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PREFACE 

 
Due to the difficulty to define the initial stress and boundary conditions, the loading paths as 

well as the constitutive model of geomaterials, stability analysis has always been a very 

important discipline in geotechnical engineering. Towards this, engineers will assess the 

ultimate conditions where the strength of the system is fully mobilized. The facture of failure 

or the collapse load will then be assessed based on the ultimate analysis which is considered to 

be unaffected by the initial conditions of the system. 

 

This book will introduce the fundamental concepts and applications of plasticity theory, limit 

equilibrium, and limit analysis in geotechnical engineering. These concepts will be illustrated 

using analytical examples whenever possible in order to enhance understanding at a 

fundamental level and can also be used to make preliminary estimates of geotechnical stability. 

In parallel, suitable numerical methods and advanced computational tools will be introduced 

for the engineers to solve theoretical and geotechnical problems of practical interests which 

require greater detailed consideration. 

 

This book deals with the challenging subject matter in a systematic fashion, from a theoretical 

standpoint to practice in the real world. For this reason, the book is divided into 3 parts. In part 

1, the fundamental concepts in plasticity, limit equilibrium, limit analysis and instability for 

geomaterials are presented as a first step in introducing readers as the theoretical basis. 

Analytical and semi-analytical solutions are then discussed in Part 2, with liberal use of 

illustrative examples, as a further step to shed insights and reinforce the underlying principles 

embodied in the theory. Finally in Part 3, examples utilising advanced computational tools like 

the finite element and discrete element methods are covered for the purpose of elucidating the 

complexity of dealing with stability problems of the real world using numerical approaches. 

 

A particular feature of this book is that it stresses the rigorous formulation as much as the 

computational techniques to tackle stability problems. It is noted that the solution of these 

problems is far from trivial. The search of failure load and the corresponding failure mechanism 

involve the constrained optimisation of discontinuous objective functions containing multiple 

optimum points. In short, this book is an attempt to present within a single volume the 

fundamentals as well as the practical developments of stability analysis in geotechnical 

engineering in an easily accessible manner. Most of the materials are either based on the 

research works from the authors or the teaching materials to the postgraduate students. 

 

This book  is  aimed  at    researchers   and   engineers   working   in  the  field  of     geotechnical



ii 

engineering having to make design decisions concerning the stability and the risk of failure of 

geotechnical structures. These include natural and man-made slopes, dams, shallow or deep 

foundations, soil retaining structures, embankments, road or railway tunnels, large scale 

underground structures including for underground storage of nuclear wastes or CO2 

sequestration. 
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  CHAPTER 1 

Introduction 

Abstract: Stability analysis has always been a critical issue in geotechnical 

engineering. Many of the design works by engineers are actually based on the 

ultimate condition which can be assessed without the need of the initial condition 

and sophisticated constitutive models. A brief introduction about the stability 

analysis will be given in this chapter. 

Keywords: Close-form solution, Finite element, Limit analysis, Limit 

equilibrium, Stability analysis. 

 

1.1. INTRODUCTION 

 

Due to the difficulty to define the initial stress and boundary conditions, the 

loading paths as well as the constitutive model of geomaterials, stability 

analysis has always been a very important discipline in geotechnical 

engineering. Towards this, engineers will assess the ultimate conditions 

where the strength of the system is fully mobilized without the detailed 

information about initial condition. In fact, it is extremely difficult and 

expensive to determine the initial condition for a general problem, even if 

the ground condition is simple, and no continuous results will be obtained 

even if explorations are carried out. The initial condition can be affected by 

the soil formation process, development and loading of the site, ground 

water and other surrounding effects and possibly many other factors. The 

failure or the collapse load will be assessed based on the ultimate analysis 

which is considered to be unaffected by the initial conditions of the system. 

Although this approach appears to be highly simplified without considering 

the initial condition as well as the constitutive model of soil, it appears to be 

indispensable for most of the practical problems. Furthermore, the engineers 
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are now well familiar with this approach, and many design and analysis 

have been carried out successfully with this approach. 

 

This book will introduce the fundamental concepts and applications of 

stability analysis with particular reference to plasticity theory, limit 

equilibrium, limit analysis, finite element and discrete element methods in 

geotechnical engineering. Suitable numerical methods and advanced 

computational tools will be introduced for the engineers to solve theoretical 

and geotechnical problems of practical interests which require greater 

detailed consideration.  

 

There are various advancement on stability analysis over last 40 years, and 

many results are developed and used for a variety of problems. It is 

impossible to cover all these results in the present work. This book is 

mainly based on the research and teaching materials by the authors, but 

sufficient background about the works by other researchers are also given 

for the readers. 

 

1.2. BACKGROUND 

 

Due to the growth of population and economic activities, terraces are 

created for buildings and infrastructures like quays, canals, railways and 

roads. Man-made cut and fill slopes have to be formed to facilitate such 

developments. In the past, the stability of many slopes, foundations and 

retaining structures are assessed by simple rules of thumb, due to the lack 

of adequate fundamental knowledge and computing power. There are 

various attempts to improve the rules of thumb approach in 20 century. One 

of the earliest attempts was by a French engineer Alexander Collin (Collin, 

1846) which is not really better than the rules of thumb. In 1916, a series of 

quay failures had occurred in Sweden, and the Swedes had developed one 

of the earliest methods to assess slope stability using the method of slices 

and limit equilibrium method. The method is now called the Swedish 
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Method (or the Ordinary Method) of Slices (Fellenius, 1927) which is still 

used in limited sense up to present. A number of subsequent refinements to 

the method were made later: Taylor’s stability chart (Taylor, 1937) based 
on moment equilibrium; Bishop’s Simplified Method of Slices (Bishop, 
1955) which is also based on the moment equilibrium; Janbu’s method 
which is extended to the non-circular slip (Janbu, 1973); Morgenstern & 

Price (1965) which try to ensure forcing moments and forces to be 

simultaneously achieved; Spencer’s parallel inter-slice forces (1967) as a 

special case of the Morgenstern & Price’s method; and Sarma’s method 
which is based on a horizontal earthquake approach (1973). These various 

methods are now basically unified under the Modern Generalized Method 

of Slices (GMS) (e.g. Low et al., 1998). 

 

In the classical Limit Equilibrium approach, the user has to define a slip 

surface before the stability analysis. There are different techniques to 

ensure a critical slip surface can indeed be identified. The finite element 

method (Griffiths & Lane, 1999) or the equivalent finite difference method 

(Cundall & Strack, 1979) are some of the modern computational methods 

which are used to evaluate the stability problems directly using the strength 

reduction algorithm (Dawson et al., 1999). Zhang (1999) and others have 

proposed the rigid finite element method which is still limited to research 

purpose for the stability analysis up to now. The advantage of these methods 

is that there is no need to assume any inter-slice forces or slip surface which 

have to be prescribed in the classical limit equilibrium or limit analysis, but 

there are also various limitations to these methods.  

 

Currently, most of the engineers are using computer methods which are 

commonly limit equilibrium or finite element method to solve different 

kinds of stability problems. However, every numerical method has its own 

assumptions and limitations. It is therefore necessary for the engineers and 

researchers to be fully aware of them so that the methods can be used within 

its limitations in real design situation. There is however one fundamental 
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  CHAPTER 2 

Upper and Lower Bound Approaches 

Abstract: In this chapter, the basic theory about the lower and upper approaches will 

be introduced. These approaches will then be applied to various types of problems, 

and the applicability of the lower and upper bound approaches will be illustrated 

through many types of problems, for which analytical/rigorous solutions are 

available. 

Keywords: Failure mechanism, Lower bound, Upper bound, Yield. 

 

2.1. INTRODUCTION 

 

To determine the collapse load of a structure composed of an elastic-plastic 

material and subject to a set of external forces (volume forces, surface 

tractions), there are essentially two different approaches: (1) an incremental 

load path analysis taking into account the complete stress-strain behaviour 

or (2) a direct limit analysis only taking into account the failure condition. 

 

The first approach consists of performing an incremental elastic-plastic 

analysis up to failure to determine the collapse load. The material behaviour 

in terms of the stress-strain relationship up to failure is accounted for. 

Numerical computations are usually performed using computer programs 

based on finite elements or finite differences. Here failure is considered to 

take place when a representative displacement tends to increase without 

bound. Examples of this approach using finite element method can be found 

in Nagtegaal et al., (1974), Chen (1975), Sload and Randolph (1982), 

Alehossein et al., (1992), Yu et al., (1993) and Potts and Zdravkovic (1999). 

The main inconveniences of this approach are that: it requires accounting 

for the complete stress-strain relations hence the amount of computations 
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involved is usually large; it needs the material properties for each material 

component which are difficult and expensive to obtain; failure load is 

determined when the computer program diverges and stops to operate 

normally. 

Alternatively, a second approach uses the bound theorems which only takes 

into account the strength criterion of the material, but not the stress-strain 

behaviour. The material strength is supposed invariant during straining in 

order that the method works; locally failure and yield are synonymous and 

is described by a yield function. This approach leads directly to the 

determination of the collapse load, requiring much less amount of 

computation hence cost-effective, which constitutes its main advantage. 

Note that in civil engineering problems, structural collapse is normally the 

main concern. Therefore, the non-consideration of displacement and strain 

fields is in many cases not an important issue, especially at the preliminary 

design stage where a choice needs to be made among different alternatives. 

 

Chen (1975) and Chen and Liu (1990) used this approach to geotechnical 

problems. A more theoretical treatment of this subject can be found in the 

monograph of Salençon (1983). For simple geometries and homogeneous 

material domains, analytical solutions are available. A very classical and 

illustrative problem concerns the tunnel face stability for which many 

researchers have made contributions, for example: Davis et al., (1980), 

Chambon and Corté (1994), Leca and Dormieux (1990), Subrin and Wong 

(2002), Wong and Subrin (2006), only to cite a few. For complex 

geometries and heterogeneous material domains, numerical procedures are 

necessary. A brief account on numerical bound analysis based on finite 

elements and linear programming can be found in Yu (2006), which 

summarized the contributions of previous authors like of Lysmer (1970), 

Bottero et al., (1980), Sloan (1988, 1989), Sloan and Kleeman (1995). 

These works are based on a linearization of the strength criterion. More 

recently, non-linear programming was introduced: D.Z. Li and Y.M. Cheng 

(2013). 
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In this chapter, emphasis will be put on a clear presentation of fundamental 

tools and concepts. We therefore limit ourselves to simple geometries 

where analytical solutions are accessible. For numerical approach, the 

reader can refer to the work of Yu (2006). 

 

2.2 MATERIAL STRENGTH AND ITS MATHEMATICAL 

DESCRIPTION 

 

As aforementioned, the bound-approach to the determination of collapse 

loads is based on the consideration of material strengths, discarding the 

stress-strain relation. It is therefore appropriate to begin with the 

mathematical description of the admissibility condition of stress fields, at 

the same time fixing notations for future references. 

 

At any material point inside the physical domain, in order that the stress be 

supportable by the material, it must remain inside a domain of “admissible 
stresses”  𝐺  as shown in Fig. (2.1) which is a subdomain of the six-

dimensional Euclidean space ℝ6 for 3D problems. Restricting the analysis 

to isotropic materials, the spatial orientation of the stress tensor does not 

count, only 3 independent scalar invariants representing the stress 

intensities intervene, for example the 3 principal stresses. The domain 𝐺 

can then be represented as a subdomain of the three-dimensional Euclidean 

space ℝ3. Thermodynamic stability conditions require this domain to be 

convex, which is commonly described using a convex function 𝑓(𝝈) such 

that: 

𝐺 = {𝝈 ∈ ℝ3: 𝑓(𝝈) ≤ 0} (2.1) 

If the physical domain is not homogeneous, then 𝐺 would be a function of 

space coordinates: 𝐺 = 𝐺(𝒙), and so is the case of the yield function:  

𝑓 = 𝑓(𝝈, 𝒙). To simplify the presentation, we will omit this dependence on 

x and continue to write  𝑓 = 𝑓(𝝈) , unless this dependence is explicitly 

required. 
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  CHAPTER 3 

Slip Line, Limit Equilibrium and Limit 
Analysis Methods 

Abstract: In this chapter, three major stability analysis methods are introduced. Each 

method will be discussed with many recent findings discussed. Based on the slip line 

method and extremum limit equilibrium method, the classical slope stability, lateral 

earth pressure and bearing capacity problems are unified under one formulation. A 

Fortran code is also provided for the lateral earth pressure analysis based on the limit 

analysis approach, and this code will be useful to many readers. 

Keywords: Limit analysis, Limit equilibrium, Extremum principle, Slip 

line, Unification. 

 

3.1. INTRODUCTION 

 

For stability analysis, there are various methods available to the engineers, 

and the choice of the method will depends on the complexity of the 

geometry and the convenience in the solution. In this chapter, the slip line 

method, limit equilibrium method and limit analysis will be introduced for 

the lateral earth pressure, ultimate bearing capacity and slope stability 

problems. It is interesting to note that these three topics are usually 

considered separately in most of the books or research studies, and different 

methods of analyses have been proposed for individual problem even 

though they are governed by the same requirements for the ultimate 

conditions. Since the governing equations and boundary conditions for 

these problems are actually the same, Cheng and Li (2015) view that each 

problem can be viewed as the inverse of the other problems which will also 

be demonstrated in the present chapter. After the introduction of the three 
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basic stability analysis methods, a section on the unification of the three 

most important stability problems will be discussed. 

 

The three stability methods together with the corresponding numerical 

solution techniques will be discussed with the use of different computer 

programs developed by the author. The limit equilibrium methods as 

discussed in this chapter are available in the program SLOPE 2000 

developed by Cheng, which can be downloaded at the site 

http://www.cse.polyu.edu.hk/~ceymcheng/. SLOPE2000 is also one of the 

analysis modules in the large scale geotechnical analysis and design 

package GEOSUITE 1.0/2.0. For the slip line and limit analysis programs 

which are used in this chapter, they are more suitable for single material 

problem and are not yet mature enough for general conditions, hence these 

programs are not available for general download but can be obtained from 

Cheng at ceymchen@polyu.edu.hk. 

 

3.2. SLIP-LINE METHOD  

 

At the ultimate condition, both equilibrium and yield conditions must be 

satisfied. Combining the Mohr-Coulomb yield criterion (which is generally 

adequate for soil) and the equilibrium equations, a set of hyperbolic partial 

differential equations of plastic equilibrium can be developed. In order to 

solve the governing partial differential equation, it is more convenient to 

transform the governing equations to curvilinear coordinates along the 

directions of the failure planes for mathematical convenience. Once the 

equations are solved, the failure modes with the corresponding systems of 

stresses will be automatically determined. The slip directions or slip lines 

constitute a network which is called slip-line field. The governing equations 

can be solved with adequate boundary conditions to investigate the stresses 

at the ultimate condition, and the solution of the problem is commonly 

taken as the rigorous solution, as the solutions are either similar to those 

from other methods or are better. Since the governing equations are written 
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along the slip lines, the slip line fields corresponding to the solutions are 

commonly considered as the failure mechanism of the governing problem. 

For example, the bearing capacity of footing and the lateral earth pressure 

behind a retaining wall are commonly analyzed by the slip line analysis, 

but not for the slope stability problem.  

 

Kötter (1903) was the first to derive the slip-line equations for two-

dimensional ultimate problems, while Prandtl (1920) was the first to obtain 

an analytical solution for footing by assuming the weight of soil to be 

negligible. His results were then applied by Reissner (1924) and 

Novotortsev (1938) to different problems on the bearing capacity of footing 

on weightless soil. The inclusion of soil weight in the solution of the 

governing partial differential equation is analytically impossible, and 

Sokolovskii (1965) has proposed a finite difference approximation of the 

slip-line equations for which the accuracy can be further improved by an 

iteration scheme (Cheng 2003b), and such iteration to update the 

coordinates of the grid points on the slip line field has been demonstrated 

to be important for passive pressure evaluation. Sokolovskii (1965) has 

solved many types of problems on the bearing capacity of footings, slopes 

as well as the lateral earth pressure on retaining walls. De Jong (1957) has 

developed a graphical procedure for the solutions which appeared to be 

seldom used nowadays. There are other approximate solutions for the 

governing differential equations which include the applications of 

perturbation methods (Spencer, 1962) and series expansion methods 

(Dembick et al., 1964), but these methods are not popular and versatile 

enough for more complicated problems and are seldom considered now. 

More recent results and numerical techniques are given by Cheng and Au 

(2005) for bearing capacity problem and Cheng (2003b) and Cheng et al., 

(2007b) for lateral earth pressure problem. 
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  CHAPTER 4 

Numerical Methods – Finite Element and 
Distinct Element Methods 

Abstract: In this chapter, the basic theory about the two most important numerical 

methods in stability analysis are introduced. After that, these two methods are applied 

to different cases, and some laboratory tests are also used for comparison. In general, 

it is found that both methods are useful, and each method has its own merits and 

limitations. 

Keywords: Distinct element, Failure mechanism, Finite element, 

Numerical method. 

 

Most of the problems in geotechnical engineering are difficult to be solved 

by nature. In particular, the irregular geometric domain, nohomogeneous 

ground conditions, the presence of water, external and internal loadings and 

structural elements and the complex mechanical response of soil and soil-

structure interaction have created extreme difficulty in the analysis of real 

engineering problems. Towards this, the use of numerical method will be 

more appropriate. Currently, the use of finite element, finite difference, 

boundary element and distinct element methods are the most popular 

methods which are adopted by many engineering geotechnical programs. 

Boundary element method is most suitable for linear problem with elastic 

constitutive behavior, and it is not commonly adopted in geotechnical 

problems. The capabilities of finite difference and finite element methods 

are comparable, but there are only few general finite difference programs 

in the world due to various technical difficulties. Finite element method is 

the most popular numerical tool to solve many types of differential 

equations in various disciplines. Currently, there are hundreds of finite 
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element programs available to the engineers for various applications, but 

there are also many limitations of FEM to geotechnical problems which 

include: (1) difficult to be applied for very large displacement problems, (2) 

generation and loss of contacts are difficult to be modelled, (3) fracture is 

difficult to be handled (but not impossible), (4) flow of the materials. 

Towards these limitations, the finite difference based distinct element 

method may be more suitable, though there are also many fundamental 

limitations in DEM which are still difficult to be resolved. There are also 

coupled methods based on DEM and FEM, and DEM is applied in special 

highly stressed/fractured region while FEM is applied to the general 

medium. In general, FEM and DEM are the two most important numerical 

methods in geotechnical engineering, and these methods will be introduced 

in this chapter. After the basic introduction to these two numerical methods, 

applications to some stability problems will be discussed. 

 

4.1. PLANE STRAIN AND PLANE STRESS FOR CONTINUOUS 

PROBLEMS 

 

For simplicity, two-dimensional problem will be discussed here. The 

extension of two-dimensional analysis to three-dimensional analysis is 

possible and is covered in many books which will not be repeated here. A 

problem is two-dimensional if the field quantities such as stress and 

displacement depend on only the two coordinates (x, y). In this sense, there 

are strictly no two-dimensional problems because every structure or 

loading system is three-dimensional in the real world. Many engineering 

problems can however be simplified approximately to a plane problem. 

Such approximation will greatly reduce the computational effort and can 

yield results satisfying practical requirements at the same time. Generally 

speaking, there are two kinds of elastic plane problems (Barber 2010): 

plane strain and plane stress, which will be introduced in the following 

subsections.  
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4.1.1. Plane Strain 

 

To illustrate the problem, Fig. (4.1) shows a section of a structure with its 

cross-section independent of its length, except for the body force. On the 

surface of the structure, there may be surface force or constraint. It should 

be noted that both the internal and external forces are parallel to the cross-

section and the values of them are invariable with the length normal to the 

section.  

      

O x

y
fx

 

Fig. (4.1). Cross-section of an infinite long structure with external force. 

 

Assume the length of the structure to be infinite, and consider any one of 

the cross-sections as the xy-plane, to which z-axis is perpendicular. All the 

field quantities (e.g., stress, strain, and displacement, etc.) depend only on 

the two coordinates (x, y). Additionally, any cross-section is a symmetrical 

surface so that any point in this surface will only have x-displacement and 

y-displacement (i.e., z-displacement is 0). For this condition, it follows that 

𝛾𝑧𝑥 = 𝛾𝑧𝑦 = 휀𝑧 = 0                            (4.1) 

In view of the stress-strain relations, we can deduce that 

𝜏𝑧𝑥 = 𝜏𝑥𝑧 = 0, 𝜏𝑧𝑦 = 𝜏𝑦𝑧 = 0, 𝛾𝑥𝑧 = 𝛾𝑦𝑧 = 0              (4.2) 

Therefore, all the shear strain components equal to 0 except those related 

to xy-plane (i.e., ε𝑥, ε𝑦 and γ𝑥𝑦). This two-dimensional state is known as 

the plane strain condition.  
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  CHAPTER 5 

Numerical Techniques for Solution of Stability 
Problems 

Abstract: Analytical solutions to most of the geotechnical problems are not available 

unless the geometry under consideration is highly simplified. For practical purposes, 

numerical method is indispensable. In this chapter, the numerical methods for some 

of the stability methods as discussed in previous chapters are elaborated. 

Keywords: Discretization, Limit analysis, Limit equilibrium, Optimisation, 

Work done. 

 

In the past few decades, great strides have been made in the computational 

methods of stability analysis. This chapter briefly discusses three main 

numerical-based methods for performing geotechnical stability analysis, 

namely:  

(a) limit equilibrium, 

(b) the displacement finite element method and 

(c) lower- and upper-bound finite element limit analysis 

 

5.1. LIMIT EQUILIBRIUM 
 

Generally speaking, limit equilibrium methods assume that failure occurs 

across a predefined slip surface. It is a commonly used method for stability 

analysis in geotechnical context due to its simplicity, but the method may 

also be inadequate to analyse complex failure mechanisms not well defined 

by a failure surface (for instance progressive creep, soil liquefaction and 

brittle fracture). Sloan (2013) summarizes some shortcomings of the limit 

equilibrium technique as follows: 
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(a) The resulting stresses do not satisfy equilibrium at every point in the 

domain. 

(b) There is no simple means of checking the accuracy of the solution. 

(c) It is hard to incorporate anisotropy and inhomogeneity. 

(d) It is difficult to generalise the procedure from two to three 

dimensions. 

 

One of the most common applications of the limit equilibrium method 

(LEM) in geotechnical engineering is for slope stability analysis. Several 

limit equilibrium methods have been developed for slope stability analysis 

and many are covered in standard geotechnical textbooks. These include the 

widely used ones: Bishop and Simplified Bishop method of slices (1955), 

Ordinary or Fellenius method of slices (1936), Spencer, Janbu (1973), and 

Morgenstern and Price (1965) methods. Broadly speaking, all limit 

equilibrium methods presuppose a failure surface and define the factor of 

safety, F, as the factor by which the shear strength of the soil would have to 

be factored down to bring the slope into a state of limiting equilibrium, that 

is to the limit of stability so that it is on the verge of failure. Thus, the factor 

of safety is given as, 

 

𝐹 =
shear strength of soil

shear stress at limiting equilibrium
=

𝜏ult

𝜏
                       (5.1) 

that is, 

𝜏 =
𝜏ult

𝐹
=

𝑐+𝜎𝑛tanϕ

𝐹
                                         (5.2) 

 

where c is the cohesion, ϕ is the internal friction angle and σn the normal 

stress. It is customary to apply a common “F” for both c and ϕ although it 

is not necessary the case. As the number of equations in limit equilibrium is 

less than the number of unknowns in slope analysis, the problem is in fact 

statically indeterminate. Various assumptions are then made in the various 

methods to render the problem determinate. Fellenius and Simplified Bishop 
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methods make assumptions regarding the horizontal or vertical force 

equilibrium, while Bishop, Spencer, Janbu, and Morgenstern and Price 

methods satisfy all conditions of equilibrium. 

 

As Duncan (1996) pointed out, the advent of computers has dramatically 

changed the computational approach for analysing slope stability. One of the 

most consequential changes is in respect of numerical optimisation 

techniques for determining the critical slip surface, as discussed below. 

 

5.1.1. Critical Slip Surface 

 

A fundamental part of slope stability analysis is to determine the slip surface 

that has the lowest, therefore the most critical, slip surface be it a circular or 

a non-circular surface. The trial slip surface is generally a pre-defined shape 

consisting of straight line segments or smooth curve or both. Search methods 

employing variational calculus (Baker and Gaber, 1978), dynamic 

programming (Baker, 1980), alternating variable methods (Celestino and 

Duncan, 1981), Monte Carlo technique (Greco, 1996) and genetic algorithm 

(Goh, 1999) are then used to identify the critical surface. The problem can 

be posed as illustrated in the following example (e.g. Sun et al., 2008; 

Malkawi, 2001). 

 

Fig. (5.1) shows a trial slip surface represented by n nodal points 

(𝑥1, 𝑦1), (𝑥2, 𝑦2),⋯ (𝑥𝑛, 𝑦𝑛) and n-1 segments. For sake of minimizing the 

number of variables, the nodal points are constrained to the same spacing 

along the abscissa so that, 

𝑥𝑖 − 𝑥𝑖−1 = Δ𝑥 =
1

(𝑛−1)
(𝑥𝑛 − 𝑥1)          𝑖 = 2,⋅⋅⋅, 𝑛 − 1     (5.3) 

and the coordinates of the nodal point 1 and n on the slip surface can also be 

defined using the surface profile 𝑦 = ℎ0(𝑥) (see Fig. 5.1), namely: 

𝑦1 = ℎ0(𝑥1);     𝑦𝑛 = ℎ0(𝑥𝑛)                             (5.4) 
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  CHAPTER 6 

Applications of Plasticity Theory and Limit 
Analysis to the Bearing Capacity of Shallow 
Foundations 

Abstract: In this chapter, the plasticity theory (slip line analysis) and limit analysis 

will be applied to the bearing capacity problems for illustration. Through these 

applications, the readers will be able to strengthen their understanding on the various 

types of stability analysis methods. 

Keywords: Axisymmetry, Bearing capacity, Footings/foundations, 

Geotechnical centrifuge modelling, Method of characteristics, Numerical 

modelling, Physical modelling, Plane strain, Plasticity, Sands, Shear 

strength, Silts, Stress analysis. 

 

6.1. OUTLINE 

 

The method of characteristics which has been introduced in chapter 3 is 

used to establish consistent factors for the vertical bearing capacity of 

circular and strip footings on soil which satisfies the linear (c, Ø) Mohr-

Coulomb strength criterion. This method of solution avoids the 

assumption of arbitrary slip surfaces, and failure zones are automatically 

generated within which equilibrium and plastic yield are simultaneously 

satisfied for the given boundary stresses. Although similar solutions 

have previously been published for circular footings, their application 

has been hindered by errors and confusions over terminology which are 

now resolved and is explained by the method of solution in this chapter. 

For bearing capacity problems, it is well-known that Terzaghi’s 
superposition of bearing capacity terms containing Nq, Nγ, and Nc is both 
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safe and sufficiently accurate for circular footings as well as for strip 

footings. The values to be adopted are tabulated as functions of Ø for 

ease of application. It is also found that the differences between the 

factors applicable to circular and strip footings far exceed the empirical 

shape factors commonly in use. Some new shape factors are suggested 

that can better represent the relationship between the limiting 

equilibrium of circular and strip foundations. Some current shape factors 

attempt to relate the axisymmetric (triaxial) and plane strain soil 

parameters. This approach cannot succeed, as the relationship between 

strength parameters depends also strongly on the relative density. The 

new bearing factors which are proposed facilitate a more rational 

approach in which the soil parameters appropriate to the geometry can 

first be determined and then used to find the appropriate bearing capacity 

factors. 

 

The solutions so far were based either on a straight (c, Ø) envelope or 

simply on a constant angle of shearing, Ø. For granular soils, sec Ø usually 

varies linearly with the logarithm of mean effective stress. A new method 

of calculation permits Ø to vary throughout the stress field as an arbitrary 

(or empirical) function of stress. This method is verified for both plane-

strain and axisymmetric conditions by forcing a variation in sec Ø 

equivalent to generating a constant-cohesion envelope, for which solutions 

already exist. The variable- Ø analysis is used to demonstrate the highly 

significant effect of stress variation around and beneath a footing. Finally, 

it is shown that an equivalent constant value Øm can be derived empirically, 

using the new solutions to identify an equivalent mean effective stress pm. 

However, only the variable- Ø solution can simultaneously capture the 

bearing capacity and the geometry of the bearing mechanism.  

 

This approach is validated here for the case of model circular footings on 

dense beds of silica sand and silica silt. The models were tested at 1 g with 

surcharge to explore the Nq behaviour, and in a centrifuge to determine self-
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weight effects for Nγ. It is shown that triaxial Ø values expressed as a 

function of the logarithm of p can be used to predict model bearing 

capacities within a deviation in Ø of 2°. 

 

It should be noted that part of this chapter has previously been published in 

Canadian Geotechnical Journal, 1993, 30(6): Geotechnique, 2011, 61(8): 

627-638 and Geotechnique, 2011, 61(8): 634-650. 

 

6.2. INTRODUCTION 

 

The derivation of bearing capacity for foundations for frictional soil 

requires the relation between the strength parameters and the effective 

stresses, and then on the use of bearing capacity factors. This chapter will 

establish the approach of modelling the strength envelope by a simple 

constant- Ø relation; which is later expanded into a more general        

(c, Ø) envelope. The objective is to derive the corresponding estimates of 

the bearing capacity factors in both plane and axisymmetric load cases 

under a more realistic formulation.  

 

The method of characteristics proposed by Sokolovskii (1960) is used here. 

This method assumes that limiting stresses have been reached at every point 

inside the solution domain, and the plastic equilibrium is determined with 

the applied load. The requirement of a trial slip surface as adopted in the 

limit equilibrium analysis by Terzaghi (1943) and Meyerhof (1951) can 

then be avoided. There are various doubts regarding the method of 

characteristics which include: 

 

(i) The difficulty in the assigning boundary conditions, particularly 

where the mobilisation of the tangential friction should be such as 

to oppose the relative motion and when the kinematics of plastic 

soil strain is itself uncertain.  

(ii) The difficulty in accepting the assertion that certain zones (e.g. in 
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