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PREFACE

Nuclear  Magnetic  Resonance (NMR) Spectroscopy is  one of  the  most  powerful  analytical
tools  that  probes  the  nature  and  properties  of  molecular  structures.  The  NMR  experiment
provides tremendous information about the types and amount of atoms present in a sample,
specific environments of atoms within a molecule, the purity and composition of a sample,
and  structural  information  about  a  molecule,  including  constitutional  and  conformational
isomerisation. Certain characteristics of NMR spectroscopy make this the technique of choice
for  a  wide  range  of  research,  analytical  and  medical  applications.  These  characteristics
include  its  capacity  to  analyse  atoms,  such  as  1H,  2H,  13C,  11B,  15N,  19F,  31P  and  195Pt,  thus
covering all major classes of chemical compounds, its non-destructive nature, the requirement
of only a small quantity of material, and the ease of sample preparation in a whole range of
solvents,  as  well  as  in  the  solid  state  and  in  living  systems.  Applications  of  NMR
spectroscopy are spread over a wide range of disciplines, and the development of new NMR
methods for various applications has had a profound impact on molecular research in general.
New  applications  of  NMR  spectroscopy  are  being  vigorously  pursued  in  tandem  for  the
development of newer hardware and software. This has created a need of a book series which
reviews  the  most  recent  literature  in  this  exciting  field  in  terms  of  applications  and
developments.  The  5th  volume  of  the  book  series  “Applications  of  NMR  Spectroscopy”,
comprises six reviews focussing on three broad fields of NMR applications, i.e.  molecular
identification  of  natural  and  synthetic  compounds,  medical  diagnosis  and  food  sciences.
These reviews have been contributed by the leading practitioners in this field.

A number of bioactive peptides have been isolated from fermented and processed food. These
peptides  have  immense  physiological  significance.  The  relationships  between  structural
features and functional activities have been extensively studied. Many bioactive peptides of
dietary origin possess relatively short  peptide residue lengths and hydrophobic amino acid
residues. The review contributed by Reddy et al., is an excellent overview of the applications
of various NMR techniques in structural characterization of food derived bioactive peptides in
their  native  state.  The  authors  have  discussed  key  structural  differences  between  the  food
derived peptides and other classes of naturally occurring peptides, followed by a description
of various NMR techniques, which are especially suited for their structural studies. In general,
this review focuses on the application of NMR in food chemistry, taking examples of various
classes of food derived peptides.

Tinnitus is the ringing or buzzing in the ears,  caused by short-term exposure of high level
sound. This common health issue is only poorly understood at the molecular level, and as a
result, no successful treatment has been developed yet. Animal models of tinnitus have been
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developed to study the complex changes which may occur in the central nervous system in
tinnitus conditions. This may involve changes in the regulation of neurotransmitters, such as
gamma-aminobutyric acid (GABA), glutamic acid (Glu), acetylcholine (Cho), etc. Brozoski et
al.,  have  reviewed  the  application  of  a  variant  of  NMR,  high  resolution  proton  magnetic
resonance spectroscopy (1H-MRS) to record the brain spectra of tinnitus model animals in
order  to  determine  the  GABA,  Glu  and  Cho  concentrations.  This  review  therefore
demonstrates the power of 1H-MRS in direct determination of biomarkers in animal models
for a better understanding of the chemical changes in this complex disorder. 1H-MRS has thus
been demonstrated to be an excellent technique for the study of the biochemical composition
in living systems, including living cells.

Dibyendu S. Bag focuses on the applications of NMR spectroscopy in the characterization of
polymers,  their  monomers  and  copolymers.  The  NMR  spectra  of  polymers  are  generally
broad and featureless due to large molecular sizes and serious overlapping of signals.  The
solubility  of  large  polymers  in  deuterated  solvents  is  also  an  issue.  Solid  state  NMR
spectroscopy  provides  a  viable  alternative,  but  it  has  its  own  limitations.  This  review
highlights recent applications of various NMR techniques in the identification of monomers,
their corresponding polymers and co-polymers. The author has also discussed the NMR based
characterization  of  polymers  containing  nanomaterials,  such  as  fullerene  and  carbon
nanotubes.

The review by Voronov and Ushakov focuses on the application of NMR spectroscopy in the
study of structures and intermolecular dynamics of paramagnetic molecules, particularly the
large proteins. Paramagnetism arises due to the presence of unpaired electrons in a molecular
system.  These  unpaired  electrons  influence  nuclear  spins  in  biological  molecules,  and  the
resultant forces affect the NMR spectra in the solid state. Paramagnetism can thus provide
long-range information about the structural and dynamic characterization of biomolecules and
their intermolecular interactions. The review explains in great detail the NMR phenomena in
paramagnetic systems, followed by a discussion of an NMR method especially suited for the
study  of  structure  and  dynamics  of  complex  molecular  systems.  This  is  very  useful  for
researchers who wish to apply NMR in the structural biology of multi-electron protein and
other such biomolecules.

The application of Magnetic Resonance Spectroscopy (MRS) as a powerful disease diagnostic
and  grading  tool  for  non-invasive  measurement  of  metabolites  is  further  presented  in  the
review by Stecco et al. The authors have focussed on two types of NMR based techniques i.e.
multivoxel and single voxel acquisitions, used for the diagnosis and grading of brain gliomas
based on the analysis of biomarkers and metabolites. They have explained the strengths of the
two  brain  NMR  spectroscopy  techniques  as  non-invasive  tools,  and  related  the  levels  of
various  metabolite  ratios  with  the  stages/grades  of  glioblastomas.  The  brain  NMR
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spectroscopy can be used for the determination of the effect of chemotherapy, as well as to
identify the sub-types of the cancer.

Tischer  and  Mali  have  contributed  an  article  focussing  on  the  development  of  cross
polarization-magic angle (13C CP-MAS) solid state NMR spectroscopic technique as a robust
tool for the characterization of proteins, lipids and starch in complex food matrices, and other
samples of biopolymers. Solid state NMR spectroscopy has many advantages, including being
operationally less expensive, versatile, reproducible, quick, and capable of analysing samples
in the native state, without multi-step sample preparation needed for liquid state NMR. The
authors have exhaustively reviewed the most recent developments in the field of CP-MAS
NMR spectroscopy,  including  hardware  and  software  developments.  They  discuss  various
NMR parameters which influence the outcome of CP-MAS NMR based analysis of a variety
of food constituents. Such analysis of food for their key ingredients can help in improving the
organoleptic and taste properties of food preparations and raw material.

We wish to express our gratitude to the authors of the above cited articles for their excellent
scholarly  contributions  for  the  5th  volume  of  this  well-known  series.  We  also  greatly
appreciate  the  efforts  of  the  entire  team  of  Bentham  Science  Publishers  for  efficient
processing  and  timely  management  of  the  publication.  The  efforts  of  Ms.  Fariya  Zulfiqar
(Assistant  Manager  Publications),  Mr.  Shehzad  Naqvi  (Senior  Manager  Publications)  and
leadership of Mr. Mahmood Alam (Director Publications) are especially praiseworthy. We
also hope that like the previous volumes of this internationally recognized book series, the
current compilation will also receive wide readership and appreciation.

Atta-ur-Rahman, FRS
Honorary Life Fellow

Kings College
University of Cambridge

UK

M. Iqbal Choudhary
H.E.J. Research Institute of Chemistry

International Center for Chemical and Biological Sciences
University of Karachi
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CHAPTER 1

Application  of  NMR  Spectroscopy  for  Structural
Characterization  of  Bioactive  Peptides  Derived
from Food Protein
Fozia Kamran, Junus Salampessy and Narsimha Reddy*

School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751,
Australia

Abstract: Traditionally, food has not only been the source of human nutrition but also
an excellent factor for deriving nutraceuticals and pharmaceuticals. The biopolymers
such  as  protein  and  polysaccharides  derived  from  food  sources  have  special
significance  as  they  are  important  part  of  human  diet.  Several  important  bioactive
peptides have been discovered from food protein hydrolysates and fermented products
that have shown to possess a spectrum of beneficial pharmacological activities. This
chapter  deals  with  food  protein  derived  bioactive  peptides  and  their  structural
characterization  employing  NMR  spectroscopy.  It  is  well  known  from  the  vast
literature on bioactive peptides that NMR spectroscopy is an indispensable tool to fully
characterize the structures of bioactive peptides in their inherent physiological state.
However, limited literature exists on detailed structural characterization of food derived
bioactive peptides. It is therefore very important to review the literature on structural
aspects  of  food  peptides  and  provide  an  appraisal  of  NMR  techniques  suitable  for
comprehensive structural characterization of this class of bioactive peptides.

This chapter is aimed to introduce NMR spectroscopy and its applications to a wide
range  of  readers  in  the  field  of  food  chemistry  in  general  and  to  the  food  peptide
researchers in particular. The main objective is to review the literature on food derived
bioactive  peptides  and  highlight  the  potential  of  NMR  spectroscopy  to  understand
structure-activity  relationship  of  bioactive  peptides  in  order  to  boost  further
developments  in this  important  field.  With a view  to  make  this  chapter  readable to

* Corresponding author Narsimha Reddy: School of Science and Health, Western Sydney University,
Locked Bag 1797, Penrith, NSW 2751, Australia; Tel: (02) 4570 1255 or (02) 9685 9925; Fax: (02) 9685
9915; Email: n.reddy@westernsydney.edu.au

Atta-ur-Rahman & M. Iqbal Choudhary (Eds.)
All rights reserved-© 2016 Bentham Science Publishers

mailto:n.reddy@westernsydney.edu.au


4   Applications of NMR Spectroscopy, Vol. 5 Kamran et al.

beginners in the field, basic principles of NMR spectroscopy will also be included.

Application of solution NMR spectroscopy to bioactive peptides will then be described.
Salient features including the size and structural differences of food bioactive peptides
when  compared  to  the  other  classes  of  bioactive  peptides  will  then  be  discussed  in
order to make an informed assessment of choice of NMR techniques suitable for their
structural characterization.

Keywords:  ACE  inhibitory  peptides,  Antimicrobial  peptides,  Antioxidative
peptides,  Bioactive  peptides,  Chemical  shift  index,  Food  proteins,  Immuno-
modulatory peptides, Multidimensional NMR Spectroscopy, Nutraceutical value,
Secondary structure, Structure activity relationship.

1. INTRODUCTION

1.1. Bioactive Peptides

Food proteins and peptides acquired functionality by their amino acid constituents
and their  sequences.  The sequences  of  peptides  and proteins  in  turn dictate  the
secondary,  tertiary  and  quaternary  structures  [1,  2].  These  protein  and  peptide
sequences  can  be  cleaved  through  enzymatic  hydrolysis  and  produce  smaller
peptides  that  may  physiologically  be  active  (bioactive  peptides).

Bioactive  peptides  are  food  components  that  have  beneficial  effects  on  human
health.  They  are  derived  from  animal  and  plant  sources;  such  as  milk,  eggs,
cheese,  meat,  fish,  soy,  rice,  wheat  and  legumes.  Food  protein  consumed  by
humans  exhibits  physiological  actions  in  the  body  either  directly  or  after
hydrolysis  by  gastrointestinal  enzymes.  Enzymatic  hydrolysis  of  food  protein
results  in  the  release  of  bioactive  peptides  [3  -  13]  that  consist  of  two or  more
amino acid residues joined together by peptide linkages. The process of protein
hydrolysis  to  produce  bioactive  peptides  is  of  several  types,  namely,  (i)
gastrointestinal  digestion  by  digestive  enzymes  [14],  (ii)  fermentation  by
microbial enzymes [15 - 18], and (iii) in vitro hydrolysis by commercial enzymes
[19 - 22]. Many proteinases such as alcalase, trypsin, chymotrypsin, pancreatin,
pepsin and thermolysin as well  as several other enzymes from bacterial,  fungal



Structural Characterization of Bioactive Peptides Applications of NMR Spectroscopy, Vol. 5   5

and  plant  sources  have  been  employed  in  several  in  vitro  studies  to  produce
important bioactive peptides from various food proteins [6, 7, 20, 23]. Recently,
an  in  silico  approach  (a  chemoinformatics  approach)  has  been  developed  to
identify  potential  bioactive  peptides  that  can  be  derived  from  food  proteins  of
known sequences [24 - 27]. Sometimes, this approach is used in combination with
quantitative structure-activity relationship (QSAR) study to predict the activity of
possible  bioactive  peptides  that  can  be  produced  by  this  method  [25].  This
approach  also  provides  an  insight  into  suitable  enzymes  needed  to  cleave  the
proteins to produce potential bioactive peptides in optimal yield. The procedure is
then  followed  by  experimental  enzymatic  production  employing  the  identified
enzymes, then by purification and characterization [24]. The peptides so produced
have been proven to exhibit extremely important health beneficial properties [5,
13, 28].

Most of the bioactive peptides derived from food proteins contain two to twenty
five  amino  acid  residues  that  exert  various  therapeutic  activities.  It  has  been
demonstrated that peptides derived from food proteins display antihypertensive,
osteoprotective, antioxidant, antimicrobial, anti-inflammatory, anticancer, growth
promoting  and  many  other  therapeutic  effects  on  human  body  when  they  are
absorbed  from  intestinal  tract  or  via  receptors  [8,  18].

A few examples are highlighted below to exemplify the importance of the process
of enzymatic hydrolysis or fermentation to derive health beneficial peptides from
food protein.  Milk  and  its  products  (cheese  and  yoghurt)  are  considered  as  the
most  beneficial  for  human  health.  Literature  demonstrates  that  the  bioactive
peptides  obtained  from  fermentation  and  enzymatic  hydrolysis  of  these  food
products  display  superior  antihypertensive  (angiotensin-I  converting  enzyme
(ACE)-inhibitory),  antioxidant,  antimicrobial,  calcium-binding  and  immuno-
modulatory activities [7, 17, 20, 29 - 35]. The spectrum of activities displayed by
these peptides make them suitable for nutraceutical/pharmaceutical applications.
For instance, a strong antimicrobial peptide, lactoferricin, has been obtained by
gastrointestinal  digestion  of  lactoferrin,  an  iron-binding  protein  from  milk  that
protects the host against microbial infections. The potency of lactoferricin is 100
to  1000  times  higher  than  its  parent  protein  (lactoferrin)  and  is  active  against
Gram positive, Gram negative and certain yeast and fungi [17, 36].
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CHAPTER 2

Determination of GABA, Glutamate and Choline in
the  Auditory  Pathway  of  Animals  with  Tinnitus,
Using High Resolution Proton Magnetic Resonance
Spectroscopy (1H-MRS)
Thomas Brozoski1,*, Boris Odintsov2,3 and Carol Bauer1

1  Division of  Otolaryngology,  Southern Illinois  University  School  of  Medicine,  Springfield,  IL,
United States
2 Biomedical Imaging Center, Beckman Institute for Advanced Science and Technology, Urbana,
IL 61801, United States
3 Department of Bioengineering, University of Illinois, Urbana Champaign, IL, United States

Abstract: Following high-level sound exposure, central auditory changes are evident
long  afterward.  Homeostatic  central  mechanisms  appear  to  compensate,  and  often
overcompensate,  for  loss  of  peripheral  sensitivity  resulting  from  insults.  Over-
compensation may produce the sensation of sound without a physical  correlate,  i.e.,
tinnitus.  However  not  everyone  exposed  to  auditory  trauma  develops  tinnitus.
Similarly, in a controlled laboratory environment, not every animal exposed to high-
level  sound  develops  tinnitus.  Despite  more  than  two  decades  of  effort,  tinnitus
pathophysiology  is  incompletely  understood.  Contributing  is  the  unexpected  com-
plexity of tinnitus’ central nervous system profile. Compensatory neural changes, such
as increased spontaneous activity, have been identified, but they occur in the context of
many other changes. Underlying mechanisms are also poorly understood. They may
involve down-regulation of inhibitory neurotransmission mediated by γ-amino butyric
acid  (GABA),  and/or  up-regulation  of  excitatory  neurotransmission,  mediated  by
glutamic acid (Glu), or modulation by other systems, such as acetylcholine,  involved
in  functions such as  attention.  Neural  systems  are  integrated  and  well-regulated.
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Therefore compensatory changes in one system can produce reactive changes in others.
Some  or  all  may  be  relevant  to  tinnitus,  and  they  may  contribute  to  the  failure  to
develop generally effective tinnitus therapeutics. In this context the potential roles of
GABA, Glu and acetylcholine (indirectly indicated via choline, Cho) were quantified in
the auditory pathway of  rats  with and without  tinnitus,  using high-resolution proton
magnetic resonance spectroscopy (1H-MRS). Brain volumes of interest (VOI) were the
dorsal  cochlear  nucleus  (DCN),  inferior  colliculus  (IC),  medial  geniculate  body
(MGB), and primary auditory cortex (A1). VOI spectra were obtained using a vertical
bore Varian Unity/Inova 600 mHz NMR spectrometer with a 14.1 T magnet. A hybrid
short-pulse and short echo time sequence was used for microvolume localized 1H-MRS.
The pulse sequence was optimized for signal acquisition in the spectral band containing
the neurochemicals of interest. Signals were further optimized using a tunable pickup
coil. Brain spectra were compared to external calibration spectra for determination of
GABA,  Glu,  and  Cho  concentrations  (mM)  in  each  VOI.  Chronic  tinnitus  was
produced by a single high-level unilateral sound exposure, and was quantified using a
psychophysical  procedure  sensitive  to  tinnitus.  Contrary  to  expectation,  significant
decreases in GABA (i.e.,  loss of inhibition) were not found in tinnitus animals.  Glu
levels were found to be significantly elevated in the contralateral A1, as were GABA
levels. In exposed animals without tinnitus, GABA levels were uniquely elevated in the
ventral MGB, suggesting that in those animals inhibitory compensation in the MGB
might  counter  overcompensation.  Cho  levels  were  also  found  to  be  elevated  in  the
contralateral A1 of tinnitus animals. The observed local concentrations of GABA and
Glu  may  reflect  a  distributed  alteration  of  inhibitory-excitatory  equilibrium.  These
results  suggest  that  targeting  multiple  neurotransmitter  systems  when  developing
therapeutics  could  improve  outcomes.

Keywords:  Animal  model,  Choline,  GABA,  Glutamic  acid,  1H-MRS,  PRESS,
STEAM, Tinnitus.

TINNITUS

Chronic subjective tinnitus is the persistent perception of sound (“ringing in the
ears”)  in  the  absence  of  objective  sound.  Across  a  range  of  definitions,  survey
methods,  and  societies,  10  to  15  percent  of  the  adult  population  report  having
chronic subjective tinnitus [1]. Of those, 10 to 15 percent seek medical advice or
treatment  for  the  condition  [2].  Unfortunately  there  are  no  generally  effective
therapeutics  for  tinnitus,  and  while  a  standard  of  care  has  been  established,
actionable  recommendations  focus  on  counseling  and  acceptance  [2].  Lack  of
generally effective treatments may in part be attributed to lack of knowledge and



Determination of GABA, Glutamate and Choline Applications of NMR Spectroscopy, Vol. 5   79

an  unexpectedly  complex  pathophysiology  [3].  Following  high-level  sound
exposure,  central  auditory changes are evident  long afterward [4].  Homeostatic
mechanisms appear to compensate, and in some instances to overcompensate for
peripheral  insults  [5].  Overcompensation  may  produce  the  sensation  of  sound
without an objective physical correlate, i.e., tinnitus. Underlying mechanisms are
not  well  understood.  They  may  involve  down-regulation  of  inhibitory  neuro-
transmission mediated by γ-amino butyric acid (GABA) [6], and/or up-regulation
of  excitatory  neurotransmission  mediated  by  glutamic  acid  (Glu)  [7  -  9],  or
modulation by other systems, such as acetylcholine [10 - 12]. It also seems likely
that tinnitus dysfunction is distributed across the central auditory system [3, 13,
14] and involves areas well outside of the auditory pathway [15, 16].

Volume  localized  proton  magnetic  resonance  spectroscopy  (1H-MRS)  is  well
suited  to  quantifying  regional  brain  levels  of  compounds  participating  in
neurotransmission.  Tinnitus therapeutic development could benefit  from under-
standing patterns of regional neurotransmitter alteration associated with tinnitus.
Since  tinnitus-related  pathophysiology  is  distributed,  heterogeneous  region-
specific transmitter  alterations are likely [17].  1H-MRS was used in the present
experiments  to  quantify  GABA,  Glu,  and  choline  (Cho)  in  rats  with
psychophysically determined evidence of chronic noise-induced tinnitus. GABA
and Glu were examined because they serve, respectively, as major inhibitory and
excitatory neurotransmitters in the auditory pathway [18, 19] as well as elsewhere
in  the  brain.  Cho  was  examined  because  cholinergic  systems  appear  to  play  a
major  role  in  attentional  mechanisms  [20  -  24].  Although  Cho  is  not  a  neuro-
transmitter, it has been shown to be a serviceable surrogate for acetylcholine [25].
The  process  of  attention  has  been  of  interest  in  tinnitus  research  because  a
meaningless  background  sound  such  as  tinnitus  should  habituate  and  not  be
attended  to  over  time  [26  -  30].  Despite  this  theoretical  prediction,  individuals
who are bothered by their tinnitus have their attention uncontrollably drawn to it.

MAGNETIC RESONANCE SPECTROSCOPY (MRS)

MRS and MRI are based on a nuclear magnetic resonance (NMR) phenomenon.
NMR  was  discovered  in  1946  in  the  US  by  Edward  Purcell  and  Felix  Bloch.
Initially, NMR was used only in physics to measure nuclear magnetic moments.
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CHAPTER 3

NMR  Spectroscopy  for  the  Characterization  of
Polymers
Dibyendu S. Bag*

Defence   Materials  and  Stores   Research  and  Development   Establishment  (DMSRDE),
DMSRDE P. O., G.T. Road, Kanpur-208013, India

Abstract: Nuclear Magnetic Resonance (NMR) spectroscopy is one of the most simple
and reliable techniques for structural elucidation of polymers. This chapter summarizes
the application of NMR spectroscopy for identifying monomers and polymers, and also
elucidation of constitutional, configuration and conformational structures of polymers
and  copolymers.  The  determination  of  various  polymer  structures  includes  polymer
tacticity,  polymer  molecular  weights  and molecular  weight  distributions,  copolymer
composition,  monomer  reactivity  ratios,  monomer  sequence  distribution  in  the
copolymer  chains.  Examples  are  cited  in  most  of  the  cases  to  explain  the  polymer
characterization  from  the  NMR  spectra.  It  also  illustrates  the  characterization  of
polymers containing nanomaterials like fullerene (C60) and carbon nanotubes (CNTs).

Keywords:  Copolymer  composition,  Fullerene  (C60),  Molecular  weight
distribution,  Monomer  reactivity  ratios,  Monomer  sequence  distribution,
Monomers,  Nanomaterials  containing polymers,  NMR spectroscopy,  Polymers,
Polymer characterization, Polymer molecular weight, Polymer tacticity.

INTRODUCTION

Nuclear Magnetic Resonance (NMR) spectroscopy is one of the most powerful
and  finest  techniques  in  elucidating  the  functional  groups  and  the  structures  of
organic molecules. Its application in polymer  chemistry  has  also been developed
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rapidly. It is now well-established as an important technique for identifying mono-
mers  and  polymers,  and  also  elucidation  of  constitutional,  configuration  and
conformational structures of polymers [1 - 3]. Some of these structural analyses
may  be  carried  out  by  other  techniques  too.  However,  the  method  of  NMR
spectroscopy is a simple, convenient, rapid and reliable technique for analysis of
organic molecules, monomers and polymers. This article describes the application
of NMR technique for polymer analysis including identification of monomers and
polymers  and  determination  of  various  structures  of  polymer.  The  polymer
structures include various stereochemical features of polymeric chains like tacti-
city,  chain  branching  and  crosslinking,  copolymer  composition,  monomer
reactivity  ratios  and  monomer  sequence  distribution  in  copolymers,  polymer
molecular weight and molecular weight distribution, crystallinity etc. The charac-
terization of nanomaterials especially fullerene and carbon nanotube containing
polymers has also been discussed briefly. This chapter also provides a brief sketch
of such illustrations with examples for better understanding of characterization of
polymers using NMR spectroscopy.

‘NMR’ SPECTROSCOPY FOR POLYMERS

The nuclear magnetic resonance (NMR) spectroscopy was discovered in 1945 by
Felix Bloch and Edward Mills Purcell. They were awarded Noble prize in Physics
in 1952 for their discovery and the development of method for nuclear magnetic
precision  measurements.  Nuclear  magnetic  resonance  arises  because  of  the
nuclear  spin  of  some  atoms  and  the  interaction  of  spinning  nucleus  (generates
magnetic  dipoles)  with  magnetic  field  [4].  There  are  (2I  +  1)  (where,  I  =  the
nuclear  spin  quantum  number)  possible  orientations  or  states  of  the  nucleus.
These states are normally degenerate. But in the presence of magnetic field, the
degeneracy is lifted resulting (2I + 1) different states or energy levels. The origin
of NMR spectroscopy is basically due to this splitting up of degeneracy of energy
levels under magnetic field, in which absorption of electromagnetic radiation from
radio frequency (rf) range (typically 1-900MHz) promotes nuclei from low energy
level to high energy level. Both 1H and 13C nuclei have the simplest situation and
are widely studied. Both of them have half integral spin (I= ½). They have two
energy states  because  of  the  alignment  of  spin  either  parallel  with  (low energy
state) or against (high energy state) the external magnetic field. Once two energy
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levels have been established, it should be possible to introduce quanta of energy
hν (h is Planck’s constant and ν is the frequency of radiation) to effect a transition
between these energy states. The difference of energy between these two states
depends upon the strength of the external magnetic field (B0) at the nucleus and
magnetogyric  ratio  (γ)  of  the  nucleus.  Thus  the  fundamental  NMR equation  is
given by,

(1)

Where, ν is the resonance frequency proportional to both γ and B0.

The  magnetogyric  ratio  (γ)  is  a  fundamental  nuclear  constant  and  is
proportionality constant between the magnetic moment (μ) and the spin number
(I): γ = (2πμ/ Ih).

NMR spectra are obtained either by the variation of magnetic field or frequency,
which are called field sweep or frequency sweep respectively. The absorptions of
the  sample  are  recorded  as  chemical  shift  values  w.r.t  the  absorption  of  a
reference compound. Chemical shift is universally expressed as the δ-scale which
is defined by,

(2)

(3)

Where,  (νS  -  νR)  is  the  difference  in  absorption  frequencies  of  the  sample  and
reference. The Bs and BR are the field strengths corresponding to resonance for a
particular  nucleus  in  sample  and  reference  respectively.  The  δ-scale  is
dimensionless  and  is  independent  of  B  and  ν.  Hence,  a  NMR  spectrum  with
greatly improved resolution of absorption using very strong magnetic field can be
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CHAPTER 4

Structure  and  Intramolecular  Dynamics  of
Biologically  Active  Compounds:  Analysis  of  NMR
Spectra Transformed by Spin Labels
Vladimir K. Voronov* and Igor A. Ushakov
Irkutsk State Technical University, Irkutsk, Russia

Abstract:  The  present  review  summarizes  current  applications  of  the  NMR
phenomenon  in  paramagnetic  systems  for  studying  structure  and  intramolecular
dynamics  of  multielectron  molecular  systems.  The  potential  of  spin  labels  for
molecular identification was demonstrated in the example of structural biology issues.
Discussion  of  molecular  structure  of  specific  organic  heteroatomic  compounds  and
their  complexes  is  preceded  by  the  section,  where  peculiarities  of  the  NMR pheno-
menon in paramagnetic systems are considered. In opinion of the authors of the review,
such consideration is needed for researchers who are not experts in the NMR theory.
The separate section of the review is devoted to a method for investigation of structure
and dynamics of complex molecular systems. This method is based on application of
the  NMR  spectra  transformed  by  complexes,  first  of  all,  paramagnetic  ones  (spin
labels).

Keywords:  Hyperfine  coupling,  Method  of  paramagnetic  additives,  Nuclear
magnetic resonance, Paramagnetic systems, Structure and dynamics of molecules.

INTRODUCTION

Soon after its discovery, the phenomenon of nuclear magnetic resonance (NMR)
has  constituted  a  basis  for  a  powerful  method  allowing  structural  studying  of
compounds  and  their  properties,  at  least,  in  liquid  phase.  For  a  long  time,
diamagnetic compounds remained the main objects of the structural investigations
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using NMR technique (see, for example, [1 - 3] and the references cited therein).
Despite  the  fact  that  this  situation  is  still  retained,  there  are  strong  grounds  to
believe  that  study  of  the  NMR phenomenon  in  paramagnetic  systems  will  also
allow  obtaining  valuable  information  on  molecular  structure.  This  relates,  as  a
rule, to paramagnetic complexes, the specifics of which are defined by unpaired
electrons on d- and f- orbitals.

Electron-nuclear  or  hyperfine  coupling  (HFC)  between  unpaired  electrons  and
nuclei of the paramagnetic molecule leads to characteristic shifts and broadenings,
connected with spatial and electronic structure of the molecule, NMR spectrum of
which is detected, by explicit functional dependence. In paramagnetic compounds,
diverse  relaxation  effects  can  be  observed  that  essentially  expands  research
possibilities of the NMR method. The investigations of temperature dependence
of paramagnetic shifts and signal broadenings enable to establish thermodynamic
parameters  of  complex  formation  in  solution  and  to  elucidate  stoichiometry  of
complexes and peculiarities intra- and intermolecular exchange processes. Hence
it follows that the NMR spectra transformed by complex compounds (spin labels),
the specific of which is defined by HFC, permit a considerable body of unique
information on molecular structure to be obtained [4 - 16].

The  present  review  deals  with  some  ideas,  the  understanding  of  which  would
expand  a  circle  of  tasks  related  to  problems  of  structural  biology.  In  this  line,
general information on the NMR of paramagnetic molecules is briefly covered.
Special emphasis is paid to the review [5] and the monograph [6] which contains
references both to reviews and original publications of other authors studying the
abovementioned  problem.  Also,  the  prospects  of  application  of  the  NMR
phenomenon in paramagnetic systems for studying molecular structure in a liquid
phase,  which  very  often  become  defining  for  existence  of  biological  objects
including humans, are considered. Examples of the specific spectra discussed in
this  review  illustrate  those  methods,  which  need  to  be  used  for  the  purpose  of
obtaining information on molecular structure of both ligands and complexes from
their NMR spectra transformed by hyperfine coupling.
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NMR IN PARAMAGNETC SYSTEMS

A reason of specificity of the NMR phenomenon in paramagnetic systems can be
rationalized  as  follows (see  [5,  6]  and the  references  cited  therein).  If  resonant
nucleus (for example, proton) is present in a paramagnetic molecule, i.e. molecule
with  uncompensated  electron  spin  moment,  it  undergoes  additional  magnetic
effect  from the electron spin.  This  leads to broadening and paramagnetic  shifts
(contact  and pseudo-contact  ones) of resonance lines in comparison with width
and position of lines in the NMR spectra of non-coordinated molecules. Contact
shift is observed when the probability of unpaired electron location in the place of
resonant  nucleus  differs  from  zero.  This  shift  is  proportional  to  a  constant  of
proton-electron coupling and (in the case of insignificant spin-orbital interaction)
is defined by the expression:

(1)

where γe and γn are gyromagnetic coefficients for proton and resonant nucleus; g is
g-factor of paramagnetic compound; S is spin of complex; β- is Bohr magneton;
T- is absolute temperature; k- is Boltzmann's constant; A- is constant of contact
hyperfine coupling.

The A value, which can be both positive and negative, is defined by the magnetic
moment of unpaired electrons of a paramagnetic particle and by orientation of the
unpaired electron on this nucleus. According to Fermi's formula:

(2)

where gn - is nuclear factor; βn- is nuclear magneton; ρ(N) - is density of unpaired
electron spin on the resonant nucleus. Transfer of the unpaired electron from the
coordinating ion to ligand and its distribution over the ligand molecule (i.e.  the
mechanism of its delocalization) is defined by specifics of electronic structure of
the paramagnetic complex.

Pseudo-contact shift  is caused by dipole-dipole hyperfine coupling between the
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Section II: Medical Diagnosis
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CHAPTER 5

NMR Spectroscopy  in  Brain  Gliomas:  Technique,
Diagnosis, Grading and Follow-up after Therapy
Alessandro  Stecco*,  Mariangela  Lombardi,  Paola  Amatuzzo,  Francesco
Buemi  and  Alessandro  Carriero
Diagnostic  and  Interventional  Radiology,  AOU  “Maggiore  della  Carità”,  Eastern  Piedmont
University “A.Avogadro”, Novara, 28100, Italy

Abstract:  Magnetic  resonance  spectroscopy  (MRS)  is  a  diagnostic  technique  that
permits non-invasive measurement of metabolites in tissues.

Brain Spectroscopy for diagnostic use mainly relies on two techniques: multivoxel and
single voxel acquisitions. The first allows a wider extension of the analysis of tumoral
and peritumoral brain tissue, with a better mapping of metabolites distribution. This
technique is time consuming and can be affected by several artifacts.

The single-voxel technique allows a more robust acquisition, more repeatable, and a
better visualization of metabolites spectrum but is limited by the size and position of
the voxel of acquisition, based upon operator choice.

Brain  MR  Spectroscopy  is  often  an  essential  tool  in  differential  diagnosis  of
undetermined  brain  mass.  The  cases  in  which  spectroscopy  can  help  in  differential
diagnosis  are:  gliomas  versus  metastasis,  gliomas  versus  non-neoplastic  lesions  and
glioma versus lymphoma. The neuronal metabolite pattern and the ratios between N-
Acetyl-Aspartate, Creatine and Choline add diagnostic and functional information to
the classic MR morphologic features of the brain lesion.
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A lymphoma and a Glioblastoma have very different natural history, prognosis and also
therapeutic options. Grading assessment is fundamental in the subsequent decision and
therapeutic menagement.

The  WHO  classifies  brain  tumors  from  the  least  aggressive  (benign)  to  the  most
aggressive (malignant). Glioblastomas belong to astrocytic tumors, ranging from Grade
I (least malignant, e.g., I grade, pilocytic astrocytoma) to Grade IV (most malignant,
e.g., IV grade Glioblastoma)

Determining  the  classification  and  grade  of  a  brain  tumor  can  predict  its  likely
behaviour.

The  histopathological  assessment  after  the  biopsy  or  surgery  is  fundamental  for
characterizing the brain tumors. Not in every case biopsy is possible, depending on the
localization  of  the  tumor  and  conditions  of  the  patient;  in  these  cases,  Brain
spectroscopy can be as a non-invasive tool to hypothesize the tumor grading based on
neuronal  metabolites  ratios.  In  the  follow-up  of  low-grade  gliomas,  Spectroscopy
allows, with diffusion and perfusion techniques, to find early signs of transformation
into higher grades, with a consequent change in patient treatment and care. Moreover,
after neurosurgery and chemo-radiotherapy, Spectroscopy has an important role in the
differential diagnosis between radionecrosis, pseudoprogression and pseudoresponse.

In conclusion, Spectroscopy, although must be considered as a complementary MRI
technique, gives an important contribution to the diagnosis, characterization, follow-up
of brain gliomas.

Keywords:  Brain,  Choline,  Gliomas,  Lactate  creatinine,  MRI,  NAA,  NMR,
Spectroscopy.

INTRODUCTION

Glioma  represents  about  70%  of  all  primary  brain  tumors,  characterized  by
different  prognostic  features  and  histological  heterogeneity  [1].

Diagnosis, relationship with surrounding anatomical structures and evaluation of
tumor extent are crucial in evaluating prognosis and planning treatment. The gold
standard  for  diagnosing  the  histological  type  and  grade  is  stereotactic  or  open
biopsy [2], but their diagnostic accuracy may be hampered by sampling errors or
the presence of mixed malignant and benign histopathological features [2, 3].
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TECHNIQUE

The  fundamental  principle  of  MR  spectroscopy  (MRS)  is  the  electron  cloud
around  an  atom,  shielding  the  nucleus  from  the  magnetic  field  to  different
degrees,  which determines slightly  different  resonant  frequencies  following the
Larmor Equation and chemical shift effect and, therefore, a different signal.

Water  suppression  is  an  essential  component  of  any  MRS  sequence,  either
through chemical shift selective (CHESS) or inversion recovery (IR). Otherwise,
all  spectra  would  be  invisible  because  dominated  by  water.  Sometimes  water
saturation  may  affect  peaks  close  to  water  and  provoke  magnetization  transfer
effects due to saturation of bound protons.

Therefore, there have been attempts to acquire unsuppressed water signal as an
internal reference to quantify the metabolite concentrations in each voxel [4, 5].
However,  water  suppression  is  the  most  common  method  used  to  solve  this
problem  nowadays.

The primary sequence consists of a 90 degree RF pulse, with gradients, turned off
and reception of the signal by the coil immediately after the single RF pulse.

The main difference toward a classical MR pulse sequence for imaging is that it is
not used a “read-out” (frequency encoding) gradient during the receiving time of
the signal from the tissue.

Identifying the different chemical compounds is possible by means of differences
in various degrees in the electronic shielding of the atoms, allowing to identify
different resonance frequency of the atoms.

MRS  can  be  obtained  from  many  nuclei,  including,  carbon  (13C)  and  sodium
(23Na), fluorine (19F), phosphorus (31P), although the mostly used for clinical
MRS  are  protons  (H-MRS),  very  abundant  in  human  tissue.  The  organ  more
suitable  to  be  studied  is  the  brain,  due  to  its  lack  of  movement.

The aim of the technique is to find the subtle and weak signals from metabolites,
so requiring at least a High Field MR scanner (1.5T and greater). The chemical
shift is the change of the spin frequency typically for an atom depending on the
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CHAPTER 6

Solid State NMR of Food and Biopolymers
Cesar Augusto Tischer* and Suzana Mali
Department  of  Biochemistry  and  Biotechnology,  State  University  of  Londrina,  Rodovia  Celso
Garcia Cid, PR445 Km 380, Campus Universitário, Cx. Postal 10.011, CEP 86057-970, Londrina,
PR, Brazil

Abstract:  Nuclear  magnetic  resonance  (NMR)  is  widely  applied  in  chemistry  and
biochemistry, as well as in materials science. The capacity to elucidate new compounds
or recognize structures by a fingerprint are common uses of liquid state NMR. Solid
state  NMR  provides  another  added  advantage  to  the  analytical  flux,  as  it  can  be
performed without multistep sample preparation and in a non-destructive way; these
aspects greatly speed up sample analysis. Research on mechanics and electronics in the
recent years has led to the development of hardware for solid state NMR and a more
versatile  technique,  cross  polarization  -  magical  angle  spectroscopy  (13C CP MAS).
These  techniques  are  robust,  operationally  less  expensive  and  reliable  even  when
performed  by  non-highly  trained  experts.  These  developments  have  allowed  this
technique  to  be  used  for  the  analysis  of  food.  Here,  we  present  some  technical
considerations for the implementation of solid state NMR as a reproducible technique,
considering  typical  NMR  parameters  such  as  the  length  of  pulses  and  spectral
calibrations. The potential target compounds in food analysis are discussed regarding
the type of results that can be obtained; changes to the protein and lipid content and
quality  lead to  different  spectra  as  well  as  physical-chemical  characteristics  with an
impact on the organoleptic and taste experience for consumers. The structure, crystal
arrangement and uses of the starch flour were reviewed to explain the role of materials
science tools and structural knowledge. Many techniques are used to perform state-o-
-the-art  starch  analysis  and  to  assess  its  role  in  flour  products;  solid  state  NMR
spectroscopy has considerable potential as a quick, reliable and cost-beneficial way to
routinely validate  processes  and products.  Finally,  we suggest  parameters  for  future
standardized experiments and the possible comparison with other analytical methods.
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1. BASIC CONCEPTS

1.1. Fundamentals

According  to  Cheng,  Zhang,  Zhao  and  Ouyang  [1],  “food  is  any  substance
consumed to provide nutritional support for the human body. It is usually of plant
or  animal  origin,  and contains  essential  nutrients,  such as  carbohydrates,  fats,
proteins,  vitamins  and  minerals”.  Consequently,  a  food  system  is  a  complex
mixture  of  different  molecules  that  interact  to  result  in  the  food  structure.

Several aspects of food quality have to be observed during the development of a
new  product,  or  even  during  the  production  of  a  traditional  one.  Food  quality
involves  external  factors  such  as  appearance  (size,  shape,  color,  gloss  and
consistency),  texture,  flavor,  and  other  internal  factors  (chemical,  physical  and
microbial), and several analytical techniques have been used to study the factors
that affect the food quality [2, 3].

According  to  Bertocchi  and  Paci  [4],  the  application  of  high-resolution  NMR
spectroscopy  to  the  solid  state  was  developed  in  the  1970s,  but  this  technique
progressively  lost  favor  due  to  the  difficulties  arising  from  the  complicated
experimental technical aspects; the number of papers in the literature using magic
angle spinning (MAS) and 13C NMR with cross-polarization (CPMAS) increased.
Reports after the 1980s increased quite slowly up to 1990 and increased rapidly
from 1990 to 2000, particularly in food science. In recent years, i.e. 2000 to today,
with the development of NMR instrumentation and improved programs to collect
and analyze the data, the applicability of NMR has rapidly expanded in the field
of food science and technology [5].

NMR can be applied to a wide range of matrices without altering the sample or
producing hazardous wastes [5]. Additionally, an NMR spectrum contains a great
amount of information that can be obtained in a short time period and employed
as  an  alternative  to  many  classic  analytical  procedures,  such  as  such  as  high
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pressure  liquid  chromatography  (HPLC),  gas  chromatography  (GC)  and  mass
spectrometry  (MS)  [5,  6].

A wide range of NMR food-related research has covered various fields of food
science, including food microbiology, food chemistry, food engineering and food
packaging [5]. Some reviews have appeared in recent years showing how these
tools for the study of solids by solid state NMR spectroscopy can be applied to
solving specific chemical problems [4, 7 - 9].

Solid  state  NMR  spectroscopy  can  provide  chemical  information  about  the
material  that  will  be  analyzed,  but  also  the  chemical  environment  and
ultrastructural details that are not easily accessible by other non-destructive high-
resolution  spectral  techniques  [10].  The  information  contained  in  an  NMR
spectrum can be obtained in a short time, and the different signals present in the
NMR  spectrum  provide  two  kinds  of  information:  the  chemical  shifts  and  the
relative  intensities.  Additionally,  NMR  allows  for  the  determination  of  a  large
number of components with very little or no manipulation of the samples, offering
to both the industry and the consumers a very powerful analytical tool to control
the composition, authenticity and quality of food products [6], as well as to study
the interactions between food components.

Solid state NMR can be useful to both the food scientist and food processor, based
on the requirements of the food industry to understand and innovate its products
and processes, and on the pressure to develop new methods to enforce legislation
and  quality  control  [11].  Thus,  several  applications  of  solid  state  spectroscopy
have  provided  valuable  results  to  understand  the  chemical,  physical,  and
biological  phenomena that  occur in foods.  However,  there are some points that
must  be  mentioned:  (i)  the  method  is  non-destructive  and  no  derivatization  is
required to perform experiments; (ii) it has a very high potential to discriminate
between  crystallinity  and  polymorphic  behavior  in  samples;  (iii)  starch  and
cellulose,  food  components  that  have  crystalline  and  amorphous  domains  in
different  proportions,  present  more  reliable  results  when  studied  by  CPMAS
NMR; (iv) foods containing proteins and fats are very difficult to crystallize, and
in  the  solid  state  their  spectra  have  been  poorly  resolved;  (vi)  the  best  results
achievable  are  for  saccharides  and  polysaccharides,  both  as  the  matrix  and  as
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