compare atom masses, rather than refer to their actual mass. The standard for this relative scale is an atom of carbon-12, which has a relative atomic mass $\left(\mathrm{A}_{\mathrm{r}}\right)$ of 12 .

The Table below lists the relative atomic mass $\left(\mathrm{A}_{\mathrm{r}}\right)$ values of some common elements.

Selected Relative Atomic Mass Values

Element	Approximate Relative Atomic Mass (A \mathbf{r}
Hydrogen	1
Carbon	12
Nitrogen	14
Oxygen	16
Sodium	23
Magnesium	24
Silicon	28
Calcium	40

Nigel P. Freestone
All rights reserved-© 2016 Bentham Science Publishers

Tableelcontd.....	
Element	Approximate Relative Atomic Mass (A)
Bromine	80

These relative atomic mass values tell us for example that sodium atoms ($\mathrm{A}_{\mathrm{r}}=23$) are 23 times heavier than hydrogen atoms $\left(\mathrm{A}_{\mathrm{r}}=1\right)$, two atoms of neon $\left(\mathrm{A}_{\mathrm{r}}=20\right)$ have the same mass as one atom of calcium $\left(\mathrm{A}_{\mathrm{r}}=40\right)$ and that three oxygen atoms $\left(A_{r}=16\right)$ weigh the same as two magnesium atoms $\left(A_{r}=24\right)$.

Relative atomic masses are listed in the periodic table.

Isotopes

Elements are defined by their proton (atomic) number. An atom with 7 protons is always nitrogen (N), an atom with 20 protons is always calcium and an atom with 70 protons must therefore always be gold (Au). Isotopes are atoms that have the same number of protons, but have different numbers of neutrons. For example, carbon has three naturally occurring isotopes, often referred to as simply carbon12 , carbon-13 and carbon-14, with relative atomic masses of 12,13 and 14 , respectively. Since carbon has a proton number of 6 , the isotopes contain 6,7 and 8 neutrons, respectively.

Three Isotopes of Carbon

Isotope $\mathbf{N o}$ of protons No of neutrons No of electrons				Relative Atomic Mass ($\mathbf{A}_{\mathbf{r}}$)
${ }^{12} \mathrm{C}_{6}$	6	6	6	12
${ }^{13} \mathrm{C}_{6}$	6	7	6	13
${ }^{14} \mathrm{C}_{6}$	6	8	6	14

A typical periodic table information box for the element carbon is given below:

The relative atomic masses listed in the periodic table are an average of the masses of the different naturally occurring isotopes. The rounded value gives you the mass of the most abundant isotope. For example, copper occurs naturally as $\mathrm{Cu}-63$ and $\mathrm{Cu}-65$. Given that the average relative atomic mass of copper is 63.546 , we can conclude that $\mathrm{Cu}-63$ is the more abundant isotope since the average value is closer to 63 than to 65 .

29

Calculating Average Relative Atomic Mass

Chlorine has a relative atomic mass of 35.5 , which is the average of the masses of its two naturally occurring isotopes. This is calculated by working out the relative abundance of each isotope. For example, in any sample of chlorine, 25% will be $\mathrm{Cl}-37$ and $75 \% \mathrm{Cl}-35$. The relative atomic mass is therefore calculated using the equation:
(\% of isotope $1 / 100 \times$ mass of isotope 1$)+(\%$ of isotope $2 / 100 \times$ mass of isotope 2)

So in the case of chlorine:
Average relative atomic mass $=(75 / 100 \times 35)+(25 / 100 \times 37)=26.25+9.25=$ 35.5

Example 1.1: Boron has three naturally occurring isotopes: 9\% boron-10 and 80.1% boron-11. Calculate the relative atomic mass of boron.

Answer:

Average relative atomic mass $=(19.9 / 100 \times 10)+(80.1 / 100 \times 11)=1.99+8.811$ = $\mathbf{1 0 . 8 0 1}$

Example 1.2: Magnesium has three isotopes, Given that the natural abundances are Mg-24 (78.70\%), Mg-25 (10.13\%), and Mg-26 (11.17\%) calculate the relative

CHAPTER 2

The Mole

Keywords: Avogadro's number, Calculations, Formula units, Molar mass, Relative formula mass, The mole.

The Mole is simply a number. Just as the term dozen refers to the number (12) twelve and a score to the number (20) twenty, the mole refers to the number 6.023 $\times 10^{23}$. Thus 12 eggs is a dozen of eggs, 20 eggs is a score of eggs and 6.023×10^{23} eggs is a mole of eggs. Commonly referred to as Avogadro's constant, 6.023 x 10^{23} is the number of atoms found in exactly 12 grams of carbon- 12 . Carbon- 12 is used as the standard from which atomic masses are measured: its mass number is 12 by definition. Since 12 g of carbon contains one mole of carbon atoms, the mass of one mole of any element is equal to its relative atomic mass in grams. Magnesium has relative atomic mass of 24. Therefore one mole of magnesium has a mass of 24 g . Thus 24 g of magnesium contains 6.02×10^{23} magnesium atoms and the mass of one atom of magnesium $=24 /\left(6.02 \times 10^{23}\right)=3.987 \times 10^{-23} \mathrm{~g}$. Similarly, the mass of one mole of lithium $\left(A_{r}=7\right)$ is $7 \mathrm{~g}, 27 \mathrm{~g}$ of aluminium $\left(\mathrm{A}_{\mathrm{r}}=\right.$ 27) contains one mole of atoms and the mass of one mole of calcium $\left(A_{r}=40\right)$ is 40 g etc. You can also work with fractions (or multiples) of moles:

Mole/Mass Relationship Examples Using Magnesium ($\left.\mathbf{A}_{\mathbf{r}}=\mathbf{2 4}\right)$		
Moles Magnesium	Number of Magnesium Atoms	Mass of Magnesium
0.25	1.505×10^{23}	6 g
0.5	3.01×10^{23}	12 g
1	6.02×10^{23}	24 g
2	1.204×10^{24}	48 g
10	6.02×10^{24}	240 g
50	3.01×10^{25}	1200 g

Some elements exist as molecules rather than atoms. The following elements all exist as diatomic molecules: hydrogen $\left(\mathrm{H}_{2}\right)$, nitrogen $\left(\mathrm{N}_{2}\right)$, oxygen $\left(\mathrm{O}_{2}\right)$ and the
halogens $\left(\mathrm{F}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}\right)$. Hydrogen has a relative atomic mass of 1 . Therefore, the relative formula mass of $\left(\mathrm{M}_{\mathrm{r}}\right)$ of $\mathrm{H}_{2}=(2 \times 1)=2$. Therefore, one mole of hydrogen molecules will have a mass of 2 g and will cont 6.02×10^{23} molecules of hydrogen. Oxygen has a relative atomic mass of 16 . Thus one mole of oxygen gas $\left(\mathrm{O}_{2}\right)$ has a mass of 32 g and 6.02×10^{23} molecules of nitrogen gas $\left(\mathrm{N}_{2}\right)$ have a mass of 28 g .

The concept of a mole is equally applicable to compounds as well as elements. The mass of one mole of a compound is its relative formula mass $\left(\mathrm{M}_{\mathrm{r}}\right)$ in grams. To avoid any ambiguity it is convenient to use the term formula unit. Formula unit refers to the smallest repeating unit of a substance and is the chemical formula normally used for the substance. For instance, the formula unit of graphite is an atom of carbon (C). Similarly, the formula unit of oxygen gas is an oxygen molecule $\left(\mathrm{O}_{2}\right) ; \mathrm{NaCl}$ is the formula unit for the ionic compound sodium chloride and the formula unit for silicon dioxide is SiO_{2}.

Equimolar amounts of substances contain the same number of formula units. Thus 0.5 moles any substance will contain the same number of formula units (particles), i.e. $0.5 \times 6.02 \times 10^{23}=3.01 \times 10^{23}$.

The idea of the mole links the mass of a substance to the number of formula units (particles) it contains. The mass of one mole of an element or compound is referred to as its molar mass, which is its relative atomic mass $\left(\mathbf{A}_{r}\right)$ or relative formula mass $\left(\mathbf{M}_{r}\right)$ in grams.

Molar Mass $\left(\mathbf{M}_{r}\right)=$ Relative Formula Mass in grams $\left(\mathrm{g} \mathrm{mol}^{-1}\right)$
If you have m grams of a substance which has a molar mass of $\mathrm{M}_{\mathrm{r}} \mathrm{g} \mathrm{mol}^{-1}$, then the amount of a substance in moles, n, is given by:-

$$
\begin{aligned}
& \text { Number of moles }=\text { Mass }(\mathrm{g}) / \text { Molar Mass }\left(\mathrm{g} \mathrm{~mol}^{-1}\right) \\
& \text { Number of formula units }(\text { particles })=\text { Number of moles x } 6.23 \times 10^{23} \\
& \text { Number of moles }=\text { mass }(\mathrm{g}) / \mathrm{M}_{\mathrm{r}}\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)
\end{aligned}
$$

Thus if you know the values of any two of n, m or M_{r} you can calculate the third using the equations above.

Water has a relative formula mass of 18 . Thus:

- one mole of water has a mass of 18 g ;
- 18 g of water contains 6.02×10^{23} formula units (molecules) of water;
- 0.5 moles of water has a mass of 9 g and contains 3.01×10^{23} molecules of water;
- one molecule of water has a mass of $18 /\left(6.02 \times 10^{23}\right)=2.99 \times 10^{-23} \mathrm{~g}$.

Example 2.1: Determine the mass of one mole of O_{2} ?

Answer:

Relative formula mass of $\mathrm{O}_{2}=(2 \times 16)=32$
Mass of one mole, i.e. molar mass $=\mathrm{M}_{\mathrm{r}}$ in g
Molar Mass, $\mathrm{M}_{\mathrm{r}} \mathrm{O}_{2}=\mathbf{3 2} \mathbf{g ~ m o l}^{-1}$
Example 2.2: What is the mass of 0.05 moles of ammonium sulfate?

Answer:

Relative formula mass of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=(2 \times 14)+(8 \times 1)+32+(4 \times 16)=132$
Mass of one mole, i.e. molar mass $=\mathrm{M}_{\mathrm{r}}$ in g
Molar Mass, $\mathrm{M}_{\mathrm{r}}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=132 \mathrm{~g} \mathrm{~mol}^{-1}$
Therefore, 0.05 moles of ammonium sulfate has a mass of $132 \times 0.05=\mathbf{6 . 6} \mathbf{g}$
Example 2.3: How many moles of substance are present in 0.250 g of calcium carbonate?

Answer:

Relative formula mass of $\mathrm{CaCO}_{3}=40+12+(3 \times 16)=100$
Mass of one mole, i.e. molar mass $=\mathrm{M}_{\mathrm{r}}$ in g
Molar Mass, $\mathrm{M}_{\mathrm{r}} \mathrm{CaCO}_{3}=100 \mathrm{~g} \mathrm{~mol}^{-1}$
So the number of moles in 0.250 g of $\mathrm{CaCO}_{3}=\mathrm{mass} / \mathrm{M}_{\mathrm{r}}=0.250 / 100=\mathbf{2 . 5} \mathbf{x 1 0} \mathbf{1 0}^{-3}$ moles

Example 2.4: How many formula units are present in 9 g of KNO_{3} ?

CHAPTER 3

Moles \& Balanced Chemical Equations

Keywords: Balancing chemical equations moles, Calculations, Calculating frame, Chemical equations, Products, Reactants, Reaction coefficients, Stoichiometry.

3.1. CHEMICAL EQUATIONS

Chemical equations are a form of shorthand that scientists use to describe chemical reactions, where the reactants are given on the left-hand side and the product on the right hand side.

$$
\text { Reactants } \rightarrow \text { Products }
$$

Chemical reactions simply involve the rearrangement of the same atoms through the breaking of chemical bonds and the formation of new bonds. Equations are balanced when the number and type of reactant and product atoms are identical. To balance equations, whole numbers, known as reaction coefficients are placed to the left hand side of chemical formula. Remember you cannot change the chemical formula of a substance to balance a chemical equation. Mass is always conserved. Atoms of gold cannot be produced from atoms of lead.

Sodium carbonate breaks down when heated to produce sodium carbonate, carbon dioxide and water. This thermal degradation can be represented by the following word equation:
sodium hydrogen carbonate \rightarrow sodium carbonate + carbon dioxide + water
Although this word equation is a convenient way of expressing a chemical reaction, it really does not provide us with any more information than the opening sentence of the paragraph above. But this all changes when we replace the names of the chemicals with chemical formula.

$$
\mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Atom Count (unbalanced):

	Reactants	Products
Na atoms	1	2
H atoms	1	2
C atoms	1	2
O atoms	3	6

The above reaction is unbalanced since the number of atoms of each element on the left hand side of the equation is not the same as the number of atoms of each element on the right hand side. To balance the equation the relative number of molecules or formula units that participate in the reaction are changed. Reaction coefficients are placed to the left of the chemical formula, e.g., $2 \mathrm{NaHCO}_{3}$, until the number of atoms of each element on either side of the equation balance. For most chemical equations it is often best to start by balancing the element with the least atoms present.

Once one element is balanced, proceed to balance another, and another, until all elements are balanced. Thus for the reaction above, we can see that H appears in one reactant $\left(\mathrm{NaHCO}_{3}\right)$ and one product $\left(\mathrm{H}_{2} \mathrm{O}\right)$. H's can be balanced by using ' 2 ' as the coefficient for NaHCO_{3}.

$$
2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Atom Count (balanced):

	Reactants	Products
Na atoms	2	2
H atoms	2	2
C atoms	2	2
O atoms	6	6

As you can see from the atom count, the equation is now balanced. Equations are completed by indicating the states of matter of each chemical species present, i.e. - (g) for gaseous substances, (s) for solids, (1) for liquids, and (aq) for species in solution in water.

$$
2 \mathrm{NaHCO}_{3(\mathrm{~s})} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{~s})}+\mathrm{CO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(1)}
$$

Example 3.1: Balance the following equations:
a) $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Start by balancing the element with the least atoms present, i.e. C , then the H atoms and lastly the O atoms.

Step 1: Balance C's

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Step 2: Balance H's

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

Step 3: Balance O's

$$
\mathrm{C}_{2} \mathrm{H}_{6}+7 / 2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

Although the equation is balanced in terms of the atom count, the reaction coefficients need to be the lowest possible whole numbers. To get whole numbers we multiply all reaction coefficients by the lowest common denominator of any fractions. In this example we multiply by 2 to remove the $7 / 2$ fraction.

$$
\text { Balanced equation: } \mathbf{2} \mathrm{C}_{2} \mathbf{H}_{6}+\mathbf{7 \mathrm { O } _ { 2 }} \rightarrow \mathbf{2} \mathrm{CO}_{2}+\mathbf{3} \mathbf{H}_{2} \mathbf{O}
$$

b) $\mathrm{N}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$

Start by balancing the element with the least atoms present, i.e. N .

Step 1: Balance the N's. Since there are 2 N's on the left hand side of the equation and one on the right had side, the N's can be balanced by using the coefficient 2 in front of the NH_{3}.

$$
\mathrm{N}_{2}+\mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

Step 2: Balance the H's. Since there are 3 H's on the left hand side and 6 on the right hand side, the H's can be balanced by placing the coefficient 3 in front of H_{2}.

CHAPTER 4

Molarity \& Concentration

Keywords: Calculations, Concentration, Molarity, Mole fraction, Parts per million, Percent by mass, Percent by volume.

4.1. CONCENTRATION

Most chemical processes occur in solution. "Life" has been described as the sum of a series of complex processes occurring in solution. Air, seawater, tea, beer and toilet bleach are all solutions. A solution is simply a homogenous mixture of substances of variable composition. The most abundant substance is called the solvent, whereas the substance present in lesser amounts is called the solute. If a small quantity of ethanol is added to water, the ethanol is the solute and the water is the solvent. But if we add a smaller amount of water to a larger amount of ethanol, then the water is the solute and the ethanol is the solvent. Although we will predominantly be concerned with solutions produced by solids dissolved in liquids, there are as many types of solutions as there are different combinations of solids, liquids, and gases. Brass is solid solution of copper and zinc, whilst the atmosphere is a solution in which a gaseous solvent (nitrogen) dissolves other gases (such as oxygen, carbon dioxide, water vapour, and neon).

Scientists often refer to concentrated solutions, dilute solutions, or very dilute solutions. Dilute solutions contain a relatively small amount of the solute in a given volume of solvent. Tap water is an example of a dilute solution since it contains small quantities of dissolved minerals. A concentrated solution on the other hand has a large amount of solute in the solvent.

Concentration can be expressed in several ways:

Solution Type (solute - solvent)	Concentration Units	Concentration Equation
Solid-Liquid	Molarity (M or mol/L or mol dm	

IMPORTANT NOTE:

* $\mathrm{m} / \mathrm{m} \%$ is often improperly referred to as weight percent ($\mathrm{wt} \%$) or weightweight percent (w/w \%)
** $\mathrm{m} / \mathrm{v} \%$ is often improperly referred to as $\%$ weight-volume percent ($\mathrm{w} / \mathrm{v} \%$) Since mass and weight are different quantities, both $\mathrm{w} / \mathrm{w} \%$ and $\mathrm{w} / \mathrm{v} \%$ are both incorrect.

4.2. MOLARITY

The concentration of a solution is expressed in terms of the amount of solute present in a standard volume of solvent. The standard volume is 1 litre, which is the same as is the same as 1 cubic decimetre $\left(1 \mathrm{dm}^{3}\right)$, which is the same as 1,000 cm^{3}. The most commonly used unit of concentration is molarity, often abbreviated as M. Molarity is simply the concentration of a solution expressed as the number of moles of solute per litre of solution.

A 1 M solution contains a molar mass $\left(\mathrm{M}_{\mathrm{r}}\right)$ of solute in 1 litre of the solvent.

The following units of concentration are all the same:

$$
\mathrm{M}=\mathrm{mol} / \mathrm{L}=\mathrm{mol} \mathrm{dm}^{-3}
$$

Concentration (c) = Amount of Solute (n) / Volume of solution (v)

$$
\mathbf{c}=\mathbf{n} / \mathbf{v}
$$

Amount of Solute (n) = Volume of Solution (v) \times Concentration (c)

$$
\mathrm{n}=\mathrm{v} \times \mathrm{c}
$$

Volume of Solution (v) = Concentration (c) / Amount of Solute (n)

$$
\mathbf{v}=\mathbf{c} / \mathbf{n}
$$

Concentration can also be expressed as stated above in terms of mass (g) of solute per unit of volume (litre), i.e. g / L.

Units:

$$
\mathrm{V}=\text { Volume in litres (L) }
$$

Note: to convert cm^{3} to L divide by 1000 , e.g $10 \mathrm{~cm}^{3}=10 / 1000=0.01 \mathrm{~L}$
If the amount of solute is measured in moles, then concentration unit is M If amount of solute is measured in g then concentration unit is g / L or $\mathbf{g ~ d m}^{-3}$

For example, glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ has a molar mass $\left(\mathrm{M}_{\mathrm{r}}\right)$ of $180 \mathrm{~g} \mathrm{~mol}^{-1}$. Therefore, a solution of 180 g of glucose dissolved in a total volume of 1 litre (L) has a concentration of 1.0 M or $180 \mathrm{~g} / \mathrm{L}$. A 0.1 M solution of glucose therefore must contain $18.0 \mathrm{~g}\left(0.1 \mathrm{x} \mathrm{M}_{\mathrm{r}}\right)$ of dissolved glucose in 1 L of solution. Similarly 1.8 g of glucose in $100 \mathrm{~cm}^{3}$ is equivalent to 18 g in $1000 \mathrm{~cm}^{3}(1 \mathrm{~L})$, giving a concentration of 0.1 M or $18 \mathrm{~g} / \mathrm{L}$.

To convert from M to g / L simply multiply by M_{r} To convert g / L to M simply divide by M_{r}

Example 4.1: What is the molarity of an aqueous solution of sodium chloride (NaCl) with a concentration of $5.85 \mathrm{~g} / \mathrm{L}$?

Answer:

Molar Mass $\left(\mathrm{M}_{\mathrm{r}}\right)$ of $\mathrm{NaCl}=58.5$
To convert g / L to M divide by M_{r}
Therefore, Molarity $=5.85 / 50.5=\mathbf{0 . 1} \mathbf{~ M}$
Example 4.2: A solution of KMnO_{4} has a concentration of 0.2 M . Express this concentration in terms of g / L.

Answer:

Molar Mass $\left(\mathrm{M}_{\mathrm{r}}\right)$ of $\mathrm{KMnO}_{4}=158 \mathrm{~g} \mathrm{~mol}^{-1}$
To convert M to g / L multiply by M_{r}
Thus concentration $=0.2 \times 158=\mathbf{3 1 . 6} \mathbf{g} / \mathbf{L}$

Volumetric Analysis

Keywords: Acid-Base titrations, Back titrations, Calculations, Concentration, End point, Redox titration, Standard solutions, Volumetric analysis.

5.1 INTRODUCTION

A solution of accurately known concentration is called a standard solution. Standard solutions are used in volumetric (titrimetric) analysis, to determine the concentration an unknown solution. The volume of one solution that will react with a known volume of a standard solution (titrant) is determined. The point at which the exact amount of titrant added to just react with all of the other reagent present is called the end point or equivalence point. Indicators, normally added to the solution of known volume, which change colour, are often used to determine the end point.

Volumetric analysis is widely used to determine the concentration of a broad range variety of parameters including alkalinity, acidity, total hardness and chloride levels.

Titrations can be categorised based on chemical reactions:

Acid-Base titrations involve the exact neutralisation of an acid or base with an acid or base of known concentration, thus allowing the concentration of the unknown acid or base solution to be determined. Redox titrations can be used to determine oxidizing or reducing agents in a solution. The reducing or oxidizing agent is used as the titrant against the other agent.
Back Titrations are used where analytes are either partially soluble or too slow to give a reaction. A known amount of excess reagent is used. The remaining excess reagent is then titrated with another second reagent to determine how much of the excess reagent was used in the first
titration, allowing the original analyte's concentration to be determined.

Example 5.1: Chloride concentrations in water can be determined by titration against standardised silver nitrate solutions. A $50 \mathrm{~cm}^{3}$ water sample was titrated against 0.05 M silver nitrate solution, using potassium chromate as the indicator. This indicator changes colour when all the chloride has been precipitated out of solution as silver chloride. This colour change occurred after the addition of 10.9 cm^{3} of 0.05 M silver nitrate. What is the concentration of chloride ions in the water sample?

Step 1: Write the balanced chemical equation, insert the information given in the question and identify what you are trying to calculate.

	$\mathbf{C l}_{(\text {aqq }}$	+	$\mathbf{A g N O}_{3(\mathrm{aq)}}$	\rightarrow	$\mathbf{A g C l}_{\text {(s) }}+\mathbf{N O}_{3 \text { (aq) }}^{-}$
Reaction coefficients	1		1		
Volume $\left(\mathrm{cm}^{3}\right)$	$50(0.05 \mathrm{~L})$	10.9			
No. of Moles					
Concentration (M)	$?$	0.05			

Please note that volumetric analysis (titrations) are predominantly concerned with the reaction coefficient (stoichiometric) relationship between the reactants. The products are included in the above table for the sake of completeness.

Step 2: If two pieces of information from volume, number of moles, and concentration are known for a given species, the third can be calculated using:

$$
\begin{gathered}
\text { Concentration = Number of Moles / Volume of solution } \\
\qquad \begin{array}{c}
c \\
\text { OR } / v
\end{array} \\
\text { Number of Moles = Volume of Solution x Concentration } \\
n=\mathbf{n x} \mathbf{v} \\
\text { OR } \\
\text { Volume of Solution = Number of Moles / Concentration } \\
\qquad \begin{array}{r}
v=n / c
\end{array}
\end{gathered}
$$

Units: Concentration: M,
Volume: Litres (L) or $\left\{\right.$ volume $\left.\left(\mathrm{cm}^{3}\right) / 1000\right\}$
Number of moles in $10.9 \mathrm{~cm}^{3} 0.05 \mathrm{M} \mathrm{AgNO}_{3}=$ concentration x volume

$$
=0.05 \times 10.9 / 1000=\mathbf{5 . 4 5} \times \mathbf{1 0}^{-4}
$$

	$\mathbf{C l}_{\text {(aq) }}$	+	$\mathbf{A g N O}_{3(a \mathrm{aq})}$	\rightarrow	$\mathbf{A g C l}_{(\mathrm{s})}+\mathbf{N O}_{3(\text { aq) }}^{-}$
Reaction Coefficients	1	1			
Volume $\left(\mathrm{cm}^{3}\right)$	$50(0.05 \mathrm{~L})$	10.9			
No. of Moles		5.45×10^{-4}			
Concentration (M)	$?$	0.05			

Step 3: At the end point the amount of each species present is in accordance with the reaction coefficient (stoichiometric) relationship of the balanced chemical equation for the reaction. In this example, the number of moles of Cl^{-}in $50 \mathrm{~cm}^{3}$ of tap water $=$ the number of moles Ag^{+} in $10.89 \mathrm{~cm}^{3}$ of the standard solution $=5.45 \times 10^{-4}$

	$\mathbf{C l}_{(\text {aq })}^{-}$	+	$\mathbf{A g N O}$	
3(aq)	\rightarrow	$\mathbf{A g C l}_{(\mathrm{s})}+\mathbf{N O}_{3 \text { (aq) }}^{-}$		
Reaction Coefficients	1	1		
Volume $\left(\mathrm{cm}^{3}\right)$	$50(0.05 \mathrm{~L})$	10.9		
No. of Moles	5.45×10^{-4}	5.45×10^{-4}		
Concentration (M)	$?$	0.05		

Step 4: Since we know both the number of moles of Cl^{-}and its volume, we can calculate its concentration.

$$
\begin{aligned}
\text { Concentration of } \mathrm{Cl}^{-} & =\text {number of moles } / \text { volume }(\mathrm{L}) \\
& =5.45 \times 10^{-4} / 0.05 \\
& =0.0109 \mathrm{M}
\end{aligned}
$$

	$\mathbf{C l}_{\text {(aq) }}^{-}$	+	$\mathbf{A g N O}_{3 \text { (aq) }}$	\rightarrow
Reaction coefficients	1	1		
Volume $\left(\mathrm{cm}^{3}\right)$	$50(0.05 \mathrm{~L})$	10.9		
No. of Moles	5.45×10^{-4}	5.45×10^{-4}		
Concentration (M)	0.0109	0.05		

CHAPTER 6

Molar Volumes \& Reacting Volumes

Keywords: Calculations, Gases, Molar volume, Moles to volume, Reacting volumes.

6.1. MOLES \& GASES

At Standard Temperature and Pressure ($\mathrm{STP}, 0^{\circ} \mathrm{C}, 1$ atmosphere pressure), one mole of gas occupies a volume of 22.4 litres ($22.4 \mathrm{~L} ; 22,400 \mathrm{~cm}^{3}$). Thus at STP, 28 g of nitrogen gas $\left(\mathrm{N}_{2}\right)$ occupies a volume of 22.4 litres, 32 g of oxygen $\left(\mathrm{O}_{2}\right)$ gas occupies a volume of 22.4 litres and 71 g of chlorine gas $\left(\mathrm{Cl}_{2}\right)$ occupies a volume of 22.4 litres. Similarly, 22.4 litres of hydrogen gas has a mass of 2 g and 22.4 litres of helium gas has a mass of 4 g at STP.

In other words, a given volume of gas always contains the same number of formula units (particles) regardless of the substance at a given temperature and pressure. But, the mass of one mole of gas (M_{r} in grams) differs from substance to substance.

ONE MOLE $=M_{r}$ in grams $=6.02 \times 10^{23}$ particles $=\mathbf{2 2 . 4}$ litres of a gas at STP
Given that the relative formula mass of $\mathrm{CO}_{2}=44(12+16+16)$:
44 g of CO_{2} contains 6×10^{23} molecules of CO_{2} which equals 1 mole and under STP occupies a volume of $22,400 \mathrm{~cm}^{3}(22.4 \mathrm{~L})$

Thus,
0.5 moles of CO_{2} has a mass of 22 g , contains 3×10^{23} molecules of CO_{2} and occupies a volume of $11,200 \mathrm{~cm}^{3}$ (11.2 litres) at STP

Equal volumes of gases at the same temperature and pressure contain the same number of moles.

The molar volume $\left(\mathrm{V}_{\mathrm{m}}\right)$ is simply defined as the volume occupied by one mole of a gas. The units of molar volume are $\mathrm{L} / \mathrm{mol}\left(\mathrm{dm}^{3} / \mathrm{mol}\right.$ or $\left.\mathrm{cm}^{3} / \mathrm{mole}\right)$.

At STP one mole of a gas occupies a volume of $22.4 \mathrm{~L}\left(22,400 \mathrm{~cm}^{3}\right)$. Molar volume at Room Temperature and Pressure (RTP, $25^{\circ} \mathrm{C}, 1$ atmosphere) is 24.0 L ($24,000 \mathrm{~cm}^{3}$).

Molar Volume varies with both temperature and pressure.

> Volume of gas = Number of moles $x V_{m}$
> Number of moles = Volume of gas / V_{m} $V_{m}=$ Volume of Gas/Number of moles

Ensure that the volume units for V and V_{m} are the same, i.e. either $\mathrm{L}\left(\mathrm{dm}^{3}\right)$ or cm^{3}.

6.2. MOLES TO VOLUME

$$
\text { Volume of gas }=\text { Number of moles } \times V_{m}
$$

Example 6.1: If the molar volume is $24 \mathrm{~L} / \mathrm{mol}$, what is the volume is occupied by 0.025 mole of H_{2} ?

Answer:

1 mole occupies a volume of 24 L
Volume of gas $=$ Number of moles $\times V_{m}$
Thus 0.25 moles will occupy $0.025 \times 24=0.6 \mathrm{~L}=\mathbf{6 0 0} \mathbf{~ c m}^{\mathbf{3}}$
Example 6.2: Determine the volume occupied by 0.5 moles of chlorine gas given that the molar volume is $23,000 \mathrm{~cm}^{3} / \mathrm{mol}$.

Answer:

$\mathrm{V}_{\mathrm{m}}=23,000 \mathrm{~cm}^{3}$
Number of moles $=0.5$
Volume of gas $=$ Number of moles $\times V_{m}$
Thus 0.5 moles will occupy $0.5 \times 23000=11,500 \mathrm{~cm}^{3}=\mathbf{1 1 . 5} \mathbf{L}$

Exercise 6.1

Calculate the volume occupied by the following gases at STP ($V_{m}=22.4$ litres)
a. 2 mole of CH_{4}
b. 0.3 moles of NH_{3}
c. 1.6 moles of $\mathrm{C}_{2} \mathrm{H}_{4}$
d. 3 moles of SO_{2}
e. 0.26 moles of NO
f. 5.7 moles of HBr
g. 0.22 moles of Cl_{2}
h. 0.020 moles of CO_{2}
i. 15 moles of O_{2}
j. 3.5×10^{-3} moles of H_{2}

6.3. VOLUME TO MOLES (AND MASS)

> Number of moles $=$ Volume $/ V_{m}$ Mass $=$ Number of moles x M_{r}

Example 6.3: Calculate the number of moles of carbon dioxide in $250 \mathrm{~cm}^{3}$ of the gas. Assume that one mole of a gas occupies a volume of $23,000 \mathrm{~cm}^{3}$

Answer:

$\mathrm{V}_{\mathrm{m}}=23 \mathrm{~L}=23,000 \mathrm{~cm}^{3}$
Number of moles $=$ Volume $/ \mathrm{V}_{\mathrm{m}}$
Thus number of moles present in $250 \mathrm{~cm}^{3}=250 / 23000=\mathbf{0 . 0 1 1}$ moles
Example 6.4: What is the mass 5 litres of oxygen gas at STP?

Answer:

$\mathrm{V}_{\mathrm{m}}($ at STP $)=22.4 \mathrm{~L}=22,400 \mathrm{~cm}^{3}$
$\mathrm{M}_{\mathrm{r}}\left[\mathrm{O}_{2}\right]=32$
Number of moles $=$ Volume of gas $/ \mathrm{V}_{\mathrm{m}}$
Number of moles present in $5 \mathrm{~L}=5 / 22.4=0.223$ moles
Mass of $\mathrm{O}_{2}=$ number of moles $\times \mathrm{M}_{\mathrm{r}}$

Mole Driving Test No. I

To Pass the Mole Driving Test and throw away your M-plates you will need to achieve a score of greater than 70%. Each question is equally weighted (5\%).

Relative Atomic Masses:
Hydrogen $(H)=1$, Carbon $(C)=12$, Nitrogen $(N)=14$, Oxygen $(O)=16$, Sodium $(N a)=23$, Sulfur $(S)=32$, Chlorine $(C l)=35.5$, Potassium (39), Calcium $(C a)=40$, Copper $(\mathrm{Cu})=63.5$, Barium $(\mathrm{Ba})=137$, Mercury $(\mathrm{Hg}) 200.5$, Lead $(\mathrm{Pb})=207$.
Molar Volume: 22.4 L or $22,4000 \mathrm{~cm}^{3}$ at STP (273.15 K and 1 atm)
Avogadro's Number: 6.02×10^{23}

1. Rubidium has two naturally occurring two isotopes. 72.2% of all rubidium atoms have a relative atomic mass of 85 and the rest have a relative atomic mass of 87 . What is the average relative atomic mass of rubidium?
2. Compound A was found to have the following composition: 47.0% potassium, 14.5% carbon, and 38.5% oxygen and a relative molecular molar mass of 166.22 . Determine the empirical and the molecular formula of compound A .
3. Lead (IV) oxide reacts with concentrated hydrochloric acid as follows:

$$
\mathrm{PbO}_{2(\mathrm{~s})}+4 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{PbCl}_{2(\mathrm{~s})}+\mathrm{Cl}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Calculate the mass of both lead chloride and chlorine gas that could be produced from 37.2 g of PbO_{2}.
4. In 1774 Joseph Priestly produced oxygen by heating a sample of mercury II oxide with a large lens, according to the following equation:

$$
2 \mathrm{HgO}(\mathrm{~s}) \rightarrow 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2(\mathrm{~g})}
$$

Calculate the volume of O_{2} that could be generated from 1.08 g of mercury (II) oxide. Assume that 1 mole of a gas occupies $24 \mathrm{dm}^{3}$ under the experimental conditions.
5. Copper (II) nitrate thermally decomposes:

$$
2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{~s})} \rightarrow 2 \mathrm{CuO}_{(\mathrm{s})}+4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

a. What mass of copper (II) oxide could be produced from the thermal decomposition of 20.0 g of copper (II) nitrate?
b. Calculate the mass of NO_{2} produced?
6. Calculate the concentration of a solution containing 0.732 moles of ammonia in 250 cm^{3} of solution.
7. Sodium hydride reacts violently with water forming flammable hydrogen gas:

$$
\mathrm{NaH}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
$$

A 1.00 g sample of sodium hydride was added to water and the resulting solution was diluted to a volume of exactly $250 \mathrm{~cm}^{3}$
a. What is the concentration sodium hydroxide solution formed?
b. What volume of hydrogen gas, measured at STP, was generated?
c. What volume of 0.112 M hydrochloric acid would be required to react exactly with a $25.0 \mathrm{~cm}^{3}$ sample of the sodium hydroxide solution?
8. The hydrates of sodium carbonate can be represented by the general formula $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$. A student dissolved a 3.01 g sample of one of these hydrates in water and made the solution up to $250 \mathrm{~cm}^{3}$. In a titration, a $25.0 \mathrm{~cm}^{3}$ aliquot of this solution required $24.3 \mathrm{~cm}^{3}$ of 0.200 M hydrochloric acid for complete reaction.

The equation for this reaction is shown below.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

a. Calculate the number of moles of HCl in $24.3 \mathrm{~cm}^{3}$ of 0.200 M hydrochloric acid.
b. Determine the number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ present in $25.0 \mathrm{~cm}^{3}$ of the $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution.
c. Deduce the number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the original $250 \mathrm{~cm}^{3}$ of solution.
d. Calculate the relative formula mass $\left(\mathrm{M}_{\mathrm{r}}\right)$ of the hydrated sodium carbonate and hence the value of x.
9. A student prepared a calcium hydroxide solution by adding 0.00131 mole of calcium to a beaker containing about $100 \mathrm{~cm}^{3}$, according to the reaction:

$$
\mathrm{Ca}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
$$

a. Calculate the mass of calcium that the student added to the beaker of water.
b. What volume of hydrogen gas, at STP, would be generated?
c. The contents of the beaker were transferred to a $250 \mathrm{~cm}^{3}$ volumetric flask and water was added to make the solution up to $250 \mathrm{~cm}^{3}$. What is the concentration of hydroxide ions in the volumetric flask?
10. What is the volume of oxygen gas, at STP, required for the complete combustion of 1.0 kg of methane.
11. A 5.175 g sample of lead when heated in air at $300^{\circ} \mathrm{C}$ produced 5.708 g of an oxide of lead as the only product. Write a balanced chemical equation for this reaction.
12. 4.90 g of pure sulfuric acid was dissolved in water and the resulting solution was made up to $200 \mathrm{~cm}^{3}$. On titration, a $10.0 \mathrm{~cm}^{3}$ aliquot of a sodium hydroxide solution was completely neutralized by $20.7 \mathrm{~cm}^{3}$ of this solution.

What is the concentration of the sodium hydroxide solution?

Mole Driving Test No. II

To Pass the Mole Driving Test and throw away your M-plates you will need to achieve a score of greater than 70%. Each question is equally weighted (5\%).

Relative Atomic Masses:
Hydrogen $(H)=1$, Carbon $(C)=12$, Nitrogen $(N)=14$, Oxygen $(O)=16$, Sodium $(N a)=23$,
Magnesium $(\mathrm{Mg}=24$, Silicon $(\mathrm{Si})=28$, Sulfur $(\mathrm{S})=32$, Chlorine $(\mathrm{Cl})=35.5$, Lead $(\mathrm{Pb})=207$
Molar Volume: $22.4 \mathrm{~L}\left(22,400 \mathrm{~cm}^{3}\right)$ at STP $(273.15 \mathrm{~K}$ and 1 atm$)$
Avogadro's Number: 6.02×10^{23}

1. Calculate the average relative atomic mass of titanium given that it has five common isotopes, ${ }^{46} \mathrm{Ti}(8.0 \%),{ }^{47} \mathrm{Ti}(7.8 \%),{ }^{48} \mathrm{Ti}(73.4 \%),{ }^{49} \mathrm{Ti}(5.5 \%),{ }^{50} \mathrm{Ti}(5.3 \%)$
2. Calculate the empirical and molecular formula of a compound of containing 17.04% $\mathrm{Na}, 47.41 \% \mathrm{~S}$, with a relative formula mass 270.
3. In the sixteenth century, a large deposit of graphite was discovered in the Lake District. People at the time thought that the graphite was a form of lead. Graphite used in pencils is still referred to as 'pencil lead'. A student found that the mass of the 'pencil lead' in a school pencil was 0.321 g .
a. How many moles of carbon atoms are present in 0.321 g of student's pencil lead? Assume that the 'pencil lead' is pure graphite.
b. Determine the number carbon atoms are present in the student's 'pencil lead'.
4. 19.6 g of hydrogen chloride, HCl , was dissolved in water and the volume made up to $250 \mathrm{~cm}^{3}$. What is the concentration of the resulting solution?
5. Determine the mass of $\mathrm{H}_{2} \mathrm{O}$ required to completely react with 5.0 g of SiCl_{4} :

$$
\mathrm{SiCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}+4 \mathrm{HCl}
$$

6. Magnesium carbonate and hydrochloric acid react according to the following equation:

$$
\mathrm{MgCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

When a student added $75.0 \mathrm{~cm}^{3}$ of 0.500 M hydrochloric acid to 1.25 g of impure MgCO_{3} some acid was left unreacted. $21.6 \mathrm{~cm}^{3}$ of a 0.500 M solution of sodium hydroxide was required to neutralize the unreacted acid.
a. How many moles of HCl are present in $75.0 \mathrm{~cm}^{3}$ of 0.500 M hydrochloric acid?
b. How many moles of NaOH were used to neutralize the unreacted HCl .
c. Determine the number of moles of HCl that reacted with the MgCO_{3} in the sample.
d. Calculate both the number of moles and the mass of MgCO_{3} in the sample, and hence its purity.
7. The explosive nitroglycerine, $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}$, decomposes rapidly on detonation to form a large volume of gas, according to the following equation:

$$
4 \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9(1)} \rightarrow 12 \mathrm{CO}_{2(g)}+10 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+6 \mathrm{~N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

0.350 g of oxygen gas was produced from the detonation of a sample of nitroglycerine.
a. Determine the number of moles of oxygen gas produced from the detonation of nitroglycerine, and the total number of moles of gas generated.
b. Determine the number of moles, and the mass, of nitroglycerine detonated.
8. Lead(II) sulfate can be produced from the reaction between lead nitrate and dilute sulfuric acid. What is the maximum amount of lead sulfate that could be obtained from 10 g of lead nitrate dissolved in water?

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aqq})} \rightarrow \mathrm{PbSO}_{4(\mathrm{~s})}+2 \mathrm{HNO}_{3(\mathrm{aq})}
$$

9. The reaction between ammonium sulfate and aqueous sodium hydroxide is shown by the equation below.

$$
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow 2 \mathrm{NH}_{3}+\mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

A sample of ammonium sulfate was heated with $100 \mathrm{~cm}^{3}$ of 0.500 M aqueous sodium hydroxide. An excess of sodium hydroxide was used to ensure that all of the ammonium sulfate reacted. The unreacted sodium hydroxide required $27.3 \mathrm{~cm}^{3}$ of 0.600 M hydrochloric acid for neutralisation.
a. Calculate the original number of moles of NaOH in $100 \mathrm{~cm}^{3}$ of 0.500 M aqueous sodium hydroxide.
b. How many moles of HCl are present in $27.3 \mathrm{~cm}^{3}$ of 0.600 M hydrochloric acid?
c. Deduce the number of moles of the unreacted NaOH neutralized by the hydrochloric acid.
d. How many moles of NaOH reacted with the ammonium sulfate?
e. Determine the number of moles and the mass of ammonium sulfate in the sample.
10. The purity of commercially available sodium hydrogencarbonate was tested as follows. A 0.400 g sample was dissolved in $100.0 \mathrm{~cm}^{3}$ of water and titrated against 0.200 M hydrochloric acid using methyl orange indicator.

$$
\mathrm{NaHCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2}
$$

$23.75 \mathrm{~cm}^{3}$ of acid was required for complete neutralisation.
a. How many moles of acid were used in the titration?
b. Calculate the mass of sodium hydrogen carbonate titrated and hence the purity of the sample.

Mole Driving Test No. III

To Pass the Mole Driving Test and Throw Away Your M-plates You Will Need to Achieve a Score of Greater than 70\%. Each Question is Equally Weighted (5\%).

Relative Atomic Masses:

Hydrogen $(H)=1$, Carbon $(C)=12$, Nitrogen $(N)=14$, Oxygen $(O)=16$, Sodium $(N a)=23$, Magnesium $(M g)=24$, Silicon $(S i)=28$, Sulfur $(S)=32$, Chlorine $(C l)=35.5$, Potassium $(K)=39$, Titanium $(\mathrm{Ti})=48$, Barium $(\mathrm{Ba})=137$

Molar Volume: $22.4 \mathrm{~L}\left(22,4000 \mathrm{~cm}^{3}\right)$ at STP (273.15 K and 1 atm)
Avogadro's Number: $6.02 \times 1023 \mathrm{~mol}^{-1}$

1. Calculate the mass, in grams, of a single atom of sodium- 23 .
2. An organic compound was found to contain 12.8% carbon, 2.13% hydrogen and 85.07% bromine. If the compound has a relative molecular mass of 188 , determine its empirical formula and the molecular formula.
3. What the mass of phosphorus is required to produce 200 g of phosphine $\left(\mathrm{PH}_{3}\right)$?

$$
\mathrm{P}_{4(\mathrm{~s})}+3 \mathrm{NaOH}_{(\mathrm{aq})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 3 \mathrm{NaH}_{2} \mathrm{PO}_{4(\mathrm{aq})}+\mathrm{PH}_{3(\mathrm{~g})}
$$

4. A student heats 5.29 g of $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ and collects the gas.

$$
2 \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{~s})} \rightarrow 2 \mathrm{SrO}_{(\mathrm{s})}+4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

Determine the volume of gas, at STP, obtained by the student. Molar mass of $\operatorname{Sr}\left(\mathrm{NO}_{3}\right)_{2}=$ $211.6 \mathrm{~g} \mathrm{~mol}^{-1}$.
5. A 12.41 g sample of hydrated sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, was heated to remove the water of crystallization.
a. What is the relative formula mass of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$?
b. Calculate the expected mass of anhydrous sodium thiosulfate that forms.
6. The Kroll process is used to convert ore into titanium metal. Titanium chloride produced from the chlorination of ore, is reduced to titanium metal using magnesium under an inert atmosphere.

$$
2 \mathrm{Mg}+\mathrm{TiCl}_{4} \rightarrow 2 \mathrm{MgCl}_{2}+\mathrm{Ti}
$$

Calculate the maximum mass of titanium that could be produced from the addition of 3800 kg of titanium chloride to 1500 kg of magnesium.
7. A 1 mg sample of octane, $\mathrm{C}_{8} \mathrm{H}_{18}$ was totally combusted in air.
a. How many moles are present in 1 mg of octane?
b. Determine the number of moles and the volume of carbon dioxide generated.
8. Metal \mathbf{M} forms a carbonate $\left(\mathrm{M}_{2} \mathrm{CO}_{3}\right)$, which reacts with hydrochloric acid according to the following equation:

$$
\mathrm{M}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{MCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

A 0.394 g sample of $\mathrm{M}_{2} \mathrm{CO}_{3}$, was found to require the addition of $21.7 \mathrm{~cm}^{3}$ of a 0.263 M solution of hydrochloric acid (HCl) for complete reaction.
a. Determine the number of moles of hydrochloric acid added.
b. Determine the relative molecular mass of $\mathrm{M}_{2} \mathrm{CO}_{3}$ and hence the identity of M
9. An ammonia solution was reacted with sulfuric acid:

$$
2 \mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4(\mathrm{aq})}
$$

A $25.0 \mathrm{~cm}^{3}$ aliquot of 1.24 M sulfuric acid required $30.8 \mathrm{~cm}^{3}$ of this ammonia solution for complete reaction.

Calculate the concentration of the ammonia and the mass of ammonium sulfate present in the solution at the end of this titration.
10. Hydrogen is produced by the addition of hydrochloric acid to magnesium metal:

$$
2 \mathrm{HCl}+\mathrm{Mg} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}
$$

What mass of hydrogen is produced from the addition of $100 \mathrm{~cm}^{3}$ of 5 M hydrochloric acid of to an excess of magnesium?
11. Ammonium nitrate is produced industrially by the reaction between ammonia and nitric acid:

$$
\mathrm{NH}_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}
$$

Calculate the volume of 2 M nitric acid required to react with exactly 20.0 g of ammonia.
12. Potassium chlorate, KClO_{3}, thermally decomposes according to the following equation:

$$
2 \mathrm{KClO}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{KCl}_{(\mathrm{s})}+3 \mathrm{O}_{2(\mathrm{~s})}
$$

a. What mass of oxygen could be produced from the complete decomposition of 1.47 g of KClO_{3} ?
b. What mass of KClO_{3} is required to generate $1.00 \mathrm{dm}^{3}$ of oxygen at STP ?
13. $25.0 \mathrm{~cm}^{3}$ of 0.25 M sodium hydroxide required $22.5 \mathrm{~cm}^{3}$ of a hydrochloric acid solution for complete neutralisation. Calculate the concentration of the HCl solution.
14. Barium nitrate thermally decomposes as follows:

$$
\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{~s})} \rightarrow \mathrm{BaO}_{(\mathrm{s})}+2 \mathrm{NO}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})}
$$

a. What is the total volume of gas, at STP, generated by the thermal decomposition of 5.00 g of barium nitrate?
b. What volume of 1.20 M hydrochloric acid is required to neutralize the barium oxide produced by the thermal decomposition of 5.00 g of barium nitrate. Barium oxide reacts with hydrochloric acid as follows:

$$
\mathrm{BaO}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{BaCl}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

15. Silver nitrate thermally decomposes. 0.720 g of silver and 0.307 g of nitrogen dioxide was produced from heating a 1.133 g sample of silver nitrate in an open tube. The rest of the mass loss was due to oxygen. Using this data write the balanced chemical equation for the reaction.

Mole Driving Test Answers

To Pass the Mole Driving Test and Throw Away Your M-plates You Will Need To Achieve a Score of Greater than 70\%. Each Question is Equally Weighted (5\%).

Relative Atomic Masses:

Hydrogen $(\mathrm{H})=1$, Carbon $(\mathrm{C})=12$, Nitrogen $(\mathrm{N})=14$, Oxygen $(\mathrm{O})=16$, Sodium $(\mathrm{Na})=23$, Sulfur $(\mathrm{S})=32$, Chlorine $(\mathrm{Cl})=35.5$, Potassium (39), Calcium $(\mathrm{Ca})=40$, Copper $(\mathrm{Cu})=63.5$, Barium $(\mathrm{Ba})=137$, Mercury (Hg) 200.5 , Lead $(\mathrm{Pb})=207$.

Molar Volume: 22.4 L or $22,4000 \mathrm{~cm}^{3}$ at STP (273.15 K and 1 atm)
Avogadro's Number: 6.02×10^{23}

1. Rubidium has two naturally occurring two isotopes. 72.2% of all rubidium atoms have a relative atomic mass of 85 and the rest have a relative atomic mass of 87 . What is the average relative atomic mass of rubidium?
```
Answer:
Average Atomic Mass=(72.2/100 x 85) + (27.8/100 x 87)
=61.37 + 24.186
=85.56
```

2. Compound A was found to have the following composition: 47.0% potassium, 14.5 $\%$ carbon, and 38.5% oxygen and a relative molecular molar mass of 166.22. Determine the empirical and the molecular formula of compound A .

Answer:

	Potassium	Carbon	Oxygen
$\%$ composition	47.0	14.5	38.5
$\mathrm{~A}_{\mathrm{r}}$	39	12	16
$\%$ composition $/ \mathrm{A}_{\mathrm{r}}$	$47 / 39=1.2$	$14.5 / 12=1.2$	$38.5 / 16=2.4$

Tablelcontd.....

	Potassium	Carbon	Oxygen
Ratio	1	1	2

Empirical formula: KCO_{2}
Relative formula mass $\mathrm{KCO}_{2}=(1 \times 39)+12+(2 \times 16)=83$
Molecular formula $=\left(\mathrm{KCO}_{2}\right)_{\mathrm{n}}$
$\mathrm{n}=166 / 83=2$
Molecular formula: $\left(\mathrm{KCO}_{2}\right)_{2}=\mathbf{K}_{2} \mathbf{C}_{2} \mathbf{O}_{4}$
3. Lead (IV) oxide reacts with concentrated hydrochloric acid as follows:

$$
\mathrm{PbO}_{2(\mathrm{~s})}+4 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{PbCl}_{2(\mathrm{~s})}+\mathrm{Cl}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Calculate the mass of both lead chloride and chlorine gas that could be produced from 37.2 g of PbO_{2}.

Answer:

| | $\mathbf{P b O}_{2(\mathrm{~s})}$ | + | $\mathbf{4} \mathbf{H C l}_{(\mathbf{a q q})}$ | \rightarrow | $\mathbf{P b C l}_{\mathbf{2 (s)}}$ | + | $\mathbf{C l}_{\mathbf{2 (g)}}$ | $+\mathbf{2 H}_{\mathbf{2}} \mathbf{O}_{(\mathrm{I})}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M_{r} | 239 | | 36.5 | | 278 | | 71 | 18 |
| Mass Balance | 239 | | 146 | | 278 | | 71 | 36 |
| | | 385 | | | | 385 | | |
| Reaction Coefficients | 1 | | 4 | | 1 | | 1 | 1 |
| Mass (g) | 37.2 | | | | $0.1556 \times 278=$
 $\mathbf{4 3 . 2 7}$ | | $0.1556 \times 71=$
 $\mathbf{1 1 . 0 5}$ | |
| No. of Moles | 0.1556 | | | | 0.1556 | | 0.1556 | |

Number of moles in 37.2 g of $\mathrm{PbO}_{2}=$ mass $/ \mathrm{M}_{\mathrm{r}}=347.2 / 239=0.1556$
According to the balanced chemical equation, 1 mole of PbO_{2} produces 1 mole PbCl_{2} Therefore, 0.1556 moles of PbO_{2} can produce 0.1556 moles of PbCl_{2}
Mass of 0.1556 moles of $\mathrm{PbCl}_{2}=$ number of moles $\times \mathrm{M}_{\mathrm{r}}=0.1556 \times 278=43.27 \mathrm{~g}$
Mass of $\mathrm{PbCl}_{2}=43.27 \mathrm{~g}$

According to the balanced chemical equation, 1 mole of PbO_{2} produces 1 mole of Cl_{2} Therefore, 0.1556 moles of PbO_{2} can produce 0.1556 moles of Cl_{2}
Mass of 0.01556 moles of $\mathrm{Cl}_{2}=$ number of moles $\times \mathrm{M}_{\mathrm{r}}=0.1556 \times 71=11.05 \mathrm{~g}$ Mass of $\mathrm{Cl}_{2}=\mathbf{1 1 . 0 5} \mathbf{g}$
4. In 1774 Joseph Priestly produced oxygen by heating a sample of mercury II oxide with a large lens, according to the following equation:

$$
2 \mathrm{HgO}(\mathrm{~s}) \rightarrow 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2(\mathrm{~g})}
$$

Calculate the volume of O_{2} that could be generated from 1.08 g of mercury (II) oxide. Assume that 1 mole of a gas occupies $24 \mathrm{dm}^{3}$ under the experimental conditions.

Answer:

	$\mathbf{2 H g O}{ }_{(s)}$	\rightarrow	$\mathbf{2 H g}$	+	$\mathrm{O}_{2(\mathrm{~g})}$
$\mathrm{A}_{\mathrm{r}} / \mathrm{M}_{\mathrm{r}}$	216.5		200.5		32
Mass Balance	433		401		32
				433	
Reaction Coefficients	2		2		1
Mass	1.08				
No. of Moles	$1.08 / 216.5=0.005$		0.005		0.0025
Volume (L)					$0.025 \times 22.4=\mathbf{0 . 0 6}$

Number of moles in 1.08 g of $\mathrm{HgO}=1.08 / 216.5=0.005$
According to the balanced chemical equation 2 moles of HgO generates 1 mole of O_{2} Thus number of moles of O_{2} produced from 0.005 moles of $\mathrm{HgO}=0.005 / 2=0.0025$ Volume of 0.0025 moles of $\mathrm{O}_{2}=0.0025 \times 24=\mathbf{0 . 0 6} \mathbf{L}=\mathbf{6 0} \mathbf{~ c m}^{3}$
5. Copper (II) nitrate thermally decomposes:

$$
2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{~s})} \rightarrow 2 \mathrm{CuO}_{(\mathrm{s})}+4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

a) What mass of copper (II) oxide could be produced from the thermal decomposition of 20.0 g of copper (II) nitrate?

Answer:

| | $\mathbf{2 C u}\left(\mathbf{N O}_{\mathbf{3}}\right)_{2(\mathrm{~s})}$ | \rightarrow | $\mathbf{2 C u O}(\mathbf{s})$ | + | $\mathbf{4 N O}$ | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (s) | | + | $\mathbf{O}_{2(\mathrm{~g})}$ | | | |
| M_{r} | 187.5 | | 79.5 | | 46 | 32 |
| Mass Balance | | | 159 | | 184 | 32 |
| | 375 | | | 375 | | |

PERIODIC TABLE

Nigel P. Freestone
All rights reserved-© 2016 Bentham Science Publishers

License

SUBJECT INDEX

A

Acid-Base Titrations 113
Atoms 3, 4, 46, 51, 57, 170, 173, 179, 190, 197, 199
Average Relative Atomic Mass 3, 5, 6, 23, $24,170,173,179,189$

B

Back Titrations 113
Balancing Chemical Equations indexentry content $=61$

C

Calculating Frame $8,14,15,19,61$, 69, 72, 73, 160, 201
Calculations 3, 46, 61, 65, 88, 113, 138
Chemical Equations 61, 62, 67
Concentration 66, 107, 177, 178, 188, 190, 191, 201-207

E

Empirical and Molecular Formula 3, 17, 22, 41, 173, 189
End Point 113, 115, 117, 185, 188, 202, 205

F

Formula Units 62, 67, 138

G

Gases 88, 138, 140, 141, 143, 144, $148,150,168$

I

Isotopes 23, 24, 170, 173, 179, 189

M

Molarity $122,123,129,134$
Molar Mass 22, 41, 53, 66, 170, 176, 179, 198
Molar Volume $138,139,143,159,164$, $170,173,176,179,189,197$
Mole 51, 65, 94, 102, 103, 126, 127, $133,135,145,148,150,153,159,164$, $165,172,173,176,189,204-207$
Moles to Volume 138, 139

\mathbf{P}

Parts Per Million 88, 89, 96, 99, 111
Percentage Composition 3, 19, 31-34
Percent by Mass 88, 89, 93
Percent by Volume 88, 89, 96, 98, 108
Products 22, 43, 61, 62, 68, 72, 114

R

Reactants 61, 62, 68, 72, 114
Reacting Volumes 138
Reaction Coefficients 186, 187, 198, 200, 201, 203-207
Redox Titration 113
Relative Formula Mass 3, 19, 25, 42, $51,53,138,142,172,173,176,180$, 185, 189, 199

S

Standard Solutions 113
Stoichiometry 61, 66, 72

V

Volumetric Analysis 113, 114

