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FOREWORD

This book has a singular focus and intent and is a necessary addition to the library of any
modeler, dive computer engineer, software designer, or table fabricator working in the diving
arena. It is well written, concise, and probably the only full reference today on the extensive
literature  of  applied  decompression  theory.  Equations  and  models  are  complete  and
applications  are  keyed to  the  content  of  the  book.  The References  are  also  extensive.  The
book follows up a number of earlier publications of the Author, and adds new material in the
computational  synthesis.  Models,  mathematical  methods,  statistical  correlations,  and  wide
ranging applications are the mainstay of presentation. Thumbs up all around on this timely
and needed publication.

Tim O’Leary
NAUI Technical Diving Operations

Tampa
Florida

USA
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PREFACE

This  monograph  covers  a  body  of  biophysics,  gas  transport,  bubble  studies  and  attendant
models  used  for  diving  and  hyperbaric  applications,  and  divides  into  three  Parts,  namely;
Biophysics And Models, Correlations And Validation, and Applications. Parts are all inter-
connected by analysis.  The biophysics  of  diving and decompression in the human body is
extremely complex. More needs be learned to safely and routinely stage divers. The physics,
biology, engineering, physiology, medicine, and chemistry of diving center on pressure, and
pressure changes. The average individual is subject to atmospheric pressure swings of 3% at
sea level, as much as 20% a mile in elevation, more at higher altitudes, and all usually over
time spans of hours to days.  Divers and their equipment can experience compressions and
decompressions  orders  of  magnitude  greater,  and  within  considerably  shorter  time  scales.
While effects of pressure change are readily quantified in physics, chemistry, and engineering
applications, the physiology, medicine, and biology of pressure changes in living systems are
much  more  complicated.  Caution  is  needed  in  transposing  biological  principles  from  one
pressure range to another. Incomplete knowledge and biophysical complexities often prevent
extensions of even simple causal relationships in biological science. Gas exchange, bubble
formation and elimination, and compression-decompression in blood and tissues in diving are
governed by many factors, such as diffusion, perfusion, phase separation and equilibration,
nucleation  and  cavitation,  local  fluid  shifts,  and  combinations  thereof.  Owing  to  the
complexity of biological systems, multiplicity of tissues and media, diversity of interfaces and
boundary conditions, and plethora of bubble impacting physical and chemical mechanisms, it
is difficult to solve the decompression problem in vivo. And equally difficult and elusive are
direct measurements of bubbles, bubble sites, and effective transport properties of tissues and
blood  in  living  human  systems.  Early  decompression  studies  adopted  the  medical
supersaturation viewpoint. Closer looks at the physics of phase separation and bubbles in the
mid-1970s, and insights into gas transfer mechanisms, culminated in extended kinetics and
dissolved-free phase theories. In both cases, models are employed to stage divers as safely as
possible to the surface. Optimally, these models ought be correlated with existing diving data
and linked to the most current biophysics. So, the monogram describes underlying biophysics,
connectivity to macroscopic models, and correlation with real diving data, with correlations as
important  as  models.  Applications  to  mixed  gas,  decompression,  open  circuit  (OC),  and
rebreather  (RB)  diving  are  linked  to  a  correlated  bubble  model  for  comparisons  and  risk
analyses.  Applications  focus  mainly  on  deep  diving  where  risks  increase  and  statistical
collections  and  tabulations  of  data  are  very  important.

B.R. Wienke
Los Alamos National Laboratory
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CHAPTER 1

Biophysics and Models

Abstract:  The  biophysics  of  pressure  changes  in  diving  and  decompression  is
extremely  complex.  Fundamental  notions  of  underlying  mechanisms  of  bubble
formation  and  gas  transport  are  presented.  Models  are  discussed  for  staging  diver
ascents focusing on dissolved gas perfusion, bubble formation, and coupled mechanics.
Oxygen toxicity is also quantified and detailed. The focus is computational models that
have  been  encoded  into  underwater  computers,  tables,  and  dive  planning  software.
There  are  some  11  models  that  have  been  implemented  and  safely  used  by  divers,
though not all have been tested nor validated.

Keywords: Bubbles, Dissolved gases, Models, Oxygen toxicity, Transport.

Gas  exchange,  bubble  formation  and  elimination,  and  compression-
decompression  in  blood  and  tissues  are  governed  by  many  factors,  such  as
diffusion, perfusion, phase separation and equilibration, nucleation and cavitation,
local fluid shifts, and combinations thereof [17, 28, 31, 37, 44, 47, 48, 57, 61, 69,
87].  Owing to  the complexity of  biological  systems,  multiplicity  of  tissues and
media,  diversity  of  interfaces  and  boundary  conditions,  and  plethora  of  bubble
impacting  physical  and  chemical  mechanisms,  it  is  difficult  to  solve  the
decompression  problem  in  vivo.  Early  decompression  studies  adopted  the
supersaturation  viewpoint.  Closer  looks  at  the  physics  of  phase  separation  and
bubbles in the mid-1970s, and insights into gas transfer mechanisms, culminated
in  extended  kinetics  and  dissolved-free  phase  theories.  Integration  of  both
approaches  can  be  useful.  Phase  and  bubble  models  are  more  general  than
supersaturation  models,  incorporating  their  predictive  capabilities  as  subsets.
Indeed,  for  most  recreational  and  nonstop  diving,  bubble  and  dissolved  gas
models collapse onto themselves, that is, they suggest similar staging regimens.
Having said all that, data still plays the crucial  role  in  model  determination  and

B.R. Wienke
All rights reserved-© 2016 Bentham Science Publishers
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applicability.  Dive modeling is often  more of an  artform than science, and experiments
directed  at  one  or  another  aspect  of  unanswered  diving  questions  can  often  produce
divergent conclusions, further caveats, null results, and scattered-beyond-use data. Plus,
macroscopic  models  cannot  always  cover  all  important  aspects  of  microscopic
phenomena.  We  cannot  cover  all  model  data  correlations  herein.  Instead  we  indicate
range of model use, sector use, history, and some sources for data correlation. We focus
on  just  11  models.  There  are  more,  but  they  do  not  enjoy  the  utility  and  range  of
applicability of the 11 discussed. This is not a critical review of models, as all models are
incomplete  today,  but  all  herein  enjoy  varying  degrees  of  success  and  utility.  That  is,
these models  with data  modifications form the underpinnings of  current  diving tables,
decompression  computers,  software,  and  associated  protocols.  The  intent  here  is  to
present  a  working  view of  physical  phase  mechanics,  then  followed by  a  summary  of
working models in diving. Such discussion is neither medical nor physiological synthesis.
Such aspects are omitted, and, for some, certainly oversimplified.

The physics, biology, engineering, physiology, medicine, and chemistry of diving
center  on  pressure,  and  pressure  changes.  The  average  individual  is  subject  to
atmospheric  pressure  swings  of  3%  at  sea  level,  as  much  as  20%  a  mile  in
elevation,  more  at  higher  altitudes,  and  all  usually  over  time spans  of  hours  to
days.  Divers  and  their  equipment  can  experience  compressions  and
decompressions orders of magnitude greater, and within considerably shorter time
scales.  While  effects  of  pressure  change  are  readily  quantified  in  physics,
chemistry, and engineering applications, the physiology, medicine, and biology of
pressure changes in living systems are much more complicated. Caution is needed
in  transposing  biological  principles  from  one  pressure  range  to  another.
Incomplete knowledge and biophysical complexities often prevent extensions of
even simple causal relationships in biological science. With this, models of bubble
formation in the body face a tough task.

For  sake  of  connectivity  to  the  medical-biological  diving  community.  mixed
(diving)  units  are  employed.  In  such  system  pressure  and  depth  are  used
interchangeably,  that  is,  1  atm  =  33  fsw,  with  fsw  denoting  feet-of-seawater
(pressure  and  depth).

CAVITATION AND NUCLEATION

Simply, cavitation is the process of vapor phase formation [5, 16, 29, 45, 58] of a
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liquid  when  pressure  is  reduced.  A  liquid  cavitates  when  vapor  bubbles  are
formed  and  observed  to  grow as  consequence  of  pressure  reduction.  When  the
phase transition results from pressure change in hydrodynamic flow, a two phase
stream consisting of vapor and liquid results, called a cavitating flow [3, 25, 63].
The addition of heat, or heat transfer in a fluid, may also produce cavitation nuclei
in the process called boiling. From the physico-chemical perspective, cavitation
by  pressure  reduction  and  cavitation  by  heat  addition  represent  the  same
phenomena, vapor formation and bubble growth, usually in the presence of seed
nuclei. Depending on the rate and magnitude of pressure reduction, a bubble may
grow slowly or rapidly. A bubble that grows very rapidly (explosively) contains
the vapor phase of the liquid mostly, because the diffusion time is too short for
any significant increase in entrained gas volume. The process is called vaporous
cavitation, and depends on evaporation of liquid into the bubble. A bubble may
also grow more slowly by diffusion of gas into the nucleus, and contain mostly a
gas  component.  In  this  case,  the  liquid  degasses  in  what  is  called  gaseous
cavitation,  the  mode  observed  in  the  application  of  ultrasound  signals  to  the
liquid. For vaporous cavitation to occur, pressure drops below vapor pressure are
requisite.  For  gaseous  cavitation  to  occur,  pressure  drops  may  be  less  than,  or
greater  than,  vapor  pressure,  depending  on  nuclei  size  and  degree  of  liquid
saturation.  In  supersaturated  ocean  surfaces,  for  instance,  vaporous  cavitation
occurs very nearly vapor pressure, while gaseous cavitation occurs above vapor
pressure.

In gaseous cavitation processes, inception of growth in nuclei depends little on the
duration of the pressure reduction, but the maximum size of the bubble produced
does  depend  upon  the  time  of  pressure  reduction.  In  most  applications,  the
maximum size depends only slightly on the initial size of the seed nucleus. Under
vaporous  cavitation,  the  maximum  size  of  the  bubble  produced  is  essentially
independent of the dissolved gas content of the liquid.  This obviously suggests
different cavitation mechanisms for pressure (reduction) related bubble trauma in
diving. Slowly developing bubble problems, such as limb bends many hours after
exposure, might be linked to gaseous cavitation mechanisms, while rapid bubble
problems, like central nervous system hits and and embolism immediately after
surfacing,  might  link  to  vaporous  cavitation.  But  it’s  certainly  never  been
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CHAPTER 2

Correlations and Validation

Abstract: Models used for safely staging divers by computers, software, or tables need
correlation  and  validation  against  real  diving  data.  The  process  of  correlating  diver
profiles and DCS outcomes against predictive models and fundamental parameters is
presented. Data from computer downloaded profile records is correlated against several
well  known  models,  that  is,  USN,  ZHL16,  VPM,  and  RGBM  using  maximum
likelihood  statistical  techniques.  Results  are  tabulated,  LANL  DB  discussed,  risk
functions  constructed,  and  implications  for  diving  and  divers  detailed.

Keywords: Maximum likelihood, Model correlations, Profile data banks, Risk.

To  discuss  correlations  and  risk,  we  want  to  focus  on  just  one  model  and  its
published results. To cover all 11 models is beyond scope of this analysis, and a
modern  bubble  model  is  preferable.  Accordingly,  within  model  and  data
parameters, we take the LANL bubble model (RGBM), dynamical principles, and
correlation with profiles in the LANL Data Bank. Table, meter, and profile risks
deduced in likelihood analysis are noted along with risks parameters. The model
enjoys safe, widespread, and utilitarian application in mixed gas diving, both in
recreational and technical sectors, and forms the bases of software, released tables
and decompression meters  used by scientific,  commercial,  and research  divers.
Supercomputing  power  [74,  76]  is  employed  for  application  and  correlation  of
model  and  data.  The  methods  and approach described  are  generic  to  all  diving
models.

The RGBM uses a bubble volume to limit exposures, not critical tensions. Bubble
volumes are estimates of separated gas phases,  and the limit  point  is  called the
phase  volume.  Critical  tensions  are  limit  points  to  dissolved  gas  buildup  in
arbitrary  tissue  compartments,  and  are  often  called  M-values.  The  approach  is

B.R. Wienke
All rights reserved-© 2016 Bentham Science Publishers
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computationally iterative, and though mathematically intensive, diving microprocessors
today easily handle calculations in the millisecond processing time frame. The algorithm
is  the  basis  of  released  mixed  gas  technical  tables  [NAUI  Technical  Diving,  Tampa,
2002] and simplified recreational air and nitrox tables up to 10,000 ft elevation. Meter
implementations  of  the  RGBM  are  available  and  under  continuing  development,
specifically HydroSpace, Atomic Aquatics, Steam Machines, Underwater Technologies,
Mares, Dacor, Suunto, ConnXcion, LiquiVision, and other players. Commercial RGBM
software  includes  GAP,  ABYSS,  Free  Phase,  and  HydroSpace RGBM  Simulator.  All
have exhibited safe and efficient operation from diving reports.

Note  so-called  diving  units  are  employed  herein,  that  is,  standard  SI  units  for
depth and pressure are not used. Pressures and depths are both measured in feet-
of-seawater (fsw) or meters-of-seawater (msw). The conversion is standard,

(244)

Breathing  mixtures,  such  as  nitrox  (nitrogen  and  oxygen),  heliox  (helium  and
oxygen), and trimix (helium, nitrogen, and oxygen), carry standardized notation.
If  the  fraction  of  oxygen  is  greater  than  21%,  the  mixture  is  termed  enriched.
Enriched nitrox mixtures are denoted EANx, enriched heliox mixtures are denoted
EAHx,  and  enriched  trimix  mixtures  are  denoted  EATx,  for  x  the  oxygen
percentage.  For  other  mixtures  of  nitrox  and  heliox  the  convention  is  to  name
them with inert gas percentage first, and then oxygen percentage, such as, 85/15
nitrox  or  85/15  heliox.  For  trimix,  notation  is  shortened  to  list  the  oxygen
percentage  first,  and  then  only  the  helium  percentage,  such  as,  15/45  trimix,
meaning  15%  oxygen,  45%  helium,  and  40%  nitrogen.  Air  is  interchangeably
denoted EAN21 or 79/21 nitrox.

LANL PROFILE DATA BANK

Divers using modern models are reporting their profiles to a Data Bank, located at
LANL  (also  NAUI  Technical  Diving  Operations).  The  profile  information
requested  is  simple:

bottom mix/ppO2, depth, and time (square wave equivalent);●

ascent and descent rates;●

10 msw = 33.28 fsw = 1 atm
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stage and decompression mix/ppO2, depths, and times;●

surface intervals;●

time to fly;●

diver age, weight, and sex;●

outcome (health problems), rated 1 - 5 in order of poor (DCS) to well.●

This information aids validation and extension of model application space. Some
2,879 profiles now reside in the LANL Data Bank. The are 20 cases of DCS in the
data file. The underlying DCS incidence rate is, p = 20/2879 = 0.0069, below 1%.
Stored profiles range from 150 fsw down to 840 fsw, with the majority above 350
fsw.  All  data  enters  through  the  author  (BRW),  that  is,  divers,  profiles,  and
outcomes are filtered. A summary breakdown of DCS hit (bends) data consists of
the following:

OC deep nitrox reverse profiles – 5 hits (3 DCS I, 2 DCS II)●

OC deep nitrox – 3 hits (2 DCS I, 1 DCS II)●

OC deep trimix reverse profiles – 2 hits (1 DCS II, 1 DCS III)●

OC deep trimix – 2 hits (1 DCS I, 1 DCS III)●

OC deep heliox – 2 hits (2 DCS II)●

RB deep nitrox – 2 hits (1 DCS I, 1 DCS II)●

RB deep trimix – 2 hits (1 DCS I, 1 DCS III)●

RB deep heliox – 2 hits (1 DCS I, 1 DCS II)●

DCS I means limb bends, DCS II implies central nervous system (CNS) bends,
and DCS III denotes inner ear bends (occurring mainly on helium mixtures). Both
DCS II and DCS III are fairly serious afflictions, while DCS I is less traumatic.
Deep nitrox means a range beyond 150 fsw,  deep trimix means a range beyond
200 fsw, and deep heliox means a range beyond 250 fsw as a rough categorization.
The abbreviation OC denotes open circuit, while RB denotes rebreather. Reverse
profiles  are  any sequence of  dives in  which the present  dive is  deeper  than the
previous dive. Nitrox means an oxygen enriched nitrogen mixture (including air),
trimix denotes a breathing mixture of nitrogen, helium, oxygen, and heliox is a
breathing  mixture  of  helium  and  oxygen.  None  of  the  trimix  nor  heliox  cases
involved oxygen enriched mixtures on OC, and RB hits did not involve elevated
oxygen partial  pressures  above 1.4  atm.  Nitrogen-to-helium (heavy −to −light)
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CHAPTER 3

Applications

Abstract: Model applications are important as predictors of comparative diver staging
and protocols. Whether by computer, diveware, or tables, planning is requisite for safe
diving. Applications following focus on both shallow and deep mixed gas diving on
OC and RB systems.  Profiles  along with  estimated risk are  tallied.  A bubble  model
correlated with deep stop diver outcomes is used. Profiles and schedules are listed and
compared. Many profiles reside as data entries in the LANL DB. So the applications
are both data and comparative dive profiles.

Keywords: Comparative gas transport, Real profiles, Risk, Staging.

Applications with model and risk estimates follow. Applications analyses [75, 79]
include the Marroni and Bennett 2.5 min recreational deep stop, the C & C 450/20
multiple RB dive sequence at 1.4 stm, NEDU deep stop tests, French Navy deep
stop  profiles,  EXPLORER  decompression  meter  algorithm,  NAUI  Tables,
University  of  Wisconsin  Seafood  Diver  Tables,  comparative  NAUI,  PADI,
Oceanic NDLs and repetitive dives, comparative nitrogen and helium mixed gas
risks,  USS Perry deep RB exploration dive,  world record OC dive,  and WKPP
extreme cave exploration profiles. The LANL model enjoys useful, widespread,
and prudent  application in mixed gas diving,  both in recreational  and technical
sectors,  and  forms  the  bases  of  software,  released  tables  and  decompression
meters  used  by  scientific,  commercial,  and  re-  search  divers.  Supercomputing
power is employed for application and correlation of model and data.

NONSTOP AND REPETITIVE AIR DIVING

Nonstop limits (NDLs), denoted tnn, from the US Navy, PADI, NAUI, and ZHL
(Buhlmann)  (Tables 15, 16)  provide  a set  for comparison  of relative  DCS risk.

B.R. Wienke
All rights reserved-© 2016 Bentham Science Publishers
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Listed  in  Table  5a  are  the  NDLs  and  corresponding  risks  for  the  nonstop
excursion, assuming ascent and descent rates of 60 fsw/min (no safety nor deep
stops). Dissolved gas and phase risk estimates vary little for cases, and only the
phase estimates are included. Surface intervals (SIs) between dives are time spent
at the surface.

Table 5a. Risk estimates for standard air NDLs.

USN NDL Risk PADI NDL Risk NAUI NDL Risk ZHL NDL Risk

d
(fsw)

tn

(min)
β tn

(min)
β tn

(min)
β tn

(min)
β

35 310 4.3% 205 2.0% 181 1.3%

40 200 3.1% 140 1.5% 130 1.4% 137 1.5%

50 100 2.1% 80 1.1% 80 1.1% 80 1.1%

60 60 1.7% 55 1.4% 55 1.4% 57 1.5%

70 50 2.0% 40 1.2% 45 1.3% 40 1.2%

80 40 2.1% 30 1.3% 35 1.5% 30 1.3%

90 30 2.1% 25 1.5% 25 1.5% 24 1.4%

100 25 2.1% 20 1.3% 22 1.4% 19 1.2%

110 20 2.2% 13 1.1% 15 1.2% 16 1.3%

120 15 2.0% 13 1.3% 12 1.2% 13 1.3%

130 10 1.7% 10 1.7% 8 1.3% 10 1.7%

Risks are internally consistent across NDLs at each depth, and agree with the US
Navy  assessments  in  Table  4b.  Greatest  underlying  risks  occur  in  the  USN
shallow exposures. The PADI, NAUI, and ZHL risks are all less than 2% for this
set, and risks for single DCS incidence are less than 0.02. PADI and NAUI have
reported  that  incidence  rates  (p)  across  all  exposures  are  less  than  0.001%,  so
considering their enviable track record of diving safety, our estimates are liberal.
ZHL  risk  estimates  track  as  the  PADI  and  NAUI  risks,  again,  very  safely.
Estimates were corroborated [74] within data sets at Duke both in Tables 5a and
5b.

Next, the analysis is extended to profiles with varying ascent and descent rates,
safety  stops,  and  repetitive  sequence  [53,  78  -  80,  82].  Table  5b  lists  nominal
profiles  (recreational)  for  various depths,  exposure and travel  times,  and safety



118   Biophysics and Diving Decompression Phenomenology B.R. Wienke

stops  at  5  msw.  Mean  DCS  estimates,  r,  are  tabulated  for  both  dissolved  gas
supersaturation  ratio  and  excited  bubble  volume  risk  functions,  with  nominal
variance,  r±  =  r  ±  0,  004,  across  all  profiles.

Table 5b. Dissolved and separated phase risk estimates for nominal profiles.

Profile
(depth/time)

Descent Rate
(msw/min)

Ascent Rate
(msw/min)

Safety Stop
(depth/time)

Risk
β

Risk
σ

14 msw/38 min 18 9 5 msw/3 min 0.0034 0.0062

19 msw/38 min 18 9 5 msw/3 min 0.0095 0.0110

28 msw/32 min 18 9 0.0200 0.0213

37 msw/17 min 18 9 5 msw/3 min 0.0165 0.0151

18 msw/31 min 18 9 5 msw/3 min 0.0063 0.0072

18 9 0.0088 0.0084

18 18 0.0101 0.0135

18 18 5 msw/3 min 0.0069 0.0084

17 msw/32 min
SI 176 min

18 9 5 msw/3 min

13 msw/37 min
SI 176 min

18 9 5 msw/3 min

23 msw/17 min 18 18 5 msw/3 min 0.0127 0.0232

The  ZHL  (Buhlmann)  NDLs  and  staging  regimens  are  widespread  across
decompression meters presently, and are good representations for dissolved gas
risk  analysis.  The  RGBM  is  newer,  more  modern,  and  is  coming  online  in
decometers  and  associated  software.  For  recreational  exposures,  the  RGBM
collapses  to  a  dissolved  gas  algorithm.  This  is  reflected  in  the  risk  estimates
above,  where  estimates  for  both  models  differ  little  [9,  20,  23,  36,  86].

Simple comments hold for the analyzed profile risks. The maximum relative risk
is  0.0232  for  the  3  dive  repetitive  sequence  according  to  the  dissolved  risk
estimator. This translates to 2% profile risk, which is comparable to the maximum
NDL  risk  for  the  PADI,  NAUI,  and  ZHL  NDLs.  This  type  of  dive  profile  is
common, practiced daily on liveaboards, and benign. According to Gilliam, the
absolute incidence rate [93] for this type of diving is less than 0.02%. Again, our
analyses overestimate risk. Effects of slower ascent rates and safety stops are seen
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