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PREFACE

This book covers a variety of aspects of design, analysis, and manufacturing of aerospace
structures  and  materials,  which  include  design/failure  criteria  for  aerospace  structures,
materials selection, manufacturing methods, engineering design and analysis of structural
assemblies and components, concurrent engineering, and interdisciplinary design technology.

Challenges that current aerospace engineers are faced with are as follows. First, they must
understand the new and existing materials and the level of engineering already applied in their
creation. Second, they need to develop a working design by combining material behavior and
structural function to meet all the design requirements. Third, an optimum design has to be
conducted based on the original working design to address manufacturability and economical
constraints. Finally, the durability and longevity of the final structure should be continually
assessed.

This book equips aerospace engineers with the necessary knowledge and practical skills to
tackle these challenges in an industrial  or  R&D environment.  Readers of this  book will
acquire  knowledge of  a  broad range of  the entire  process  in  the context  of  the design,
manufacturing, and analysis of aerospace structures and components. The readers will also be
exposed  to  advanced  research  and  development  in  fields  directly  relevant  to  aerospace
engineering, which will improve our capability to design the next generation of aerospace
structures and materials.

Interesting topics that will be demonstrated through this book include: structural dynamics
and impact simulation, acoustic and vibration testing and analysis, fatigue analysis and life
optimization,  reversing  design  methodology,  non-destructive  evaluation,  remotely  piloted
helicopter,  surface  enhancement  of  aerospace  alloys,  manufacturing  of  metal  matrix
composites, aerospace applications of carbon nanotubes, carbon fiber reinforcements, variable
stiffness  composites,  aircraft  material  selection,  etc.  Furthermore,  besides  aerospace
engineering, the topics included in this book also impact a broad variety of engineering areas
such  as  mechanical  engineering,  materials  engineering  and  science,  civil  engineering,
automotive engineering, computer engineering and science, etc.

The book is intended to serve as a reference for researchers, engineers, engineering faculty, as
well as graduate students. Finally, the editor would like to extend cordial appreciation to all
contributors for their great support and invaluable contributions.

Yucheng Liu
Department of Mechanical Engineering

Mississippi State University
MS 39762, USA
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  CHAPTER 1 

Analysis of Linear/Non-Linear Aeroelastic 
Response of Supersonic Thick Fins 

R.D. Firouz-Abadi
*
, S.M. Alavi, M. Rahmanian and H. Haddadpour 

Department of Aerospace Engineering, Sharif University of Technology, 

Tehran, P.O.Box 11115-8639, Iran 

Abstract: This study introduces an aeroelastic model for the linear/non-linear 

analysis of thick fins in supersonic or hypersonic regimes. In the first step a linear 

aeroelastic model for the analysis of thick fins is developed. To this aim, a thick fin 

with two degrees of freedom (2 DOF) as well as an elastic double-wedged fin in 

supersonic/hypersonic flight regimes are considered. An unsteady aerodynamic 

model is developed based on the shock/expansion theory by local aspplication of 

the piston theory over the flat surfaces of the fin. The structural model is also 

obtained based on the Lagrangian approach. Employing such developed model, the 

effects of initial angle of attack, thickness and some other geometrical parameters 

on the aeroelastic stability boundaries and unsteady aerodynamic loads are studied. 

In the next step, a more sophisticated model describing the non-linear aeroelastic 

behavior of fins with 3 DOF and free-plays in flapping, plunging and pitching 

motions is investigated. To this aim, governing equation are obtained by a 

modification of the linear model and effects of several geometrical parameters (e.g. 

thickness, initial angle of attack, hinge frictional torque etc.) on the aeroelastic 

behavior of fins are assessed1. 

*Corresponding author R.D. Firouz-abadi: Department of Aerospace Engineering, Sharif University of 
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Keywords: Aeroelasticity, Free-play, Local piston theory, Shock and 

expansion analysis, Thick supersonic fin. 

 

NOMENCLATURE 

Cα, Cβ, Ch Structural damping. 

C
α
 Aerodynamic damping matrix. 

Cs Structural damping matrix. 

D Rayleigh dissipation function. 

e Elastic displacement vector. 

𝐞̅ Natural mode shapes of the elastic displacements. 

f Generalized forces. 

h Plunging displacement. 

𝐼x̅x, 𝐼x̅z, 𝐼z̅z Mass moment of inertia 

Kα, Kβ, K h Spring Stiffness. 

K
α
 Aerodynamic stiffness matrix. 

KE Kinetic energy. 

Ks Structural stiffness matrix. 

Lα Lift. 

m Fin mass. 

M Mach number. 

Mα Flapping moment. 

Ms Structural mass matrix. 

n Outward unit normal of the undeformed surface. 

p Pressure. 

P Potential energy. 

q ith generalized coordinate. 

Qi ith generalized forces. 
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Sα, Sβ Static mass moment of the fin about the elastic axis. 

T Temperature. 

Tα Pitching moment. 

u Flow velocity. 

v Unit direction vector of the air velocity. 

w Displacements along the normal vector of each surface. 

x  Vector of dynamic states.  

𝑥̅,𝑧̅ Position of the center of gravity related to elastic axis. 

α Pitch angle. 

β Flap angle. 

αf, βf, hf Free-plays of the corresponding degrees of freedom. 

γ Specific heat ratio. 

ν Prandtl-Meyer function. 

θ Elastic rotation vector. 

 
Natural mode shapes of the elastic rotations. 

ρ Density. 

 Natural frequency. 

 

Oblique wave angle. 

 

Generalized modal coordinates. 

 

INTRODUCTION 

 

Commonly, an aeroelastic problem has two types of modeling including 

aerodynamic loads and structural response calculation. Combination of 

these two types of modeling yields a coupled fluid-structure system which 

may be unstable in some flight conditions. In the present chapter, 

aeroelastic response of fins in supersonic/hypersonic flow is aimed. This 

matter leads to centralize on the unsteady aerodynamic loading models in 

supersonic/hypersonic regimes. One of the most applied unsteady 

θ 

ω 

ψ 

ξ 
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  CHAPTER 2 

An Analytical and Experimental Investigation 
into Vibratory Force for Aircraft Wings 

Xueguang Bi and Yucheng Liu* 

Department of Mechanical Engineering, Mississippi State University, MS 

39762, USA 

Abstract: This paper focus on the assessment of aerodynamic forces applied on an 

aircraft. First, numerical analysis is performed on a simplified linear 

two-degree-of-freedom (2DOF) airfoil system model. Methods of aerodynamic 

force determination are established at different airspeed conditions and the 

calculated dynamic forces correlated well to the actual forces. Next, a finite 

element model of the airfoil is developed to represent its structural dynamics, and 

the established force determination methods are applied to determine the 

aerodynamic forces acting on such model. After that, a physical downsizing model 

of the airfoil is manufactured and its natural frequencies, damping ratios, and mode 

shapes are calculated and compared to those obtained from the analytical models. 

Vibration experiments are also conducted to measure the physical model’s 

structural response in the wind tunnel, and its aerodynamic forces are calculated 

based on the data recorded by the attached accelerometers. 

Keywords: Aircraft wing model, Experimental measurement, Force 
determination methods, Frequency response function, Multiple-degree-of- 
freedom system, Vibratory force and moment. 
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INTRODUCTION 

During flight, aircraft wings always present varying structural responses 
because subject to varying aerodynamic loadings. The applied 
aerodynamic loadings and the aircraft wing’s structural responses are 
coupled together to create a complicated vibration effect known as 
structural coupling dynamics. This effect can reduce the service life of the 
aircraft significantly. Sometimes, sustained vibration at natural 
frequencies of airfoils may lead to catastrophic structural failure. 
 
Structural coupling dynamics, first developed in the early 1920’s, has 
become an important concern in design of aircrafts. To date, a number of 
researchers have dedicated tremendous effort and time to lighten the 
materials of aircrafts so as to obtain an effective loading capacity. 
However, as the aircraft speed keeps on increasing, the structural 
flexibility of the aircrafts receives more design concerns because it may 
cause serious flutter in the airfoil and other aircraft components.  

Considering a typical cross-sectional plane of an airfoil, the gravity center 
G is located at the 42% ~ 45% of the chord line, and the elasticity center 
is located at the 38% ~ 40% of the chord line. Therefore, the gravity 
center is not coincident with the elastic center, which results in a coupling 
effect between the translational and rotational degree-of-freedom of the 
wing. This coupling effect and the structure – air coupling effect make it 
difficult to solve the aerodynamic force of aircraft wings. 

The aerodynamic forces, which are extremely difficult to obtain from a 
flying aircraft, can usually be measured from experimental simulations. 
As a direct, effective, and easy-to-use approach in the aerodynamic study, 
experimental methods have been extensively employed to simulate the 
aircraft’s flying condition, so as to measure the aerodynamic forces and 
the structural responses. 

In this chapter, methods are developed for determining the aerodynamic 
forces acting on the aircraft wings during flight. The methods are initially 
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developed for a 2DOF linear system, and then extended for a MDOF 
system developed as a finite element model. Wind tunnel test is then 
conducted to obtain the physical dynamic parameters. The finite element 
model and the force determination method are then validated by 
comparing the analytical results with the experimental results. 

 

 

Fig. (1). The schematic diagram for the centers of an airfoil. 

LITERATURE REVIEW 

Dynamic response of aircraft model during flight has received a lot of 
interests, and a number of analytical and experimental methods have been 
developed about the simulating and analyzing the aircraft structures. The 
literature search focus on two areas: the analytical study of airfoil system 
and the experimental study of that system. 

Analytical Study 

Yosibash and Kirby [1] constructed a high order simulation model of 
fluid-structure for the airfoil under flying conditions. The authors utilized 
spectral/hp solver for fluid (air) and hp-FEM solver for the airfoil to 
handle the coupling problem generated by aerodynamic and structure 
interaction. The two solvers somehow can minimize the modeling errors 
and the discretization errors. The ongoing verification and validation of 
fluid-structure interaction are also presented. In their study the airfoil was 
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  CHAPTER 3 

Computational and Analytical Investigation of 
Lateral Impact Behavior of Pressurized 
Pipelines 

Yangqing Dou
*
 and Yucheng Liu 

Department of Mechanical Engineering, Mississippi State University, MS 

39762, USA 

Abstract: This chapter provides a combined computational and analytical study to 

investigate the lateral impact behavior of pressurized pipelines and inspect effects of 

important parameters such as the outside diameter and internal pressure on such 

behavior. A total of more than 300 numerical simulations are carried out on mild 

steel pipe models with different internal pressure levels and were struck at the mid-span 

and at the one quarter span positions. These numerical simulations of the impact 

tests are performed using 3D dynamic nonlinear finite element analysis (FEA) 

through LS-DYNA, where both geometrical and material nonlinearities are 

considered. The computational results for the first time systematically reveal the 

effects of internal pressure, impact position, and outside diameter on the lateral 

impact behavior of the pipeline models. Quartic polynomial functions are applied to 

formulate the maximum crushing force (Fmax), maximum permanent displacement 

(Wf), and absorbed energy (Ep) of the pressurized pipelines during the impact 

problem. The effects of the diameter and pressure on F, W, and E are therefore 

illustrated through analyzing those functions. Response surfaces are also plotted 

based on the generated quartic polynomial functions and the quality (accuracy) of 

*Corresponding author Yangqing Dou: Department of Mechanical Engineering, Mississippi State University, 

MS, 39762, USA; Tel: 337-704-8410; E-mail: yd120@msstate.edu. 
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those functions are verified through several techniques. The outcomes of this study 

have potential benefits on research of safety and reliability of pressurized pipelines 

in hydraulic system of aerospace and development of advanced pipeline materials. 

Keywords: Collapse mechanism, Computer modeling and simulation, 

Lateral impact, LS-DYNA, Pressurized pipeline. 

NOMENCLATURE 

2L Distance between two supports of a pipeline 

D Outside diameter of a pipeline 

σy Static uniaxial yield stress of pipe 

σu Static ultimate tensile stress of pipe 

εr Static uniaxial rupture strain of pipe 

p Internal pressure 

Wf The maximum permanent transverse displacement 

Wl The local permanent transverse displacement 

Wg The global permanent transverse displacement 

Fmax Maximum impact force 

Fm Average impact force 

vi Initial velocity of indenter 

vr Rebound velocity of indenter 

Ep Absorbed impact energy  

Ef      Threshold failure energy 

 

INTRODUCTION 

 

Dynamic responses and failure modes of pipelines subjected to 

low-velocity lateral impact were studied and described by Jones and other 

researchers [1-9] through a series of experimental and theoretical analyses. 

In Jones’ work [1-3, 9], pipelines with different sizes were fully clamped 

at both ends and a rigid indenter struck transversely at the pipe center, 

quarter span and near to the support at velocities ranging up to 14 m/s. 
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Important experimental results (deformation mode, maximum permanent 

transverse displacement, threshold failure energy, etc.) were observed and 

associated with size of the pipelines, initial kinetic energy of the indenter, 

its impact velocity, and its impact position. In addition, properties of 

material of the pipelines were also considered and the influences of 

material strain hardening, strain rate sensitivity, and elasticity on the 

impact behavior of the pipelines were included in their analytical models. 

Pressurized pipelines were also tested in Jones’ and Ng’s work [8, 9] but 
the influence of internal pressure on the impact behavior of the pipelines 

has not been explicitly demonstrated. In reality, the internal pressure is a 

critical factor in the design and assessment of pipelines because in civil 

applications such as aerospace hydraulic systems, most pipelines convey 

gases and liquids under high pressures over long distances.  

In this study, the dynamic inelastic behavior of clamped thin-walled pipes 

with internal pressure impacted transversely by a rigid, knife-edge 

indenter at the pipe center and quarter span is modeled and examined 

computationally through more than 300 simulations. The obtained 

numerical results are validated by comparing to several previously 

published experimental data. Effects of internal pressure on the lateral 

impact response of the pipelines as well as influences of other impact 

conditions such as dimensions of the pipelines and impact location are 

revealed from those simulation results. An explicit FEA solver, LS-DYNA 

is employed to create the FEA models and run the numerical analyses.  

After the computational analysis, numerical methods are employed to 

establish analytical models to numerically show how the impact 

parameters (internal pressure and outside diameter) affect the impact 

response of the pipelines during low-speed lateral impact. This study 

mainly focuses on finding the effects of internal pressure and outside 

diameter on the pipeline’s impact force, deformation, and energy 
absorption capacity. 
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  CHAPTER 4 

Effect of Bondline Thickness on the Traction- 
separation Laws of Adhesively Bonded Joint 

Gefu Ji
1
, Zhenyu Ouyang

1
 and Guoqiang Li

1,2,*
 

1
Department of Mechanical & Industrial Engineering, Louisiana State 

University, Baton Rouge, LA 70803, USA 
2
Department of Mechanical Engineering, Southern University, Baton 

Rouge, LA 70813, USA 

Abstract: A number of existing and emerging industrial applications are dependent 

on layered substrates through adhesive bonding. The interfacial fracture of 

adhesively bonded structures is a critical issue for their extensive applications to a 

variety of modern industries. In the recent two decades, cohesive zone models 

(CZMs) have been receiving intensive attentions for fracture problems in adhesively 

bonded joints due to its fairly simple and accurate predictive ability. In CZMs the 

nonlinear interfacial fracture behaviors are described by the traction-separation laws 

(also referred to as cohesive laws). The cohesive laws represent the local constitutive 

behavior, instead of the global parameter, such as toughness. While numerous global 

tests have been conducted to measure the interfacial toughness of adhesive joints, 

limited local tests have been conducted to determine the interfacial traction- 

separation laws or interfacial cohesive laws. Among the limited local tests in some 

recent experimental studies, very few studies have considered the effects of adhesive 

thickness on the local interfacial traction-separation laws. In the present work, within 

*Corresponding author Guoqiang Li: Department of Mechanical & Industrial Engineering, Louisiana State 

University, Baton Rouge, LA 70803, USA; Department of Mechanical Engineering, Southern University, Baton 
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the framework of nonlinear fracture mechanics, comprehensive experimental 

studies are conducted to investigate the effect of adhesive layer thickness on the 

local nonlinear interfacial behaviors. The fracture tests of adhesive joints with 

various adhesive layer thicknesses were conducted under different fracture modes: 

pure Mode-I (peel fracture), pure Mode-II (shear fracture), and mixed Mode I/II. 

The experimentally determined interfacial traction-separation laws provide 

valuable baseline data for parameter calibrations in numerical models. The current 

experimental results may also facilitate the understanding of adhesive thickness 

dependent interface fracture of bonded joints. 

Keywords: Adhesive thickness, Bonded joints, Cohesive law, Cohesive 

strength, Cohesive zone model, Interfacial strength, Plastic zone, 

Toughness. 

INTRODUCTION 

 

Background 

 

Adhesive Bonding Technology 
 
The most primitive form of adhesive bonding technology can be traced 

back to 200,000 BC when hominins in central Italy glued spear stone flakes 

to a wood with birch-bark-tar [1]. Today adhesive bonding technology has 

been used in a wide variety of modern industries, such as automotive, 

aerospace, marine, construction, and military. Many components and 

structures, from microchips to large aircrafts, are made of materials 

arranged in layers through adhesive bonding [2]. 

The strength of attachment, or adhesion, between an adhesive and its 

substrate depends on the mechanisms of adhesion and the surface area 

over which the two materials contact. The mechanisms of adhesion can be 

categorized as mechanical, chemical, dispersive, electrostatic, or diffusive. 

Mechanical adhesion occurs when adhesive materials fill the voids or 

pores of the surfaces and the surfaces are held together by interlocking; 
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chemical adhesion is developed when the two materials form a compound 

at the joint; dispersive adhesion is realized through the attraction between 

two molecules with regions of slight positive and negative charge (i.e., 

van der Waals forces); electrostatic adhesion happens when some 

conducting materials pass electrons to form a difference in electrical 

charge at the joint; finally, diffusive adhesion is realized when the 

molecules of both materials are mobile and soluble in each other and 

merge at the joint by diffusion [3]. 

 

Three Basic Modes of Fracture  

Failure of the adhesive joint imposes a major threat to the reliability of 

adhesively bonded structures. There are three basic modes of fracture, 

which are opening (mode I), shear (mode II), and tearing (mode III), as 

shown in Fig. (1.1). A fracture is considered as Mode I when the tensile 

stress is normal to the plane of the crack. When the shear stress acts 

parallel to the plane of the crack and perpendicular to the crack front, the 

fracture is considered Mode II. Mode III is characterized by a shear stress 

acting parallel to the plane of the crack and parallel to the crack font. In 

reality, however, all three modes occur simultaneously. In other words, it 

is a mixed mode.  

 

Fig. (1.1). Three basic fracture modes [4]. 
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  CHAPTER 5 

Optimization of Geometric Parameters and 
Reversing Design Methodology of Investment   

Yangqing Dou
*
, Yangliu Dou, Kun Bu and Yiwei Dong 

Department of Mechanical Engineering, Mississippi State University, MS 

39762, USA 

Abstract: With the continual development of the aircraft industry, aircraft engines 

have provoked people’s attention more and more. The turbine blade plays a vital and 
critical component of aircraft engines. In order to conform to the dimensional 

tolerances of wax pattern die-profile for turbine blade in investment casting process, 

this chapter provides an optimization method of geometric parameter for turbine 

blades based on inverse adjustment. The geometric parameters for optimizing were 

extracted, and the bending and torsional deformation can be compensation. 

Therefore the nonlinear deformation compensation during solidification and cooling 

procedure can be efficiently realized. This method set the theoretical foundation on 

optimization method of die-cavity for turbine blade. The die-profile optimization 

system which was developed in this paper proves better effect for the die-cavity 

design. This chapter also offers a reverse design methodology for investment die 

casting using ProCAST. In industry, the performance of the engine depends not only 

on shape, but also on the dimensions of the components. This process is difficult as 

super-alloy blade material cannot be easily machined. However investment casting 

is an ideal process for such net - shape components, but it still requires an accurate 

determination of the casting-die profile. In order to investigate and analyze the 

methods that affect the shape and dimensions of the turbine blade most, similar 
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simulations have been conducted by ProCAST. By combining the methods of 

simplifying grid files and quick sorting, the efficiency of sorting and matching can 

be largely improved. Furthermore, the mold die cavity anti-deformation system can 

be easily built by utilizing that reverse design methodology. The optimized die 

profile for investment casting can be established with ProCAST. 

Keywords: Die Cavity, Geometric Parameter, Inverse Deformation, 

Investment Casting Die, Node Matching, Numerical Simulation, 

ProCAST, Reversing design methodology, Turbine Blade. 

NOMENCLATURE 

P  The initial shape before deformation 

Q  The shape after deformation 

R  The shape after reverse deformation operation 

D(x, y, z) Objective function 

P(x, y, z)  The shape function of turbine blade before investment 

   casting 

Q(x, y, z) The shape function of blade after casting process 

W(x, y, z) Displacement field function (deformation function) of the 

   each  node (x,y,z) in the FEM model 

D    The CAD leaf coordinates of i
th

 node 

∆Max   The threshold for maximum error 

Q   The simulated surface coordinate of i
th

 node 

n   The total number of surface nodes. 

M   Shape form error  

X   Average form error of width direction 

Y   Average form error of thickness direction 

Z  Average form error of length direction 
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INTRODUCTION 

Investment casting, or traditionally called lost wax casting process, is to 

make precise metal product without further machining by pouring the 

liquid metal into a pre-shaped mold. This process simplifies production 

by casting a single complex-shaped piece instead of manufacturing a 

product that requires assembling several pieces together [1]. It is well 

known that investment casting is used routinely for fabricating 

single-crystal nickel super-alloy turbine blades. The turbine blades are 

usually of complex geometries with intricate channels, which allow air to 

flow within and along the blades during operation [2-3]. 

A conventional investment casting procedure includes: A. preparing wax 

patterns by injecting wax into previously designed dies; B. making 

ceramic shells covering the wax patterns; and C. the alloys are cast into 

the de-waxed shell molds. It is obvious that the shape of the casting 

significantly depends on the cavity geometry of the metal die. Due to the 

shrinkage of the wax and solidification of the alloy material, the size of 

the component produced by the investment casting process is smaller than 

that of the die cavity. Although the volume changes in the solidification 

process are simple in nature, the complex geometry of the turbine blade 

makes closed-form solutions for the shrinkage almost intractable. 

Therefore, in order to ensure the dimensional tolerance, the geometrical 

accuracy and the surface roughness, the design of the die profile for 

turbine blade needs to consider the compensation of the shrinkages and 

thermal distortion during solidification [4]. 

Due to the complex, time-consuming and expensive process of 

investment casting, traditional methods for designing die profile assumes 

constant shrinkage rate [5]. However, the complex shape and structure 

causes uneven heat dissipation during cooling, and thus the non-linear and 

non-uniform shrinkage distribution. Further considerations have to be 

given to the shrinkage of wax pattern during preparation; ceramic shell 
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Abstract: This chapter discusses the structural analysis aspects of aerospace 

structures focusing on vibration induced fatigue. Metal Fatigue of dynamically 

loaded structures is a very common phenomenon in engineering practice. Several 

aerospace structures are used in environments where they experience dynamic 

loading. Furthermore, when the loading is dynamic, the response of the structure is 

affected by the structural resonances. Thus, the structural response to the loading will 

amplify at the regions of resonance. As a case study, an antenna (12-59 V/UHF) 

integration process on helicopter is investigated where the importance of the dynamic 

response is highlighted. Flight tests and finite element analyses (FEA) are carried out 

to ensure the safety of the integration process. Furthermore, another important aspect 

of the structural analysis of aerospace structures is the testing strategy. In this study, 

the fatigue tests performed by uni-axial tests which is a procedure defined in military 

standards are compared to multi axial testing. The results are shown for a helicopter 

Chaff/Flare Dispenser Bracket. The military standards assume that cumulatively uni- 

axial testing has equal multi axial testing fatigue damage. In this study, the uni-axial 
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fatigue tests were compared to multi axial fatigue tests which were performed by 

FEA simulations. Furthermore, the effects of various loading conditions and 

geometries were investigated. The study showed that the assumption of multi axial 

testing can be represented by uni-axial testing does not hold for various cases. 

Keywords: Computer modeling and simulation, Multi-axial testing, 

Uni-axial fatigue testing error, Vibration induced fatigue. 

INTRODUCTION 

Mechanical structures usually work in a dynamic loading environment 

and most of the time the loading is repeating itself in time. This repetitive 

loading doesn’t have to be above the yield stress of the structure for 
failure. Repetitively loading the structure will ultimately cause failure. 
 
This phenomenon is called as Fatigue Failure. Typically, fatigue failure 

starts at the highest stress zones by forming cracks and then propagates 

under cyclic loading, where the stress state can be still under the yield 

point of the material. When a limit is reached for the number of cycles of 

loading the component fails at a fatigue failure surface. Unfortunately, 

most of the time fatigue failures cannot be detected until catastrophic 

accidents occur. In the past, many accidents due to the fatigue failures in 

metals have occurred. Fig. (1) shows some of them. 

Furthermore, according to the survey [3] for helicopter component fatigue 

failures, these failures are approximately 55% of all premature failures in 

helicopter components as shown in Table 1. 

This chapter will consist of two case studies which will focus on different 

analysis and testing aspects of aerospace structures. The first section will 

investigate an antenna integration process including flight tests and stress 

analysis where the structure will not require fatigue analysis [4]. The 

antenna is part of the MXF-484 V/UHF transmitter, which is used to 

safely communicate without any enemy interference. Fig. (2) shows the 

integration area on the helicopter. 
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(a)                                   (b) 

  

(c)                                   (d) 

Fig. (1). (a) Comet fuselage failure (b) Stress concentrations at window corners [1] (c) Aloha 

Airlines Boeing 737 fuselage failure due to multiple cracks at rivet holes (d) Crack growth on 

fuselage [2]. 

 

(a)     (b) 

Fig. (2). (a) Antenna location on helicopter, (b) Measurement locations when antenna is not 

installed. 
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   CHAPTER 7 

Fatigue Life Optimization of Laser Peened 
Aircraft Components 

Anoop Vasu
*
 and Ramana V. Grandhi 
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Abstract: Surface treatments, such as laser peening, can increase the life of the 

component by generating compressive residual stresses on the surface. Laser peening 

of an already peened component, termed as re-peening, can further increase the 

fatigue life of the component. Re-peening has several applications in the aerospace 

industry. The huge population of ageing aircraft components is one such application, 

which can benefit significantly from the re-peening process. However, this process 

is not optimized for maximum fatigue life due to the presence of many design 

variables and the complex nature of the problem which requires a large number of 

experimental testing to reach conclusions. Therefore, a computationally efficient 

optimization strategy needs to be developed to conduct large-scale laser peening 

simulations for problems related to fatigue life, such as aircraft lug failure, a problem 

that requires consideration of component curvature and residual stress relaxation 

effects. Deciding the time to peen an already peened component (re-peening time) is 

another variable which makes the problem further complicated. The ultimate goal of 

this research is to construct the framework to predict the optimum parameters for 

maximum fatigue life on structural components.  A two-step optimization strategy 

is adopted for the fatigue life optimization of an aircraft lug component. The strategy 

*Corresponding author Anoop Vasu: Department of Mechanical and Materials Engineering, Wright State 

University, Dayton, OH 45435, USA; Tel/Fax: 937-775-5040; E-mail: anoop1984@gmail.com. 



Fatigue Life Optimization                              Frontiers in Aerospace Science, Vol. 1  303 

employs laser peening process parameters, residual stress relaxation, and 

re-peening schedule as design variables. 

Keywords: Fatigue life optimization, Laser peening, Re-peening, 

Residual stress relaxation. 

NOMENCLATURE 

R Relaxation coefficient 

N Number of load cycles 

σa Alternating stress 

σm initial mean stress 

σ1 Mean stress after one cycle 

σy Material yield strength 

σu Ultimate strength 

σr Residual stress 

σNf Fatigue strength 

Nf Number of cycles to failure 

D Cumulative damage 

P Peak pressure of laser pulse 

O Percentage overlaps of sequential laser spots 

t Mid-span duration of laser pulse 

σCRS Compressive residual stress 

σTRS Tensile residual stress 

 

INTRODUCTION 

The potential reason for fatigue failure on structural components is the 

generation of tensile stresses on component surface. These surface regions 

become the hot spot to initiate cracks. Generation of compressive residual 

stresses can inhibit or delay the crack initiation and growth. Surface 

enhancement techniques can generate compressive residual stresses and 

hence play an important role in improving the life of the peened 
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components [1]. Shot peening is the most commonly used mechanical 

surface treatment method. Other widely applied methods in the industry 

are low plasticity burnishing, water jet peening, laser peening, roller 

burnishing, ultrasonic peening, peen forming, cavity peening, etc. Laser 

peening generates deeper compressive stresses compared to other surface 

treatments like shot peening, making it appealing to the industry. Fig. (1) 

shows the fatigue effect of the material Al 7075-T7351 treated by laser 

peening with comparison to unpeened and shot peened materials (bending 

tests, stress ratio=0.1) [2]. This shows that laser peened material has an 

improved fatigue life. 

 

Fig. (1). Fatigue life comparison for Al 7075-T7351. 

A pictorial representation of a typical laser peening method is shown in 

Fig. (2). The target material is typically coated with an ablative overlay 

and confined by a transparent overlay. When the laser pulse impacts the 

material, the absorbent material vaporizes and creates plasma. This 
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  CHAPTER 8 

Prediction of Residual Stress Relaxation in 
Ti-6Al-4V subjected to Laser Peening 
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Abstract: Laser peening is an advanced surface enhanced method which induces 

compressive residual stress on the critical regions of components prone to fatigue 

failure. However, the residual stresses relax under the fatigue loading conditions. 

Constitutive models have to be robust enough to predict the residual stress 

relaxation mechanism. Although tensile cold working increases the tensile yield 

strength, the compressive yield strength is reduced. As a result of this, a lower 

compressive load can relax the initial compressive residual stress. This 

phenomenon, termed as Bauschinger Effect, can be represented by an analytical 

stress-strain model to predict the relaxation effects based on the cold working of 

the material. Three dimensional finite element (FE) models are created to represent 

residual stress relaxation in a low cycle fatigue regime for Ti-6Al-4V material. The 

creation of the numerical model for simulating stress relaxation model involves 

two phases. The first phase is modeling the stress gradient effect which relates to 

the effect of cold working. This process utilizes a laser peening simulation model. 

The second phase is modeling the stress-strain response of the material by creating 

a mixed hardening model. 

Keywords: Finite element analysis, Laser peening, Low cycle fatigue,  
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Mixed hardening, Residual stress relaxation, Surface enhancement 

technique. 

NOMENCLATURE 

HEL Hugoniot elastic limit 

dyn

y
  Dynamic yield stress 

v Poissons ratio 

σvm Equivalent von mises stress 

A Yield stress 

B Strain hardening coefficient 

n Strain hardening exponent 

C Strain rate sensitivity constant 

εp Equivalent plastic strain 
*

  Dimensionless strain rate 

  Strain rate from high strain rate experiments 

0
  Reference strain rate 

dp Heat penetration depth 

D Heat diffusion coefficient 

  Laser pulse width 

C1 Kinematic hardening modulus 

σij stress tensor 

αij Backstress tensor 

σ0 Equivalent stress defining size of yield surface 

p
  Equivalent plastic strain rate 

γ Material constant from cyclic test data 

p

ij
  Rate of plastic flow 

R Stress ratio 
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INTRODUCTION 

How to prevent failure in materials has been a great research interest all 

over the world for centuries. It has been found out that cyclic loading is a 

major cause of failure in many situations. There can be other contributing 

factors, such as manufacturing defects and the presence of unfavorable 

residual stresses. But residual stresses can also play a positive role and 

can enhance the life of the component, if applied properly. There exist 

methods named Surface enhancement techniques (SET), which can 

induce favorable residual stresses (mechanical SET) on surface regions of 

peened components to improve the fatigue life of the component [1]. Fig. 

(1) depicts a pictorial representation of the impact of SET on fatigue life. 

 

 
Fig. (1). Extended fatigue life in peened components. 

 

Fig. (2) shows the mechanism behind the mechanical surface 

enhancement methods. When the material is peened under loading, the 

surface region in contact would be plastically deformed. The surrounding 
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Abstract: The aerospace industry has utilized high strength aluminum alloys to 

propel the production and manufacturing of advanced aerospace technology; 

however, welding of Aluminum and its constituent alloys introduce challenges which 

affect the structural integrity of the welded area if conducted indecorously. For this 

reason, Non-destructive Evaluation (NDE) of welded areas is conducted to ascertain 

defective regions to ensure structural integrity of the aerospace structure. NDE 

techniques are noninvasive and can determine whether the object contains 

irregularities, discontinuities, or flaws. Inspecting weld areas allows for cost 

reduction by detecting discontinuities in the early stages of manufacturing; 

consequently, reducing the time and money to rework the error and allows for the 

validation of sound welds. A variety of NDE techniques are available depending on 

the applications, each with its own advantages and disadvantages. Among the 

number of NDE techniques, radiography and ultrasonics are the most widely utilized 

for inspection of weld defects. In this study, a detailed analysis was thereby 

conducted to ascertain the critical phased array ultrasonic testing (PAUT) parameters 

for the detection of weld defects, more specifically with Friction-Stir-Welding (FSW). 

Consequently a comparison to X-ray radiography is also included. It was observed  

*Corresponding author Muhammad A. Wahab: Department of Mechanical and Industrial Engineering, 

Louisiana State University, Baton Rouge, LA 70803, USA; Tel/Fax: (1) 225 578 5823/(1) 225 578-5924; 

E-mail: wahab@me.lsu.edu. 



Non-Destructive Evaluation (NDE)                       Frontiers in Aerospace Science, Vol. 1  355 

that both techniques produced similar detection results for defects in the range of 

1.0mm; however, it was found that PAUT was the only technique able to discover 

defects in the range of 0.15 mm. 

Keywords: Non-destructive evaluations, Phased array ultrasonic testing, 

Radiographic testing, Welding, Welding defects. 

INTRODUCTION 

Welding is an essential manufacturing process performed in almost every 

major industry; however, in many welding techniques flaws or defects are 

quite common in the welded joints. These defects can be found in the 

form of surface or sub-surface cracks, undercut, porosity, or inclusions 

[1-3]; and consequently, failure can occur from these flaws [4]. An 

important decision must be made regarding severity of these weld defects 

and their effect on the strength; therefore, weld quality and integrity are 

critical to safety in an extremely wide range of products and structures, 

especially in the aerospace industry. To ensure sound welds have been 

forged, Non-destructive Evaluation (NDE) techniques can be employed to 

determine if defects have formed [5]. Different NDE methods can identify 

cracking, porosity, incomplete penetration, misalignment, inclusions, and 

lack of fusion which all can compromise weld strength and eventually 

structural integrity under dynamic loading conditions. 

 

NDE techniques are utilized in a multitude of scenarios including: 

Determination whether an object is acceptable after each fabrication step 

(in-process inspection), determining whether an object is acceptable for 

final use (Final inspection), and lastly, determining whether an existing 

object already in use is acceptable for continued uses (in-service 

inspection). To summarize, NDE is applied to find welding defects as well 

as quality assurance/quality control (QA/QC) of welded structures [6]. 

The most common NDE techniques to conduct various inspections are: 
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Ultrasonic Testing (UT), Radiographic Testing (RT), Liquid Penetrant 

Testing (LPT), Magnetic Particle Testing (MT), Eddy Current Testing 

(ET), and Acoustic Emission (AE) testing. Each NDE technique discussed 

previously has distinct advantages and disadvantages; consequently, 

depending on the application one technique may be better suited than 

another. Table 1 briefly illustrates NDE techniques and their principle of 

operation, applications, limitations, advantages, and welding defects that 

can be determined. It is noted that NDE techniques rely heavily on human 

skills and knowledge to correctly assess and interpret results. Proper and 

adequate training, developing confidence, and appropriate certifications 

are required to perform non-destructive testing (NDT) [7, 8]. Therefore, 

flaws or defects are often dictated by a code or requirement which 

indicates acceptable tolerances, i.e. The American Society of Mechanical 

Engineers Pressure Vessel Code [9] and American Welding Society 

Structural Welding Code [10-12]. 

 

Among the number of NDE techniques, ultrasonics and radiography are 

the most widely used for checking for weld defects. In recent years, the 

conventional ultrasonic testing technique has been replaced with more 

reliable and technologically advanced techniques of Phased Array 

Ultrasonic Testing (PAUT) and Time of Flight Diffraction (TOFD). 

Alternatively, radiography is utilized providing a range of techniques 

from traditional X-ray generators and film to newer technologies such as 

Computed Radiography (CR), Direct Radiography (DR), and 3D 

Computed Tomography (CT). These new technologies allow for remote 

visual inspection and enhancement of data visualization. 

 
Table 1. Common NDT techniques and their applications [9]. 

Method Principle of Operation Application Limitations Advantages Welding Defects 

Penetrant 

Testing 

Liquid dye penetrant into 

cracks and make visible 
Surface defects 

Will not find 

subsurface or 

Easy and can be 

used in complex 

Burn Through, Surface 

Porosity, Surface crack, 
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Abstract: An applicable procedure for design, optimization, and manufacturing of a 

remotely piloted helicopter (RPH) is studied analytically and experimentally. The 

procedure is presented in four main phases of conceptual design, detailed design, 

manufacturing and assembly, and test and  reliability analysis. Using this procedure,

 an  RPH  case study, called Parvan, for an arbitrary traffic monitoring 
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Reliability, Remotely piloted helicopter, Stability and control, Unmanned 

aerial vehicle. 

NOMENCLATURE 

Symbol Description 
Acronyms 

FMEA Failure Modes and Effect Analysis 

FMECA Failure Modes, Effects, and Criticality 

Analysis 

MTBF Mean Time between Failures - s 

MTTF Mean Time to Failure - s 

PDF Probability Density Function 

RPH Remotely Piloted Helicopter 

UAV Unmanned Aerial Vehicle 
Greek Symbols 

βc,CR Control rotor longitudinal flapping - rad 

βs,CR Control rotor lateral flapping - rad 

λs(t) Failure rate - s 

Ω Rotational speed - rad/s 

ρ Air density - kg/m
3 

σ Solidity factor 

ΘOM Main rotor blade pitching angle - rad 

designed and manufactured. Different subsystems of an RPH such as rotor assembly, 

engine and fuel systems, power transmission system, and control system for the 

proposed design are studied at each phase accordingly. Finally, 3-D 

multiplatform software of CATIA is used to simulate the RPH and making the 

full-scaled prototype. The successful performance of Parvan at hover, climb, and 

forward flight modes showed the effectiveness of the proposed procedure in 

developing an RPH. 



Development of a Remotely Piloted Helicopter              Frontiers in Aerospace Science, Vol. 1  395 

Θ0T Tail rotor blade pitching angle - rad 

Roman Symbols 

V  Acceleration - m/s
2 

A Rotor swept area – m
2 

A1 Lateral cyclic pitch - rad 

B1 Longitudinal cyclic pitch - rad 

C Criticality number 

CD Drag coefficient 

C1 Lift coefficient 

Cp  Power coefficient 

CT Thrust coefficient 

E Hinge offset - m 

F Force exerted on the body - N 

Ib f Moment of inertia for body frame – 

kg.m
2

 

M Pitching moment - N.m 

m Mass - kg 

P Power - W 

p Pitching rate - rad/s 

Pi Induced power - W 

Po Profile power - W 

Q Torque - N.m 

q Rolling rate - rad/s 

R Rotor radius - m 

Ry Rotor moment - N.m 

ROC Rate of climb - m/min 

wbf The matrix of rotational rates of body 

frame 

X Force acting in x direction – N 

Y Force acting in y direction – N 

Z Force acting in z direction - N  
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Materials Selection in Design of Structures of 
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Abstract: This chapter reviews the advances in the materials for applications in 

structures of both subsonicas well as supersonic aircrafts. An account of the 

operating and ambient environmental conditions during flight is first given and the 

resulting material requirements have been discussed. Design relationships have been 

established taking into consideration the loading conditions and the strength 

requirements. In particular, the aircraft skin temperatures at various mach numbers 

have been taken into account for selecting appropriate structural materials for both 

subsonic and supersonic aircrafts; and consequently various aerospace aluminum 

alloys, titanium alloys, superalloys, and composites have been suggested. Finally, a 

new materials-selection chart is presented which would help aerospace designers to 

select appropriate materials for structural application in subsonic and supersonic 

aircrafts. 

Keywords: Aluminum alloys, Composites, Materials selection, Subsonic 

aircraft, Supersonic aircrafts, Titanium alloys. 
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NOMENCLATURE 

M  Mach number 

CT  Civil transport 

SST  Supersonic transport 

CFRP  Carbon fiber reinforced polymer 

SCC   Stress corrosion cracking 

W(a)  Weight of a structural member using material (a) 

W(b)  Weight of a structural member using material (b) 

ρ(a)  Density of material (a), 

ρ(b)  Density of material (b), 

σy(a)  Yield strength of material (a) 

σy(b)  Yield strength of material (b) 

τ(a)  Torsional shear stresses acting on materials (a) 

τ(b)  Torsional shear stresses acting on materials (b) 

E  Young’s modulus 

K  Stress intensity factor 

KIC  Plane strain fracture toughness 

σ  Stress applied normal to a crack 

RMAF  Royal Malaysian Air Force 

Al-Cu  Aluminum-copper alloy 

P/M  Powder metallurgy 

Ti-Al-V Titanium-aluminum-vanadium alloy 

UTS  Ultimate tensile strength 

BMIs  Bismaleimides 

CEs  Cyanate esters 

FGM  Functionally graded materials 

 

INTRODUCTION 

The design of an aircraft and its materials have to be determined based on 

classical engineering principles and practices because even a tiny mistake 

in the design of any critical aircraft components such as fuselage, skeleton, 
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and wing may lead to fatality. A subsonic aircraft is an aircraft with a 

maximum speed less than the Mach 1 (speed of sound) i.e. less than 750 

mi/h (1207 km/h). On the other hand, supersonic aircrafts have the 

capacity of flying at speeds greater than Mach one, 1 < M < 4. Currently, 

supersonic aircrafts fly at speeds less than 2000 mi/h (3219 km/h). The 

important factors in selecting aircraft materials include specific strength 

(strength-to-weight ratio), tensile mechanical properties, fatigue strength, 

low-speed impact strength, fracture toughness, notch sensitivity, 

manufacturability, resistances to crack propagation, stress corrosion, and 

exfoliation corrosion [1-3]. Extra material criterion, exclusively related to 

the design of supersonic aircraft, is the resistance to creep. This is because 

the long-term operation at Mach 3.5 may lead to heat buildup within the 

structure of the aircraft to a temperature around 300 
o
C [4, 5]. 

 

Having established the material requirements for application in structures 

of subsonic and supersonic aircrafts in the preceding paragraph, it is 

appropriate to discuss the performance the aerospace structural materials; 

the latter include aluminum alloys, titanium alloys, and composites. This 

paragraph deals with aerospace alloys for subsonic aircrafts. A high-priority 

material research focus in today’s civil-transport (CT) aerospace industry is 

the development of aluminum alloys with higher specific strength 

(strength/weight ratio) for subsonic aircrafts; this research focus is 

obviously owing to lower cost of aluminum as compared to titanium and 

composites. The 2024 and 7075 aluminum alloys have remained in long use 

in CT subsonic aircrafts. For instance, age-hardenable 2024-T3 aluminum 

alloy is used in the subsonic structure: an aircraft for military transport 

application. The 7075-T6 Al alloy sheets and plate products have 

applications in subsonic aircraft structures owing to their notable 

combination of high strength with moderate toughness and corrosion 

resistance [6, 7]. In addition to Al alloys, titanium aerospace alloys are 

known for their high specific strength, moderately high-temperature 

stability, and resistance to corrosion. The exceptionally attractive 
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Potential Aerospace Applications of Carbon 
Nanotubes 
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Abstract: Advanced materials with optimized properties are essential in 

addressing the stringent requirements imposed by future aerospace vehicles. The 

discovery of carbon nanotubes and their desirable properties, as recognized in 

diverse scientific disciplines, have therefore identified these materials as 

expedient candidates for usage in aerospace applications. Given the limited 

number of overarching review articles encapsulating the usefulness of carbon 

nanotubes in aerospace sciences, this chapter explores the prospective 

applications of these materials in aerospace applications with their possible 

implementation on future aircraft, unmanned aerial vehicles and rotorcraft. The 

prospects of carbon nanotube usage intended for fuselage/satellite weight 

reduction, aircraft icing mitigation, lightning protection for aircraft, and future 

space launch are further explored. Conclusively, present challenges associated 

with successful implementations of these materials and existing obstacles 

preventing their safe integration in the aerospace industry are revisited, outlined 

and discussed. 

Keywords: Aerospace nanotechnology, Aircraft icing mitigation, Carbon 

nanotubes, Future aerospace materials, Hydrophobicity, Space elevator. 
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NOMENCLATURE 

ρ Density 

ς Electrical resistivity 

σmax Tensile strength 

dt Nanotube diameter 

k Thermal conductivity 

m, n Integers 

AR Aspect ratio 

Ch Chiral vector 

E Young’s modulus 

INTRODUCTION 

Carbon nanotubes (CNTs) have since their relatively recent discovery, been 

employed in a multitude of different scientific applications such as sensing 

[1], mechanical systems [2], energy storage [3, 4], biological applications 

[5, 6], and field emission [7, 8]. The expanding usage of composite 

materials on current commercial and military aircraft has in this respect 

highlighted these materials as viable candidates that can sustain different 

operational requirements in aeronautics and astronautics. 

 

This chapter provides an introduction to CNTs, by means of a brief 

historical overview of CNT usage in aerospace applications, viewed 

through the lens of the aerospace industry and further investigates their 

prospective usage areas in aeronautics and astronautics. In this context, 

particular attention is devoted to potential benefits of CNTs intended for 

unmanned aerial vehicles (UAVs) and their proposed usage, and other 

aspects pertaining to future space launch platforms. The final discussion of 

this chapter features a review of obstacles that have prevented a more 

frequent utilization of CNTs in the aerospace industry and establishes 
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essential factors for such implementation. 

 

In essence, CNTs are commonly described in the literature in two distinct 

forms namely, single-walled carbon nanotubes (SWCNTs) and 

multi-walled carbon nanotubes (MWCNTs) [9]. SWCNTs consist of single 

tubular sheets of graphite while the latter comprise a family of concentric 

graphite tubes [10]. For SWCNTs, the roll direction of the graphite sheet 

and the tube structure denoted by the integers n and m, determines the 

conductivity. The chiral vector is defined as Ch ≡ (n, m) [11], where the 

values of m and n determine the structure of the nanotube as an armchair  

(n = m), zigzag (m = 0) and chiral (other n and m values than the previous 

two structures). An overview of the properties of SWCNTs and MWCNTs, 

in comparison to traditional aerospace materials, is shown in Table 1. 

 
Table 1. Comparison of CNTs to conventional materials. The symbol (*) distinguishes 

normalized values, while (†) and (‡) denote theoretical and measured values, respectively. 
(Sources: [12, 13]). 

Material 

Specific 

Gravity 

[g·cm-3] 

Yield 

Strength 

[GPa] 

Elastic 

Modulus 

[GPa] 

Thermal 

Conductivity 

[W·m-1·K-1] 

Electrical 

Resistivity 

[μΩ∙cm] 

Strength-to

-Mass 

Ratio* 

SWCNTs† 1.4 65 1,000 ~ 6,000 30–100 225 

SWCNTs‡ 1.4 1.8 80 150 150 7 

Conventional 

Carbon fiber, 

M55J 

2.2 4 550 70 800 9 

IM7 Carbon 

composites 
1.6 2.1 152 30 2,000 7 

Titanium 4.5 0.9 103 12 127 1 

Aluminum 2.7 0.5 69 180 4.3 1 

 

A comparison between density (ρ), nanotube diameter (dt), aspect ratio 
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  CHAPTER 13 

Combination of Carbon Fiber Sheet Molding 
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Abstract: The current use of fuel efficient and environmentally friendly aircraft is 
only possible by the development of innovative lightweight constructions and the use 
of lightweight materials, such as carbon fiber reinforced plastics. With the rising 
demand on fiber reinforced components in the aerospace industry new production 
processes have been built up. However, current production technologies for 
composites cause higher costs and obtain longer process cycle times in comparison 
to the manufacturing processes of metals. Moreover raw materials, such as carbon 
fibers and resin, and semi-finished products are very expensive. In contrast to this 
and compared with other manufacturing technologies for fiber reinforced plastics 
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Sheet Molding Compound compression processes are characterized by cost 
efficiency, high productivity, the option of full automation and the possibility for 
the realization of complex shapes and integrated functions. However there are also 
some disadvantages like a low level of stiffness and strength in comparison to 
continuous fiber reinforced plastics. The reasons for these facts are the short fibre 
length, a lower fibre-volume fraction and an isotropic fibre distribution. 
Consequently, the combination of sheet moulding compound and pre-impregnated, 
tailored carbon fibre reinforcements in an one-shot compression moulding and 
curing process merges the advantages of both groups of composite materials. 
Therefore the creation of load-bearing, complex, functional and autoclave-quality 
parts without an autoclave can be realised. In this chapter, this innovative 
technology and its potentials are presented. This paper will also deal with the 
resulting material characteristics. 

Keywords: Aircraft, CFRP, Hybrid, Light weight, SMC. 

NOMENCLATURE 

ATH  Aluminum hydroxide or alumina trihydrate 

CFRP  Carbon fiber reinforced plastic 

FRP   Fiber reinforced plastic 

SEM  Scanning electron microscope 

SMC  Sheet Molding Compound 

UP  Unsaturated polyester resin 
 
INTRODUCTION 

In the recent decades, the demand for efficient and fuel-saving aircraft for 
the commercial air traffic has led to the development of innovative 
lightweight solutions and to an increasing use of modern lightweight 
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materials, such as carbon fiber reinforced plastics (CFRP). In this context 
the aerospace industry developed new manufacturing processes and 
enhanced existing technologies to produce such high-performance 
materials. However, the today's production of aerospace components 
made of FRP materials is time-consuming and costly in comparison to the 
production of metallic constructions. Reasons for this are relatively high 
costs of raw materials and semi-finished products, long processing times 
and a partially low degree of automation. As a result there exist lots of 
aspirations for the development of more efficient technologies, the 
optimization of existing processes or the smart combination of different 
technologies. 
 
One promising technology is the combination of carbon fiber Sheet 
Molding Compound (SMC) and pre-impregnated, continuous carbon fiber 
reinforcements in a one-step compression and curing process. In this 
context the SMC technology provides the implementation of light, 
geometrically complex and highly functional composite components 
considering short cycle times, an optimum usage of material, the 
possibility of complete automation and high cost efficiency. The locally 
integrated continuous carbon fiber reinforcements obtain tailored 
mechanical properties depending on the load characteristics of the 
respective component and with regard to the required high lightweight 
potential. In addition, this hybrid composite technology promises the 
possibility of using of recycled carbon fibers as long fiber reinforcements 
in the SMC mass and the direct integration of metallic components. This 
material and process combination can realize light weight, complex and 
functional composite components for aerospace applications in a highly 
efficient way. 
 
The main objectives of this article are researches and analysis of the 
potentials of this technology in reference to aerospace applications with 
the requirements for secondary structures of commercial aircraft. 
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  CHAPTER 14 
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Applications 

Mohammad Rouhi
*
, Hossein Ghayoor, Suong V. Hoa and Mehdi 

Hojjati 

Concordia Center for Composites, Department of Mechanical and 

Industrial Engineering, Concordia University, Montreal, Quebec, H3G 1M, 

Canada
 

 

Abstract: Automated fiber placement (AFP) machines can steer the 

fibers/tows to make the so-called variable stiffness (VS) composites. They 

allow the designers to fully exploit the directional properties of composite 

materials to tailor the internal load distribution and improve the structural 

performance. VS composites have been shown to be very promising in 

the design optimization of composite panels and shells for buckling and 

post-buckling performance and consequently for further reducing the 

mass of future aerospace structures. In this chapter, the buckling 

performance improvement of VS composite cylinders with circular and 

elliptical cross sections is investigated. A metamodeling based design 

optimization (MBDO) method is presented to maximize the buckling 

performance of VS composite cylinders compared with their constant  
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stiffness (CS) designs. The structural improvement mechanism via 

stiffness tailoring in a VS composite cylinder is also presented and 

discussed. The effects of different parameters including the cylinders’ 
aspect ratio and size as well as the percentage of the steered plies in the 

laminate are also investigated. 

Keywords: Automated fiber placement, Buckling, Composite cylinder, 

Fiber steering, Optimization, Variable stiffness. 

INTRODUCTION 

 

Lightweight and high performance are essential requirements for 

aerospace structures. In case of using metallic materials, designers put all 

their effort to reduce the weight and optimize the structural performance 

by tailoring the topology and shape of the structure i.e. thickness, size, and 

overall profile/shape. Over the past few decades, the application of 

fiber-reinforced polymer composite (FRPC) materials in aerospace 

structures has been increased dramatically. This growth has primarily been 

fueled by the high stiffness- and strength-to-weight ratios of FRPC 

materials as well as tailorability of the stiffness and strength properties and 

substantial reduction in part count offered by such material systems. 

Unlike metallic structures, composite structures can be manufactured in 

very complex geometric shapes. Consequently, FRPC materials can help 

enhance both product performance and manufacturing. 

 

FRPC materials have traditionally been designed and manufactured as 

multi-ply laminates consisting of several unidirectional layers. The layers 

are either stacked in dry form with the polymer resin injected into the 

mold or the layers are pre-impregnated with the resin material prior to 

manufacturing. In either case, for product design and manufacturing 

simplicity, the fiber orientation angle in each layer is typically held fixed 

and usually limited to 0°, 90°, and ±45°. By limiting each layer to a single 

orientation angle over the entire structural component, the designer is 



Variable Stiffness Composite Structures                    Frontiers in Aerospace Science, Vol. 1  517 

unable to fully exploit the directional material properties offered by 

composite layers. On the other hand, without sophisticated manufacturing 

equipment, it would be nearly impossible to accommodate spatial 

variation of orientation angles in the individual plies. With the advent of 

Automated Fiber Placement (AFP) machines, it has become possible to 

steer the fibers to manufacture composite parts with continuously varying 

fiber orientation angles. The resulting so-called variable stiffness (VS) 

laminate has spatial stiffness properties that allow the full potential of 

composite materials to be harnessed by extending the design space to 

create structural components with significantly higher performance and/or 

lower weight [1-5]. However, there are several design and manufacturing 

challenges that need to be addressed to reach the full potential of VS 

composite structures made by fiber steering. 

 

Early research works on AFP technology were reported in the literature in 

the late 1980’s [6]. Followed by building composite stiffened panels by 

AFP machines [7, 8] in the early 1990’s, AFP technology was used in 
production of numerous aircraft parts such as the F/A-18E/F horizontal 

stabilizer skins, the Bell/Boeing V-22 Osprey aft fuselage [9, 10], the V-22 

grip [11-13], the Boeing JSF inlet duct and the C17 landing gear pod 

fairings and engine nacelle doors [9,14], and the fuselage sections of 

Raytheon Premier I and Hawker Horizon business jets [15]. The recent 

application of AFP technology includes the large scale production of the 

fuselage sections of the Boeing 787 Dreamliner, Airbus A380 and A350 

XWB [16, 17]. The overall saved labor costs and reduced scrap materials, 

combined with the ability to produce laminated composite components of 

exceptional quality with higher accuracy and repeatability, have been 

shown to cover the substantial investment required by AFP technology. 

 

VS composites have been extensively studied for several loading 

scenarios and different structures such as plates [2, 18-21] and cylindrical 

shells [4, 5, 22-24] to examine the effect of fiber steering in improving 

structural performance and reducing weight. Since in aerospace structures 
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  CHAPTER 15 

Manufacturing Challenges Associated with the 
Use of Metal Matrix Composites in Aerospace 
Structures 

Tracie Prater
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Abstract: Metal Matrix Composites (MMCs) are materials which consist of a 

metal alloy reinforced with ceramic particles or fibers. These materials possess a 

very high strength to weight ratio, good resistance to impact and wear, and a 

number of other properties which make them attractive for use in aerospace and 

defense applications. For example, MMCs have being extensively used for 

structural tubing in the space shuttle orbiter, the antenna mast of the Hubble Space 

Telescope, control surfaces and propulsion systems for aircraft, and tank armors. 

However, difficulties arise when joining those materials with fusion welding and 

impose limitations on the size of MMC components. Melting of the material leads 

to formation of an undesirable phase when molten Aluminum (Al) comes into 

contact and reacts with the reinforcement. This phase forms a strength depleted 

zone along the jointline. Friction Stir Welding (FSW) is a relatively joining 

technique, developed at The Welding Institute (TWI) in 1991. Because FSW occurs 

below the melting temperature of many metal alloys, it precludes formation of 

deleterious phases and results in a more favorable welded microstructure that is 

closer to that of the parent material.  At NASA, this process was first applied to 

weld  the super lightweight external tank for the  space shuttles program. Today   
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FSW is employed to join structural components in Delta IV, Atlas V, and Falcon IX 

rockets as well as NASA’s Orion Crew Exploration Vehicle and Space Launch 
System. Currently, FSW researchers are interested in extending the application of 

the process to new materials which are difficult to weld using conventional fusion 

techniques, such as MMCs. Rapid wear of the welding tool in FSW of MMCs is a 

consequence of the large discrepancy in hardness between the steel tool and the 

reinforcement material. This chapter summarizes the challenges encountered when 

joining MMCs to themselves or to other materials in structures. Specific attention is 

paid to the influence of the process variables for FSW on the wear process. A 

phenomenological model of the wear process was established based on the rotating 

plug model of FSW. The effectiveness of tool materials with high hardness (e.g. 

Tungsten Carbide, high speed steel, and tools with diamond coatings) in resisting 

abrasive wear is also considered. In-process force, torque, and vibration signals are 

analyzed to determine the feasibility of in situ monitoring of tool shape changes as 

a result of wear. One advantage of this model is that its successful implementation 

would eliminate the need for off-line evaluation of tool condition during joining. 

Monitoring, controlling, and reducing tool wear in FSW of MMCs are critical to 

full application of these materials in aerospace structures where they would be of 

most benefit. The work presented in this chapter can be further extended for 

machining of MMCs, where the wear of the tool materials is also a limiting factor. 

Keywords: Advanced manufacturing, Friction Stir Welding, Materials 

joining, Metal Matrix Composites, Tool wear. 

NOMENCLATURE 

FSW Friction Stir Welding 

MMC Metal Matrix Composite 

RPM Rotations per minute 

SiC   Silicon Carbide 

ℓ Length of joint (inches) 

𝜈 Traverse rate (inches per minute) 

𝜔     Rotation rate (rotations per minute) 

𝑊 Wear experienced by the tool during welding 



544  Frontiers in Aerospace Science, Vol. 1                                         Tracie Prater 

 

D Characteristic reinforcement particle diameter 

𝛿 Width of the rotating plug 

𝛿0 Width of the rotating plug at angular position 𝜃 = −π/2  
𝛿max Maximum width of the rotating plug 

θ Angular position in x-y plane 

P Reinforcement fraction expressed as a percentage of workpiece   

volume 

∆𝐶 Cutting arc (angular region where abrasion can occur) 

∆𝐶max Maximum cutting arc 

𝜎     Flow stress 

t Plunge depth 

Ttotal Total torque 

Ra Average surface roughness 

Rt Peak to valley roughness 

R     Tool shoulder radius 

r Pin shoulder radius 

 

INTRODUCTION 

The reliance on ballistic techniques in launch architectures makes mini- 

mization of weight one of the most preeminent issues in spacecraft design. 

For any launch vehicle, cargo weights only comprise a small portion of 

the vehicle’s weight at launch. Structural components and fuel account for 

the vast majority of the launch weight of a rocket. In order to improve the 

structural efficiency of a vehicle, the vehicle’s dry weight can be reduced 
and the weight reduction represents a commensurate gain in cargo 

capacity.  

 

Use of lighter weight materials represent one option for reducing a 

vehicle’s weight. At present, Aluminum alloys are used as the primary 

aerospace structural material for fuel tanks. These alloys are lightweight, 

strong, well-characterized, and abundant. However, recent development 

of advanced materials such as composites have made it possible to further 

reduce the weight of the structure while satisfying (and in many cases 
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