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FOREWORD

Sample  preparation  involving  extraction  is  normally  required  prior  to  analysis  by
chromatography,  electrophoresis,  or  mass  spectrometry.  The  main  purposes  of  the  sample
preparation  are  to  clean-up  the  sample,  to  make  it  compatible  with  the  analytical
instrumentation, and to enrich the analytes of interest. Sample clean-up is intended to remove
major matrix components from the sample, which can interfere with the analyte detection or
which  can  reduce  the  performance  of  the  analytical  instrumentation.  Enrichment  of  the
analytes  is  intended  to  improve  the  trace  level  detectability.

Most sample preparation in routine laboratories today is performed with classical extraction
techniques, like solid-phase extraction or liquid-liquid extraction. However, in the scientific
literature,  a  large  number  of  research  papers  have  been  published  on  the  development  of
microextraction techniques. The difference between the classical extraction techniques and
the microextraction techniques is the mass / volume of the extraction phase, which has been
substantially down-scaled in the latter.

The field of microextraction was essentially initiated in 1990 by Professor Janusz Pawliszyn
and his co-workers by the introduction of solid-phase microextraction (SPME). In the years
after  this,  a  large  number  of  scientific  papers  related  to  SPME  emerged,  SPME  became
commercially available, and several other microextraction techniques different from SPME
were  introduced.  In  general,  a  main  driving  force  for  all  the  activities  in  the  field  of
microextraction has been to reduce the consumption of hazardous organic solvents and other
materials required for sample preparation (green chemistry). In addition, the development of
different microextraction techniques has been motivated by reduced sample volumes, reduced
extraction times,  improved analyte  enrichments,  improved sample clean-up,  and improved
compatibility with analytical instrumentation.

Definitely microextraction techniques will replace traditional methods in the future, but this
will take time. Meanwhile, a lot of progress takes place, and microextraction is currently a
very active field of research within analytical chemistry. New techniques and methods based
on these are continuously being developed. Some of them are based solid-phase extraction
principles,  and  includes  solid-phase  microextraction,  stir  bar  sorptive  extraction,
microextraction by packed sorbent, dispersive micro-solid phase extraction, magnetic solid
phase  extraction,  and  thin  film  extraction.  Others  are  based  on  liquid-liquid  extraction
principles, like single-drop microextraction, membrane-based microextraction, hollow-fibre
microextraction  and  dispersive  liquid-phase  microextraction.  In  addition  to  all  this,  new
materials are also entering the field of microextraction, like nanoparticles, ionic liquids and
novel solid gels. All this you can read about in this e-book, which is a very comprehensive
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guide to the most important developments of analytical microextraction techniques. Enjoy the
reading!

Stig Pedersen-Bjergaard
School of Pharmacy

University of Oslo
Norway
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PREFACE

The miniaturization of the preliminary steps of the chemical measurement process is one of
the challenges of Analytical Chemistry as it clearly facilitates the reduction of dimensions of
the whole analytical process, being also favorable for the design of portable analyzers and
opens  up  a  door  for  on-site  analysis.  Among  the  substeps  included  in  sample  treatment,
extraction  techniques  are  unavoidable  for  the  majority  of  the  samples,  either  for  analyte
preconcentration,  interference  removal  or  conditioning  prior  to  instrumental  analysis.
Therefore,  their  miniaturization  must  be  systematically  considered.

The new microextraction techniques, including the solid and liquid formats have emerged in
this context. The advances and innovations in this field affect not only on the units designed
for analytes isolation but also on the new materials that are used. They are characterized to be
more efficient than classical ones, thus yielding better enrichment factors. This results in an
enhanced sensitivity/selectivity of the whole analytical process.

The Anaytical Microextraction Techniques ebook is fully devoted to this subject matter of
increasing interest in the last decades. It is divided into three parts. The first one, composed of
four  chapters,  deals  with  the  general  aspects  of  microextraction  techniques  in  the  green
chemistry  context.  It  also  affords  the  use  of  new  phases,  which  results  in  more  efficient
devices, fully compatible with the green chemistry principles.

The second part of this ebook is fully devoted to micro solid phase extraction. It starts with
the reference technique in this context: solid phase microextraction. Next, fully consolidated
formats  such  as  stir  bar  sorptive  extraction  and  microextraction  by  packed  sorbents  are
afforded.  Dispersive  solid  phase  extraction  is  usually  employed  for  interference  removal.
However,  its  applicability  for  analytes  isolation  and  preconcentration  has  been  recently
evaluated. In this ebook, it is considered in two chapters, one of them dealing with the use of
magnetic nanoparticles. Their role is crucial to simplify the extraction process avoiding the
need for centrifugation and/or filtration. This section concludes with a chapter devoted to thin
film microextraction.

The liquid phase microextraction is compiled in section 3 where single drop and membrane-
based ones are presented. Single drop microextraction was the first miniaturized technique
developed  in  the  liquid-liquid  format,  reducing  the  volume  of  solvent  needed  to  the  low
microliter  level.  Since  its  proposal,  several  alternatives  have  been  reported  aimed  at
increasing the versatility of the initial approach. The use of porous materials (flat membranes
or hollow fiber) as support of the liquid phase, allows the use of large volumes of solvent,
which results in higher enrichment factors.
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This ebook would serve as a useful reference to readers to provide the current state of the art
of this research area as well as to stimulate the developments of innovative approaches on the
topic.

Miguel Valcárcel, Soledad Cárdenas and Rafael Lucena
Department of Analytical Chemistry

Institute of Fine Chemistry and Nanochemistry
University of Córdoba

Córdoba
Spain
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CHAPTER 1

Green Microextraction
Sergio Armenta1,*, Miguel de la Guardia1 and Jacek Namiesnik2
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2 Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology,
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Abstract: In the present chapter, the microextraction techniques have been considered
from the perspective of the Green Analytical Chemistry and an attempt has been made
in order to propose a modified eco-scale suitable to provide a green certification of the
extraction steps in the frame of the consideration of reagents and energy consumption
and waste generation. Especially important is the evaluation of the intrinsic toxicity and
risks associated to the use of reagents and the need of an accurate evaluation of the
amounts  of  reagents  and  wastes  in  order  to  avoid  misclassifications.  It  has  been
proposed  a  new eco-scale,  called  “Green  Certificate”,  based  on  the  application  of  a
color code associated to a letter; from A to G, being A the greenest one, that gives an
idea of how much green an analytical methodology is. In short, it is evident that the
microextraction  enhances  the  method  greenness  providing  class  A  steps  in  front  of
classical  analytical  preconcentration  and  matrix  removal  which  changes  the  method
category to class D.

Keywords:  Eco-scale,  Green  analytical  chemistry,  Green  certificate,  Green
evaluation,  Hollow-fiber  liquid  phase  microextraction,  Liquid  phase
microextraction,  Single  drop  microextraction,  Solid  phase  microextraction,
Solvent microextraction, Stir bar sorptive extraction, Stir cake sorptive extraction,
Stir rod sorptive extraction.
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1.1. INTRODUCTION

In recent years, the interest and attention of the scientific chemistry community in
the development of green practices has increased substantially. From the texts and
books  edited  by  Paul  Anastas  between  1994  and  1998  devoted  to  Green
Chemistry [1 - 4] the activity in the frame of Green Chemistry has considerably
been increased.

Analytical  methods  are  used  to  solve  problems.  Using,  as  inputs,  preliminary
information  and  knowledge  related  to  a  particular  problem,  solvents,  reagents,
samples, energy and instruments, the analysts can solve a specific problem. On the
other hand, the outputs of those processes are results, data and models, in other
words, solutions to the defined problem.

However, on the other side, the outputs of analytical methodologies are harmful
wastes that  create risks for operators and damage the environment [2].  In 1999
[3],  J.  Namiesnik  proposed  the  term  Green  Analytical  Chemistry  (GAC)  to
include important  parameters such as wastes,  amount and toxicity of  employed
reagents, as important criteria to select the most appropriate methodology to solve
a  specific  problem,  thus  creating  a  new  frame  for  the  previously  named
environmentally  friendly  analytical  chemistry  [4].

The twelve principles of GAC, proposed by A. Gałuszka et al. [5] can be found
elsewhere and include:

Direct analytical techniques.1.
Minimize sample size and number of samples.2.
In situ measurements.3.
Integration of analytical processes and operations to reduce energy and rea-4.
gents usage.
Automation and miniaturization of methods.5.
Avoid derivatization.6.
Avoid waste generation and provide appropriate waste management.7.
Multi-analyte or multi-parameter methods.8.
Minimize the use of energy.9.
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Preferable use of reagents obtained from renewable sources.10.
Elimination of toxic reagents.11.
Increase of the safety of the operator.12.

Taking into consideration the 12 mentioned principles, in-field direct analysis can
be considered as the greenest alternative: i) there are no reagents implied, ii) the
method  do  not  generate  analytical  wastes,  iii)  the  risks  to  operators  and  the
environment  are  generally,  minimal.  However,  those  remote,  non  invasive  and
direct analytical techniques can not be used in all  the situations and because of
that greener analytical method, in many cases, implies the reduction of the energy
and reagents consumption, take care about the side effects of sample treatments,
mainly isolation/enrichment steps of analytes and minimize the wastes.

Although, in many cases, direct analysis of samples is not possible and a sample
preparation  step  should  be  included  in  the  analytical  method.  The  evolution  of
these  sample  preparation  tools  from  the  classical  extraction  methods  such  as
soxhlet and liquid–liquid extraction (LLE) to the new and innovative solutions in
solid  phase  extraction  (SPE)  [6]  pursues  the  following  objectives:  i)
miniaturization  of  the  device,  ii)  multiclass  compound  extraction  and  iii)
automation  and/or  high-throughput  determination  (Fig.  1).

Analytical  microextraction  can  be  defined  as  a  sample  preparation  step  using
volumes in the microliter or nanoliter range of extracting phase (solid, semi-solid
polymeric or liquid material). In summary, analytical microextraction includes the
aforementioned guidelines of sample treatment evolution, especially in the frame
of miniaturization, automation, on-site analysis and time efficiency, most of them
directly related with the twelve principles of GAC.

1.2. ANALYTICAL STRATEGIES OF MICROEXTRACTION

The  extraction  procedures  can  be  classified  according  its  exhaustive  and  non-
exhaustive nature. The main objective of the exhaustive techniques is to extract
analytes completely from the sample to the extraction phase. The main advantage
of these techniques is that they do not require to extract the standards following
the extraction procedure, because the analyte is transferred quantitatively to the
extraction phase and thus, external standards dissolved in the extracting solvent
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CHAPTER 2

Novel Sol-Gel Sorbents in Sorptive Microextraction
Abuzar Kabir* and Kenneth G. Furton
International Forensic Research Institute,  Department of Chemistry and Biochemistry,  Florida
International University 11200 SW 8th Street, Miami, Florida 33199, USA

Abstract:  Despite  remarkable  advances  in  modern  state-of-the-art  analytical
instruments featured with enhanced sensitivity and automated operation in recent years,
the  success  of  an  analytical  investigation  still  largely  depends  on  the  sampling  and
sample preparation techniques. The growing concerns about environmental pollution
and public safety, solvent-free/solvent-minimized sorptive microextraction techniques
have gained enormous popularity  among practicing scientists  over  solvent  intensive
sample preparation techniques. A major share of the increasing popularity of sorptive
microextraction techniques definitely goes to sol-gel coating technology. The enormous
potential  of  sol-gel  coating  technology  as  a  viable  approach  for  creating  hybrid
organic-inorganic  advanced  material  systems  has  been  intuitively  materialized,
resulting in a large number of microextraction sorbents possessing unique selectivity,
enhanced  extraction  efficiency,  higher  thermal,  mechanical,  chemical  and  solvent
stability. The current chapter explains the basic principle of sol-gel coating technology
as well as the step-by-step procedure to fabricate the coating, classifies and describes
different sorptive microextraction sorbents, and presents the most recent developments
in  the  field.  Selected  and  representative  applications  of  different  sol-gel
microextraction  sorbents  are  also  tabulated.

Keywords: Fabric phase sorptive extraction (FPSE), Green sample preparation,
Inorganic-organic  hybrid  sorbents,  Sample  preconcentration,  Sampling  and
sample  preparation,  Sol-gel  coating,  Sol-gel  extraction  media,  Solvent-less
extraction,  Solvent-minimized  extraction,  Sorptive  microextraction.
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2.1. INTRODUCTION

The  introduction  of  solid-phase  microextraction (SPME)  by  Pawliszyn  and co-
workers [1] in 1987 is considered to be a ground-breaking event in the field of
analytical  sample  preparation  that  initiated  a  new  era  towards  solvent-
free/solvent-minimized  extraction,  miniaturization,  reduction  of  multiple  time
consuming  steps  in  sample  preparation,  and  automation.

Following the inception of SPME, a number of other microextraction techniques
including stir  bar  sorptive extraction (SBSE) [2],  thin film microextraction [3],
microextraction by packed syringe (MEPS) [4], micro solid-phase extraction (µ-
SPE)  [5],  fabric  phase  sorptive  extraction  (FPSE)  [6]  have  emerged  over  the
period of two decades. All these techniques belong to a broader family named as
sorbent-based sorptive microextraction and rely upon the partition equilibrium of
the  analyte(s)  between  the  microextraction  sorbent  and  the  sample  matrix.  The
microextraction sorbents used in sorbent-based sorptive microextraction may be a
pseudo liquid absorbent (e.g.,  polydimethylsiloxane,  polyethylene  glycol),  or a
solid  adsorbent  (e.g.,  graphite,  carbon  nanotubes)  or  a  mixture  of  both  (e.g.,
PDMS/Carboxen). As such, both absorption and adsorption processes may play
role  in  analyte  extraction  and  preconcentration  process.  Sorbent-based
microextraction  systems  have  significantly  reduced  the  usage  of  toxic  and
hazardous  organic  solvents  in  sample  preparation  exercises  and  therefore  are
considered to be a significant step forward towards green analytical chemistry [7].
In  addition  to  the  significant  reduction  of  organic  solvent  usage,  sorbent-based
microextraction systems also integrate sampling, extraction and preconcentration
of  target  analyte  into  a  single  step,  resulting  in  a  simple,  fast  and  convenient
sample preparation process.

Considering  the  high  volume of  research  in  the  field  of  sorbent-based  sorptive
microextraction, a large number of review articles and books have been published
covering  different  aspects  and  applications  of  this  modern  sample  preparation
technique [8 - 12].

Over the period of last two decades, a number of new formats and modifications
of sorbent-based sorptive microextraction systems have emerged,  bringing new



30   Analytical Microextraction Techniques Kabir and Furton

attributes  and  unique  applications  in  analytical  sample  preparation.  A
classification scheme of different sorptive-microextraction techniques that share
the  same principle  of  non-exhaustive  equilibrium driven  sample  extraction  and
preconcentration is given in Fig. (1).

Fig. (1).  Classification scheme of major sorption-based micrextraction techniques.

Among  all  the  different  formats  and  modifications  of  sorbent-based  sorptive
microextraction, fiber-SPME still dominates among all the developed formats and
enjoys  high  popularity  in  a  broad  range  of  fields  including  environmental,
pharmaceutical,  food,  toxicological,  forensic  applications.

2.2.  WORKING  PRINCIPLE  OF  SORBENT-BASED  SORPTIVE
MICROEXTRACTION

All  sorbent-based  microextraction  techniques,  regardless  of  their  format,  are
based  on  the  principle  of  equilibrium  extraction.  The  extracting  sorbents  are
immobilized either on the outer surface of a substrate (fiber-SPME, TFME, SBSE,
FPSE,  PSPME) or  inside  of  a  fused  silica  capillary  (intube-SPME or  CME) or
inside of a hollow-fiber (HF-SPME). During the extraction, the microextraction
device holding the sorbent may either be directly exposed to the sample matrix
containing the target analyte(s) (direct immersion mode), or may be exposed to

Major Formats of Sorbent-Based Sorptive Microextraction
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Thin Film 
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CHAPTER 3

Ionic Liquids in the Microextraction Context
María  J.  Trujillo-Rodríguez,  Verónica  Pino*,  Juan  H.  Ayala  and  Ana  M.
Afonso
Departamento  de  Química,  Área  de  Química  Analítica,  Universidad  de  La  Laguna  (ULL),  La
Laguna (Tenerife), 38206, Spain

Abstract: The structural  versatility of ionic liquids (ILs),  the wide range of interest
properties  that  can  present:  low  to  negligible  vapor  pressure,  from water-soluble  to
water-insoluble, from medium viscosity to high viscosity…, their synthetic tuneability,
together with their impressive solvation abilities for analytes of quite different nature,
make their use in microextraction techniques an obvious approach of great interest.

Thus, ILs and a group of interesting derivatives, such as polymeric ionic liquids (PILs)
and  IL-based  surfactants,  pure,  mixed,  or  combined  with  other  materials  forming
hybrid  sorbents,  have  been  used  in  all  variants  of  liquid-phase  and  solid-based
microextraction  strategies.

This chapter will give an exhaustive overview of existing approaches that combine ILs
and  derivatives  in  liquid-phase  microextraction  (LPME)  modes  such  as  single-drop
microextraction (SDME), hollow fiber liquid-phase microextraction (HF-LPME) and
dispersive liquid-liquid microextraction (DLLME), including all their variants; and also
in solid-based microextraction methods, such as micro-solid-phase extraction (µ-SPE),
solid-phase microextraction (SPME), stir-bar sorptive extraction (SBSE), and stir-cake
sorptive extraction (SCSE).

Keywords:  Dispersive  liquid-liquid  microextraction,  Environmental  applica-
tions, Food applications, Hollow-fiber liquid phase-microextraction, Ionic liquids,
Ionic liquid-based surfactants,  Liquid-phase microextraction, Micro-solid-phase
extraction, Polymeric ionic liquids, Single-drop microextraction, Solid-phase extr-
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action,  Solid-phase  microextraction,  Stir-bar  sorptive  extraction,  Stir-cake  sorptive
extraction.

3.1. INTRODUCTION

3.1.1. Ionic Liquids

Ionic liquids (ILs) constitute a group of non-molecular solvents characterized for
presenting  melting  points  below  100  ºC  [1  -  3]  and  a  number  of  outstanding
properties  [4],  such  as  negligible  vapor  pressure  at  room  temperature,  high
chemical and electrochemical stabilities, and capability to interact with a variety
of  analytes  through  different  solvation  mechanisms,  among  others.  They  are
mainly formed by large and asymmetric organic cations, which contain a nitrogen
or phosphorus atom, associated with an inorganic or organic anion. Fig. (1) shows
a  scheme  of  common  structures  of  ILs  and  derivatives.  Those  IL  which  retain
their liquid nature at room temperature are designated as room temperature ILs
(RTILs).

Relatively simple modifications of the IL structure (change in the nature of the IL
anion,  incorporation  of  a  certain  functional  group  in  the  IL  cation…)  are
accompanied by dramatic modifications of their properties: from water soluble to
water insoluble, from medium viscosity to high viscosity, and so on [4]. This can
clearly  be  observed  from  Table  1  [5  -  7],  in  which  the  modifications  of  IL
properties with a simple change of the anion nature are shown. As a result, ILs
can  be  tailored  for  specific  applications  in  a  quite  simple  manner.  The
incorporation  of  a  polar  functional  group  can  promote  dipolar  interactions
between the IL and polar analytes. In the same manner, the incorporation of long
aliphatic  alkyl  chains  to  an  IL  can  enhance  its  extraction  ability  with  nonpolar
analytes [8].

Table 1.  Physicochemical properties of a group of ILs containing the 1-butyl-3-methylimidazolium
(C4MIm+) cation at 25 ºC (or at the specified temperature) [5 - 7].

IL anion Abbreviation Melting point (ºC) Density (g·mL-1) Viscosity
(cP)

hexafluorophosphate C4MIm-PF6 10 1.373 450
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IL anion Abbreviation Melting point (ºC) Density (g·mL-1) Viscosity
(cP)

tetrafluoroborate C4MIm-BF4 -81 1.208 219

chloride C4MIm-Cl 53 - 1.7 (30 ºC)

bromide C4MIm-Br 79 - 0.8 (30 ºC)

Fig.  (1).  A)  Main  cations  and  anions  constituting  the  structures  of  ionic  liquids  and  derivatives,  and  B)
Examples of structures for ionic liquids, polymeric ionic liquids, and ionic liquids based surfactants.

It is also important to mention the impressive solvation ability of ILs, useful for
polar  to  non-polar  compounds.  This  is  due  to  the  electrostatic  interactions
associated with the cation and anion moieties comprised within the ILs, as well as
their  ability  to  undergo  unique  intermolecular  interactions  [8].  Their  solvation
ability has been explored with different models, being particularly successful the
Abraham solvation parameter model [9].

ILs have also been subject of topic in Green Analytical Chemistry, given that they
do  not  generate  volatile  organic  compounds  (VOCs),  therefore  being  excellent
candidates for substituting toxic chlorinated organic solvents [10]. Nevertheless,

(Table 1) contd.....
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CHAPTER 4

Application  of  Nanomaterials  in  Solid  and  Liquid
Microextraction
Yolanda  Moliner-Martínez,  Pascual  Serra-Mora,  Jorge  Verdú-Andrés,
Carmen Molins-Legua, Rosa Herráez-Hernández and Pilar Campíns-Falcó*

Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner
50, 46100-Burjassot, Valencia, Spain

Abstract: Nanomaterials (NMs) have attracted great attention in sample preparation. In
particular,  because  of  their  high  surface-to-volume  ratios,  NMs  facilitate  the
implementation  of  microextraction  techniques.  Additional  advantages  derived  from
NMs are the possibility of increasing the selectivity through the functionalization of
their  surfaces,  and  the  improvement  of  mechanical  and  thermal  stability  of  the
extraction devices. This chapter summarizes the main uses of NMs in solid and liquid
microextraction techniques, and representative examples of applications are presented.

The fabrication of coatings for fiber solid-phase microextraction (SPME) is the main
objective in many of the scientific research developed in the area. For this purpose, a
variety  of  NMs  have  been  used  such  as  carbon-based  NMs,  especially  carbon
nanotubes (CNTs) and graphene,  metallic and silica-based NMs, and more recently,
metal-organic frameworks (MOFs). NMs have also been used to prepare new sorbents
for other microextraction techniques such as in-tube solid-phase microextraction(IT-
SPME)  and  stir  bar  sorptive  extraction  (SBSE).  The  employment  of  magnetic
nanoparticles (MNPs) has recently been introduced in microextraction, which leads to a
new technique termed magnetic IT-SPME. Although the number of applications is still
low, NMs are also receiving increasing attention in the main techniques of liquid phase
microextraction  namely,  singe  drop  microextraction  (SDME),  hollow-fiber  liquid-
phase  microextraction  (HF-LPME)  and  dispersive  liquid-liquid  microextraction
(DLLME).
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Keywords:  Carbon  nanotubes  (CNTs),  Dispersive  liquid-liquid  microextraction
(DLLME),  Fiber  coatings,  Fiber  solid  phase microextraction (fiber  SPME),  Graphene,
Head  space  solid-phase  microextraction  (HS-SPME),  Hollow-fiber  liquid-liquid
microextraction  (HF-LPME),  In-tube  solid  phase  microextraction  (IT-SPME),  Liquid-
phase microextraction (LPME), Magnetic in-tube solid phase microextraction, Magnetic
nanoparticles (MNPs), Metal organic frameworks (MOFs), Metallic nanoparticles, Multi-
walled carbon nanotubes (MWCNTs), Nanomaterials (NMs), Nanoparticles (NPs), Silica
nanoparticles,  Single-drop  microextraction  (SDME),  Single-walled  carbon  nanotubes
(SWCNTs), Solid phase microextraction (SPME), Stir-bar sorptive extraction (SBSE).

4.1. INTRODUCTION

The  reduction  of  the  efforts  and  materials  used  for  sample  preparation  is  an
important  demand  of  analytical  laboratories.  Consequently,  methodologies
traditionally  used to  isolate  and pre-concentrate  the analytes  such as  LLE,SPE,
Soxhlet extraction and others, are being gradually replaced by more simple and
environmental  friendly  techniques.  Some  of  those  techniques  are  miniature
versions  of  regular  methods  such  as  micro  SPE,  while  others  are  based  on  the
employment  of  a  small  amount  of  extractive  phase  compared  to  the  amount  of
sample. The later approach is the basis of microextraction techniques. Nowadays,
the most popular microextraction techniques are SPME and SBSE, both based on
the employment of a sorbent as extractive medium, as well as LPME in which the
extractive phase is a solvent or mixture of solvents. There are numerous variations
of  each  of  these  microextraction  techniques  which  differ  in  the  nature  of  the
sorbent/solvent,  the  extent  of  the  extraction  process,  and  the  geometry  of  the
extraction  device.

In the last years, many of the research contributions in the area of microextraction
have  been  focused  on  the  development  of  new  extractive  phases  that  provide
better selectivity and extraction efficiency. Examples of such extractive phases are
new polymers including MIPs, ILs and NMs [1 - 4].

Nanosized materials have become a hot issue of research in many areas of science
and technology because of their attractive physical and chemical properties, wide
variety of morphologies and relative low cost. In analytical chemistry NMs have
been extensively used for different purposes such as the development of sensors,
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the  improvement  of  the  separation  performance  in  chromatographic  and
electrophoretic methods, and in sample preparation [5 - 7]. The most interesting
feature of NMs for sample preparation is related to their high surface-to-volume
ratios. This is particularly useful in the context of the reduction of the extractive
phase  dimensions.  Consequently,  an  increasing  effort  is  being  focused  on  the
application  of  NMs  in  microextraction.  Additional  advantages  of  NMs  based
sorbents are the enhancement of the selectivity through the functionalization of
the NMs surfaces, and their better stability compared to other extractive media.

The term NMs is used for nanosized structures in which at least one dimension is
in  the  nanometer  size  range,  typically  between  1  and  100  nm.  Nanosized
structures may be in the form of particles, tubes or pores [6]. There are several
criteria to classify NMs based on their origin, chemical nature and homogeneity.
In  the  context  of  their  use  as  sorbents,  NMs  are  typically  classified  as
carbonaceous  materials,  metal/metal  oxide  nanoparticles  (NPs)  including
magnetic  NPs,  silica  NPs  and  MOFs  [7].  Composites  are  also  widely  used  in
extraction because they combine the advantages of different phases in the same
sorbent. So far carbon-based NMs and metallic NPs are the most explored phases
in microextraction techniques. More recently, other NMs such MOFs have been
tested for sample preparation but most applications still deal with SPE and µ-SPE
procedures [8].

In the present  chapter  the main applications of  NMs in microextraction will  be
discussed.  Most  attention  will  be  focused  on  SPME  because,  as  stated  above,
NMs are generally used as sorbents. In the last years, however, different studies
have demonstrated the potential  of  NMs to improve the performance of  LPME
procedures by adding them to the sample or to the extractive phase. Consequently,
the role of NMs in the main modalities of LPME will be also discussed. In Fig. (1)
the main formats of solid and liquid microextraction techniques are depicted that
have benefited from NMs.
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CHAPTER 5

Principles  and  Developments  of  Solid-Phase
Microextraction
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Abstract:  Sample  preparation  has  been  commonly  considered  a  critical  step  of  the
analytical process. In this sense, remarkable efforts have been made to develop efficient
sample preparation techniques which could overcome the limitations of conventional
approaches.  Since  its  inception  in  the  early  1990’s,  solid-phase  microextraction
(SPME)  has  become  a  widespread  miniaturized  sample  preparation  technique  for
extraction  and  preconcentration  of  target  analytes  from  a  large  variety  of  matrices.
Interestingly,  sampling,  extraction,  enrichment  and  sample  introduction  can  be
integrated into a single step in SPME. This book chapter focuses on the basic principles
and  current  state  of  the  art  of  SPME.  Specifically,  both  thermodynamic  and  kinetic
aspects of the SPME technique are discussed in detail. In addition, those experimental
variables that show a paramount role in the extraction process, and should therefore be
optimized  and  controlled  for  optimal  performance,  are  considered.  Valuable
contributions that enabled the development of this solventless technique and current
challenges are identified. Other related SPME devices, such as internally cooled SPME,
in-tube SPME and membrane SPME, are also described.
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5.1. INTRODUCTION

Sample preparation has been recognized as a critical step of the analytical process,
being  even  considered  as  the  bottleneck  of  the  overall  process.  Enrichment  of
target  compounds,  transfer  of  the  analytes  into  a  solvent  compatible  with  the
analytical instrumentation, minimization of potential interferences, and efficient
sample clean-up, are among the main aims of sample preparation techniques. In
this regard, liquid-liquid extraction and solid-phase extraction have been conve-
ntionally employed prior to the determination of relevant compounds in a variety
of samples. In spite of their suitable performance, these classical techniques do
not  fulfill  several  of  the  challenges  in  analytical  chemistry,  including  miniatu-
rization, portability, and environmental sustainability. Furthermore, the necessity
to  determine  relevant  compounds  at  very  low  concentrations  in  matrices  of
different  complexity,  especially  when  dealing  with  reduced  sample  volumes,
made  the  improvement  of  sample  preparation  techniques  being  of  paramount
importance.  The  inception  of  solid-phase  microextraction  (SPME)  involved  a
huge advance in this sense. SPME was firstly introduced by Arthur and Pawliszyn
in 1990 as an alternative to conventional sample preparation methods [1]. SPME
is a non-exhaustive sample preparation technique based on the exposure of a small
amount of extracting phase to the sample (or to the headspace above the sample)
for  extraction  and  preconcentration  of  target  compounds.  SPME  enables  the
integration of sampling and sample preparation. Furthermore, its small size makes
SPME being highly convenient for on-site analysis and monitoring, as well as in
vivo  analysis [2]. A variety of coating fibers for extracting analytes of different
polarity  and  volatility  are  nowadays  commercially  available.  Nevertheless,  the
development  of  novel  SPME  fibers  with  improved  mechanical,  chemical  and
thermal stability is a current trend in analytical chemistry, as discussed in sections
below. Selected milestones in the development of the SPME technique are shown
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in Fig. (1).

Fig. (1).  Selected milestones in the development of the SPME technique.
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CHAPTER 6

Stir  Bar  Sorptive  Extraction  and  Related  Tech-
niques
José Manuel Florêncio Nogueira*
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Chemistry and Biochemistry, Campo Grande, Ed. C8, 1749-016 Lisbon, Portugal

Abstract:  From  the  sorption-based  methods  available  nowadays,  stir  bar  sorptive
extraction  (SBSE)  became  a  well-established  analytical  technique  for  sample
preparation,  in  which  hundreds  of  applications  in  almost  all  scientific  areas  have
already been proposed in  the  literature.  This  remarkable  analytical  tool  shows great
capacity for static microextraction and outstanding performance to operate at the ultra-
trace  level,  in  particular  for  the  analysis  of  complex  systems.  Furthermore,  is  very
effective, present easy manipulation in comparison to other alternative techniques and
great  reproducibility  for  the  analysis  of  priority  and  emerging  organic  compounds.
Recently,  related  static  microextraction  techniques  were  introduced,  with  particular
emphasis  to  bar  adsorptive  microextraction (BAμE) that  operates  under  the  floating
sampling  technology,  in  which  has  demonstrated  high  analytical  capacity  and
remarkable performance.  This novel  concept  has also proved great  effectiveness for
ultra-trace analysis of organic compounds with polar characteristics, in particular from
complex systems. The present contribution describes the fundamental principles, the
experimental methodology, the main applications, as well as, the analytical potential of
these novel microextraction techniques.
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6.1. INTRODUCTION

Due to the very high complexity presented by many matrices, the modern sample
enrichment techniques run towards the great simplification, miniaturization, easy
manipulation  of  the  analytical  devices,  strong  reduction  or  absence  of  organic
toxic solvents, as well as, low sample volume requirements in agreement with the
green  analytical  chemistry  principles  [1].  For  trace  analysis  in  particular,  the
sorption-based  methods  have  demonstrated  to  be  the  best  choice  enabling  the
direct  microextraction,  mainly  of  volatile  and  semi-volatile  compounds,  from
almost  all  types  of  aqueous  matrices.  Moreover,  these  solvent-free  approaches
have demonstrating high-throughput to enhance selectivity and sensitivity prior to
the application of chromatographic or hyphenated techniques. Although, some of
the  currently  well-established  methodologies  use  active  or  dynamic  sampling
mode, such as solid phase extraction (SPE), the passive or static sampling mode
has  gained  more  acceptances  in  almost  all  the  scientific  areas,  due  to  the  cost-
effectiveness,  much  easier  manipulation  with  emphasis  to  solid-phase
microextraction  (SPME)  [2]  and  stir  bar  sorptive  extraction  (SBSE)  [3].  These
enrichment techniques combine the extraction and concentration of the analytes
simultaneously,  having  the  possibility  to  use  immersion  or  headspace  (HS)
sampling  modes  in  only  a  single  step.  On  the  other  hand,  they  reduce  the
manipulation, the overall time required for sample preparation, and are indicated
to be combined with the great sensitivity of the modern analytical instrumentation.
SBSE in particular, was introduced as a novel sample preparation method based
on the same principles of SPME, which has been successfully applied to monitor
traces of priority organic compounds in many complex matrices, due to the very
high sensitivity exhibited. A good indicator of the greatest advantages over other
sorbent-based  techniques  is  the  number  of  publications  related  with  SBSE that
strongly increased in the last years, reaching up to several hundreds of scientific
articles. Furthermore, many review articles had already been reported covering a
wide  range  of  features  concerning  SBSE  principles,  method  development  and
applications  [4  -  9].  Nevertheless,  once  commercial  stirbars  still  had  presented
some analytical limitations, in particular for the enrichment of the polar organic
compounds,  several  analytical  solutions  and  related  techniques  have  been
proposed. For this reason, bar adsorptive microextraction (BAμE) was introduced
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as  an alternative and complementary static  microextraction technique for  ultra-
trace analysis [9 - 11].

6.2. STIR BAR SORPTIVE EXTRACTION (SBSE)

6.2.1. Fundamentals

The  SBSE  technique  belongs  to  the  silicone-type  sorbents  since  uses  just  the
polydimethylsiloxane (PDMS) polymeric phase and is commercially known with
the trademark Twister®.  Fig. (1.a) depicts the SBSE analytical device, which is
constituted by magnetic stir bars incorporated into a glass jacket (10 to 20 mm in
length)  typically  coated  with  24-126  μL  (0.3  to  1.0  in  thickness)  of  PDMS,  a
nonpolar polymeric phase characterized to promote hydrophobic interactions with
target molecules, where the retention mechanism occurs mainly through Van-der-
Waals forces but also hydrogen bonds can be formed with oxygen atoms of the
sorbent  network,  depending  on  the  molecular  structure  of  the  analytes.
Furthermore, this polymer has interesting diffusion and thermo-stable properties
allowing  to  operate  in  a  wide  range  of  temperatures  and,  because  of  that,  this
solventless approach was firstly proposed to be associated with thermal desorption
(TD)  following  gas  chromatography  (GC)  analysis.  The  substantial  volume  of
PDMS involved, in relation to the SPME fibbers (up to 0.5 μL for100 μm film
thickness),  promotes  a  lower  phase  ratio  between  the  sorbent  phase  and  the
sample media, which provides an increasing capacity, and quantitative recoveries
can be reached by SBSE, especially for nonpolar solutes. This approach enables to
increase the sensitivity by a factor within 50 and 250, in comparison to SPME,
decreasing  the  detection  limits  to  the  ultra-trace  level  (parts-per-trillion)  many
times. In the SBSE theory [3, 9], the efficiency of the analyte partitioning between
the  PDMS  phase  of  the  stir  bar  and  the  water  sample  (W),  presents  a  similar
behaviour as the distribution described by the octanol-water partition coefficients
(KPDMS/W  ≈ KO/W)  during the static equilibrium. In general,  nonpolar analytes are
characterized to have values of log KO/W higher or equal to 3, whereas for the polar
are  lower.  Thus,  the  KO/W  and  the  phase  ratio  (β=VW/VPDMS,  in  which  VW  is  the
water sample volume and VPDMS is the PDMS volume), are important parameters
to predict the theoretical recovery by using the following expression:
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CHAPTER 7

Microextraction  by  Packed  Sorbent  (MEPS):
Theory, Developments and Applications
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Abstract: Sample preparation is a critical issue in bioanalysis since the matrix is often
complex. A good sample preparation technique will remove the possible interferences
from the sample matrix pre-concentrate the analyte and to be reproducible independent
of  the  sample  matrix.  Recent  developments  of  sample  preparation  techniques  are
directed toward automation, the smaller sample volumes and online coupling of sample
preparation units and detection systems. Microextraction in packed syringe (MEPS) is a
new type  of  solid-phase  extraction  (SPE)  technique  that  is  miniaturized  and  can  be
fully  automated.  In  MEPS  the  solid  bed  is  integrated  in  the  injection  syringe.  The
MEPS syringe can be used online for  both extraction and injection of  samples.  The
present  chapter  gives  an  overview  of  MEPS  technique,  including  the  MEPS
description, formats, sorbents, experimental and protocols and factors that affect the
MEPS  performance.  We  also  summarize  MEPS  recent  applications  in  bioanalysis,
environmental and food analysis.

Keywords:  Applications,  Experimental  protocols,  Microextraction  by  packed
sorbent  (MEPS),  Sorbents.

7.1. INTRODUCTION

Owing to the need of daily rotation of results from huge numbers of biological
samples  in  big  pharmaceutical  companies,  it  is  essential  to  apply  sample
preparation methods with high throughput properties. Sample preparation as the
first  step in the analysis  procedure  has an important role in many different fields
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such as bioanalysis and environmental analysis. Additionally sample preparation
methods utilizing small sample volumes (10-50 µL) should be useful for clinical
and preclinical  studies.  This can give new possibilities for handling of samples
from children.  As  well,  it  allows  serial  collection  of  more  than  one  time  point
from the same animal, such as mice or rat. Such sample preparation methods will
save money and time in drug discovery and development. To obtain this purpose
the  integration  of  the  sample  preparation  with  the  analysis  apparatus  and
miniaturization  were  significantly  required.

Microextraction by packed sorbent (MEPS) is a new technique for miniaturized
solid phase extraction (SPE) that can be connected online to GC or LC without
any modifications and can handle small sample volumes. MEPS technique is easy
to use, fully automated, of low cost and rapid. In comparison with previously used
methods, MEPS significantly decreases the sample handling time, decreases the
sample volumes and the solvent required.

This chapter provides an overview on the emerging technique microextraction by
packed sorbent (MEPS). The recent developments in MEPS device and finding
ways  for  automated  application  are  presented.  MEPS  provides  differentiation
from the conventional SPE and in some applications it could replace the need of
the  analytical  column  in  LC/MS/MS  (i.e.,  directly  used  online  with  the  MS
detector).  In  addition,  factors  affecting  the  MEPS  performance  and  extraction
procedures will be discussed.

7.2. MEPS DESCRIPTION AND THEORY

MEPS is a self-acting kind of solid phase extraction (SPE) technique. MEPS was
emerged in 2004 by Dr. Abdel-Rehim [1]. The MEPS technique was developed to
meet the request of automated and high-throughput sample preparation methods.
The  MEPS  technique  is  fully  automated,  reduces  the  handle  time  and  handles
small sample volumes, it is simple and inexpensive. The fast process and the ease
of the sample preparation process are advantages of MEPS. The main attributes of
MEPS is the decrease of the sample and solvent used (10-50 µL) and the elution
solution can be injected directly into GC or LC instruments.

In  MEPS  1–4  mg  of  sorbent  is  packed  in  the  barrel  of  a  gas-tight  syringe
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(100–250  µL),  or  in  a  special  container  positioned  between  the  needle  and  the
barrel as a cartridge (Fig. 1).

Fig. (1).  MEPS syringe [2].

In MEPS the sample solution is withdrawn through the syringe by an autosampler
and when the sample solution has passed through the solid phase, the analytes are
adsorbed to the solid sorbent. Then the solid phase is washed once or more with
water  to  remove  the  proteins  and  other  interfering  materials.  Finally,  for
desorption of analyte organic solvent, such as methanol or the LC mobile phase
(20–50 µL) can used and directly through the analytical instrument’s injector.

The MEPS processing, extraction and injection steps are performed online using
the  same  syringe.  The  main  concept  of  MEPS  and  SPE  techniques  is
approximately  similar  and,  both  techniques  build  on  the  same  principles  and
therefore the transferring of  a  method from traditional  SPE to MEPS would be
quite straight forward. Typical MEPS is designed in the syringe format and a gas-
tight glass syringe is used (the syringe volume is 100, 250 or 500 μL). The solid
sorbent may be embedded in a small container situated between the barrel and the
needle, as mentioned above. Miniaturization is critical point in MEPS technique,
thereby only approximately low volume of solvents is required for elution of the
analytes from the adsorbent, a quantity that is suitable for direct introduction into
the analysis instrument.
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Abstract: The usefulness of dispersive extraction techniques leans on their ability to
maximize the interaction between the sample and the extractant phase, thus increasing
the extraction efficiency. As far as dispersive solid phase extraction is concerned, it
was initially developed to increase the selectivity of the analytical process because the
solid was added to retain the potential interferents from the sample matrix. In spite of
its efficient sample clean-up, the sensitivity is its Achilles' heel as no preconcentration
is usually achieved. Recently, the use of few milligrams of sorbent which is dispersed
in  a  liquid  sample  for  analytes  isolation  has  raised  a  new  miniaturized  extraction
technique,  the  so-called  dispersive  micro  solid-phase  extraction.  This  alternative  is
mainly  focused  on  sensitivity  enhancement.  The  chapter  begins  with  a  short
contextualization of this extraction technique,  followed by a brief description of the
first  approach  in  this  context,  viz,  dispersive  solid  phase  extraction.  Next,  the  main
contributions in the field of dispersive micro solid-phase extraction in this context will
be described on the basis of the nature of the solid used. Also, the combination with
dispersive liquid phase microextraction and the expected evolution of this miniaturized
extraction technique are included.

Keywords:  Auxiliary  energies,  Carbonaceous  solids,  Conventional  sorbents,
Dispersive extraction, Dispersive liquid-liquid microextraction, Dispersive solid
phase microextraction, Dispersive sorbent, Enrichment factors, Green chemistry,
Miniaturization,  Molecularly  imprinted  polymers,  Nanostructured  sorbents,
Polymeric  sorbents,  Silica-based  sorbents,  Solid  phase  microextraction.
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8.1. INTRODUCTION

The evolution of Analytical Chemistry has been lead by three trends: automation,
simplification and miniaturization. While the former is clearly consolidated in any
analytical laboratory, the other two are still being developed. The improvement of
the sample pre-treatment operations is the target of these tendencies taking into
consideration  the  influence  they  have  in  the  basic  (sensitivity,  selectivity  and
precision) and productivity-related (cost, time, personal and environmental risks)
analytical  properties.  Therefore,  many  research  efforts  are  focused  on  the
simplification and miniaturization of the sample pretreatment, as it is practically
an unavoidable step of the analytical process.

The determination of a family of compounds in a given sample usually involves
its isolation from the matrix (to increase the selectivity) and preconcentration (for
sensitivity enhancement) prior to the instrumental measurement. According to the
above commented tendency, the introduction of novel microextraction techniques
is  highly  recommended  in  order  to  reduce  the  amount  of  sample  and  organic
solvents as well as the time, cost and manipulation needed. This tendency is in
good  agreement  with  the  principles  of  Green  Chemistry  often  described  in  the
literature  as  the  three  Rs:  replace,  reduce  and  recycle  [1].  Solid  phase
microextraction  and  liquid  phase  microextraction  can  be  considered  as
consolidated  miniaturized  sample  treatment  techniques,  given  their  full
acceptance  in  routine  laboratories,  particularly  when  automated  or  even  fully
integrated  analytical  instrumentation  is  used.

The  main  requirement  of  any  microextraction  technique  is  that  the  extractant
media used should be highly efficient in analyte extraction taking into account the
reduced amount  used.  In  this  context,  dispersive-based procedures  have gained
relevance in the last years as they enhance the contact surface area between the
sample and the extractant and thus the kinetics of the overall extraction procedure
while reducing the amount/volume of the solid/liquid extractant phase needed [2].

8.2. DISPERSIVE SOLID PHASE EXTRACTION

Dispersive  solid-phase  extraction  (DSPE) was  first proposed  by  Anastassiades
et al. in 2003 as a powerful tool to enhance the selectivity of the measurement. It
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is  commonly  known  as  QuEChERS,  acronym  of  quick,  easy,  cheap,  effective,
rugged and safe, its main analytical features [3]. DSPE requires the presence of an
organic solvent, for analyte partitioning; salts, to favour analyte transference from
the sample to the organic media and a dispersive sorbent to retain the coextracts
while maintaining the analytes dissolved in the organic phase. Each of the three
elements plays a different role in the extraction and they must be carefully chosen
to  improve  the  efficiency  of  the  process.  They  are  briefly  commented  on.  The
organic solvent must be selected taking into account the analyte polarity, as it is
responsible for the extraction of the target compounds. In this regards, acetonitrile
is  by far  the most  used as it  permits  the extraction of both polar  and non-polar
compounds. Its compatibility with liquid chromatography is also advantageous in
this  context.  Magnesium  sulphate  and  sodium  chloride  are  used  during  the
extraction process (i) as salting out agents and (ii) to favour phases' separation.
The amounts added are determined by the analyte hydrophobicity, as a rule. The
dispersive  sorbent  added  depends  on  the  type  of  interferences  to  be  retained.
Primary  secondary  amine,  graphitized  carbon  black,  RP-C18  and  alumina  are
commonly used. In addition to the sorbent nature, the amount used is also critical,
as  it  has  to  retain  the  interferents  (selectivity  improvement)  while  minimizing
analyte adsorption (sensitivity of the measurement). The amount added is usually
in  the  low milligram level,  viz.  10  mg.  After  a  centrifugation  step,  the  organic
phase  can  be  directly  used  or  concentrated,  usually  by  an
evaporation/redissolution  step,  prior  to  the  instrumental  measurement  step,
commonly  by  a  chromatographic  technique.

This general procedure was mainly designed to analyze horticultural samples on
account of the complexity of the matrices and the low concentration of the target
compounds (mainly pesticides). The presence of co-extracted compounds in the
chromatogram  makes  difficult  the  unequivocal  identification  of  the  pesticides,
even  when  detectors  with  high  discrimination  capabilities,  such  as  mass
spectrometry,  are  employed.

The  former  procedure  was  modified  by  Lehotay  et  al.  in  2005  to  improve  the
recovery of certain pesticides [4]. Recently, Anastassiades et al. have reported a
second evolution of their initial proposal to expand the application range of the
DSPE to samples with different water and acid contents [5]. DSPE has also been
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Abstract: Magnetic nanoparticles (MNPs) are attracting great interest for developing
solid phase extraction (SPE). Nanoparticles involved in SPE processes present clear
advantages  with  respect  conventional  SPE  materials  because  of  their  high  stability,
simple  preparation,  and the  short  time involved in  the  sample  preparation;  avoiding
time-consuming column passing and filtration, as it is in conventional SPE methods. In
this  e-book  chapter,  the  progress  involving  MNPs  used  for  SPE  is  presented  and
discussed.  Taken  into  account  the  different  types  of  MNPs  used  in  this  field,  the
different  MNPs  obtained  by  attaching  inorganic  components  (e.g.,  metal  oxides,
carbon, noble and semiconductor metals), or organic molecules (e.g., surfactants and
magnetic  molecularly  imprinted  polymers,  MMIP),  are  described  through  recent
reported  analytical  applications  of  MNPs  in  SPE.  The  potential  transfer  of  these
analytical  tools  for  daily  work  in  routine  laboratories  is  also  pointed  out.
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9.1. INTRODUCTION

Currently,  analytical  chemistry  tends  to  exploit  and  improve  the  chemical
properties of nanoparticles (NPs), especially the capacity of adsorption, for their
use  as  a  reversible  sorbent  in  extraction and preconcentration processes,  which
were  considered  among  the  most  attractive  analytical  applications.  NPs  with
magnetic  properties  (magnetic  nanoparticles,  MNPs)  can  be  easily  handled  by
using  external  magnetic  devices.  Recently,  SPE  procedures  involving  MNPs
(magnetic  solid  phase  extraction,  MSPE) have intensely  been increased for  the
preconcentration  of  many  analytes,  as  well  as  for  elimination  of  interferences
(clean-up),  solving  interesting  analytical  problems.  Thus:  (i)  high  extraction
efficiency; (ii) increase of the extraction rates; (iii) easy recovery of the sorbent
after the extraction by using a magnetic device, involving clear advantages with
respect to centrifugation and filtration procedures.

The  use  of  MNPs  in  analytical  field  has  recently  been  reported  in  different
applications. Thus, for the preconcentration of pollutants in water [1, 2], soil [3]
and biological samples [4]; and the selective sorption of biological compounds as
proteins [5] and DNA [6]. Aspects related to the magnetization are also discussed
[7] from a practical point of view. From an applied side, two main issues can be
considered: (i) the sample analyses involving reduced sizes of samples; and (ii)
the use of very small amount of samples.

9.2. PRACTICAL ASPECTS

MSPE is a physical process in which they magnetic material (solid) and a liquid
(sample  or  analytes)  are  involved.  The  magnetic  solid  phase  presents  a  more
attraction  to  the  analytes  or  interferences  than  the  solvents  in  which  they  are
dissolved. The use of MNPs for performing MSPE has introduced the advantages
that  the  nanoscale  and  nanomaterials  present.  In  fact,  sorptive  microextraction
processes can be easily carried out involving MNPs. The general batch procedures
based on the use of MNPs and used in SPE are shown in Fig. (1). In the first step,
and after conditioning, the MNPs are introduced in the sample solution containing
the  sample  (analytes  and  interferences).  Sorption  of  the  analytes  and/or  the
interferences  takes  place.  According  to  the  main  purpose  of  the  sample
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preparation, two procedures can be distinguished in the second step. Thus, if the
analytes must be preconcentrated to increase the sensibility, MNPs are associated
with  the  analytes  and  this  combination  is  concentrated  by  using  and  external
magnetic device. After separation of the remaining solution, analytes are eluted
from the MNPs using an appropriate solvent. Then, the determination step takes
place. On the other hand, if the interferences must be removed for sample clean-
up  purposes,  they  are  retained  in  the  MNPs  and,  thus,  concentrated  in  the
magnetic  field.  The  remaining  solution  is  easily  separated  and  analytes
determined  in  it.

Fig. (1).  Extraction experimental alternatives to carry out SPE with MNPs.

9.3. MAIN TYPES OF HYBRID MAGNETIC NANOPARTICLES USED IN
SPE

The  procedures  employed  for  the  synthesis  of  a  hybrid  MNPs  used  in  SPE
includes the synthesis of the magnetic particle and their surface modification for
producing  the  final  coating  hybrid  nanoparticles.  The  main  type  of  hybrid
nanomaterials used for this purpose is shown in Fig. (2), the following sections
briefly describe the involved procedures.
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CHAPTER 10
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Abstract:  Thin film microextraction (TFME) is  considered as  a  type of  solid-phase
microextraction (SPME). There has been a growing interest in TFME as a novel sample
preparation technique, which was originally introduced to address the limiting uptake
rate  and  capacity  sometimes  observed  with  fiber  microextraction.  The  inherent
properties  of  TFME technique  such  as  the  excellent  sample  clean-up  and  the  larger
surface to volume ratio, enhance the sensitivity and the extraction rates. This e-book
article  is  mainly  focused  on  the  fundamental  principles  behind  and  in  the  diverse
existing  TFME  configurations,  paying  particular  attention  to  cotter  pin  supported
format,  copper  mesh  holder  and  96-blade  format.

Keywords:  :  Autosampler,  Field sampling,  In-vivo  sampling,  Membrane-based
TFME,  Microextraction,  On-site  extraction,  Sample  preparation,  Solid  phase
microextraction (SPME), Sorptive tape extraction, Stirring integrated TFME, Thin
film microextraction (TFME), 96-blade (thin film) SPME.

10.1. INTRODUCTION

Solid-phase microextraction (SPME) is a sample preparation technique developed
by  Pawliszyn  in  the  early  1990s  which  integrates  sample  clean-up,  analyte
isolation,  and  pre-concentration  in  a  single  step [1]. This  technique  appeared
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to  address  the  need  for  a  rapid  and  solvent-free  extraction  technique.  SPME is
based on the partitioning of the analytes between the sample and the extraction
phase, which is typically immobilized on a fiber support. For direct immersion,
the amount of analyte extracted when equilibrium conditions are reached (ne) by
SPME can be described as [2]:

(1)

Where Kes is the distribution constant between the extraction phase and the sample
matrix, Ve represents the sorbent phase volume, Vs is the sample volume and C0 is
the initial concentration of a analyte in the sample matrix. Since in the majority of
the  extractions  the  sample  volume  is  higher  than  the  extraction  phase,  this
equation  can  be  simplified  to:

(2)

According to Equation 2, the mass of analyte extracted depends on the sorbent
phase  volume  (Ve).  There  are  two  possible  strategies  to  increase  the  extraction
phase volume:(i) make greater in size the thickness of the coating or (ii) expand
the surface area. However, when thicker coatings are employed larger times are
needed  to  reach  the  equilibrium  (te),  which  gives  rise  low  sample  throughput
because the overall rate of extraction is controlled by the diffusion from the bulk
solution through the boundary layer to the extraction coating (Equation 3):

(3)

where (b-a) is the thickness of the coating, D represents the diffusion coefficient
and δ is the thickness of the boundary layer. Based on Equation 3 [3],the thinner
the thickness of  the sorbent  phase is,  the shorter  the time required to reach the
extraction equilibrium it would be.

On the other hand, large surface area accelerates the initial rate of extraction as it

sees

sees

e
VVK

CVVK
n


 0

0CVKn eese 

D

abK
tt es

e

)(
3%95





  



308   Analytical Microextraction Techniques Roldán-Pijuán et al.

is shown in Equation 4  [3]. As a consequence, a thin film with a large surface
area-to-volume ratio ensue in an improvement of the extraction efficiency without
sacrifice the extraction time assuming the same conditions.

(4)

Where (n) is the amount of analyte extracted over the sampling time (t) and (A) is
the surface area of the extraction phase. On the basis of the previous discussion,
the superficial area of a SPME phase directly affects to the extraction kinetics and
this  theoretical  fact  has  led  to  the  development  of  thin  film  microextraction
(TFME) by Prof. Pawliszyn group in 2003 [3]. According to the inventors group,
TFME  can  be  divided  in  two  different  modes  depending  on  the  use  of  the
membranes  or  brushes  as  extracting  phase  [4].

10.2.  THIN  FILM  MICROEXTRACTION  UNDER  THE  MEMBRANE
CONFIGURATION

Membrane-based TFME makes use of a thin membrane of polydimethylsiloxane
(PDMS),  the  classical  SPME  coating,  as  extraction  phase.  In  the  classical
configuration the membrane is attached to a deactivated stainless steel rod and it
is deployed, in a flag shape, to exploit all its potential area during extraction (see
Fig.  1).  After  the  extraction,  which  can  be  accomplished  both  in  the  direct
immersion and headspace mode, the membrane is coiled around the rod which is
finally  introduced  in  a  glass  liner  for  gas  chromatography/mass  spectrometry
(GC/MS) analysis. The first approach of TFME, which was directly towards the
analysis of several polycyclic aromatic hydrocarbons (PAHs) from water samples,
demonstrated  the  superior  features  of  TFME  over  classical  SPME  [3].  In
summary, TFME presents a higher extraction rate and capacity owing to the larger
area  and  higher  volume of  extractant  phase  (at  least  4  times)  in  the  membrane
format over the fiber shape. In fact, while a typical 100 µm PDMS fiber presents
an area of 10 mm2, a 1 cm x 1 cm membrane sheet presents a surface area of 200
mm2 (two faces of 100 mm2 each one) due to its planar structure.

oC
DA

dt

dn











  



Analytical Microextraction Techniques, 2017, 327-379 327

CHAPTER 11

Single-drop  Microextraction  and  Related
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Abstract:  The  number  of  applications  of  liquid  phase  microextraction  (LPME)
techniques has undergone a dramatic increase during the last years. Miniaturisation of
sample preparation encompasses several advantages, i.e., low consumption of extrac-
tants, integrated operation, ease of clean-up, large preconcentration factors, apart from
an increased  greenness,  as  compared  to  classical  solvent  extraction.  Among LPME,
single-drop microextration (SDME) approaches have deserved much interest. Versatile
and  adaptable  procedures  to  every  each  analyte  and  matrix  have  been  reported.
Extractants are not only limited to organic solvents, but ionic liquids (ILs) and even
aqueous  solvents  can  be  also  employed.  Whereas,  analytical  techniques  based  on
chromatographic/electrophoretic separations and some modes of atomic spectrometry
were applied in early applications, SDME has also been exploited in combination with
other  detection  approaches  such  as  UV-vis  spectrophotometry,  fluorospectrometry,
chemiluminescence, etc. This has spread the use of SDME to almost every application
area. In this chapter, the state of art of SDME and its main modes is reviewed.
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11.1. INTRODUCTION

In  an  attempt  to  overcome some of  the  drawbacks  inherent  to  classical  solvent
extraction  techniques  (i.e.,  liquid-liquid  extraction),  a  plethora  of  miniaturised
techniques have been proposed during last years.

Since  first  works  by  Dasgupta’  group,  using  drops  as  collectors  of  gaseous
substances such as ammonia and sulphur dioxide from air [1], several techniques
have  been  developed  that  have  in  common  the  disposal  of  a  microvolume  of
extractant phase (i.e., acceptor phase) using mostly a chromatographic syringe as
support. The implementation of a syringe has provided a smart and wise way to
accomplish solvent drop microextraction.

Initial prototypes addressing solvent drop microextraction were developed by Liu
and Dasgupta in 1996 [2],  using a chloroform microdrop suspended in a larger
sample drop to extract sodium dodecyl sulphate (SDS). First report making use of
a microsyringe for performing drop microextraction was published by Jeannot and
Cantwell  [3],  who  also  suggested  for  the  first  time  the  name  of  ‘single-drop
microextration’  (SDME).

The SDME technique encompasses a variety of approaches depending on how the
solvent microvolume is configured (i.e.,  at  the tip of a microsyringe or directly
suspended), the number of phases involved in the transfer of the analyte from the
donor to the acceptor phase (i.e., two- of three-phase systems) or the confinement
of  the  sample  solution  in  a  vial  (static  approach)  or  its  displacement  over  the
acceptor  phase  (dynamic  approaches).  Mass  transport  is  generally  limited  by
diffusion, so agitation of the sample solution is needed to improve the convective
transport in order to shorten the diffusion distance.

Classification  of  SDME  techniques  usually  relies  on  the  number  of  phases
involved  in  the  process.  Among  two-phases  SDME,  the  following  modes  have
been  reported:  direct  immersion  single-drop  microextraction  (DI-SDME),
headspace  single-drop  microextraction  (HS-SDME),  continuous  flow
microextraction  (CFME),  directly  suspended  drop  microextraction  (DSDME),
solidification  floating  organic  drop  microextraction  (SFODME)  [4  -  7].  Some
variants  of  any  of  the  above  modes,  such  as  drop-to-drop  microextraction
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(DDME)  can  be  considered  as  miniaturised  versions  of  DI-SDME.

The liquid-liquid-liquid microextraction (LLLME) mode involves a three-phase
mass transfer and can be considered a solvent microextraction with simultaneous
back-extraction.  This  mode  is  well  suited  for  hydrophilic  compounds  in
combination with those techniques requiring an aqueous acceptor solution such as
reverse-phase  high  performance  liquid  chromatography  (HPLC)  and  capillary
electrophoresis  (CE).  All  these  approaches  will  be  discussed  in  detail  in  next
section.

11.2. SDME: MICROEXTRACTION MODES

As  has  been  previously  mentioned,  a  variety  of  SDME  modes  and  related
techniques has been reported in the literature with the aim of achieving efficient
extraction and preconcentration of target compounds, while solving the limitations
identified  in  preliminary  SDME  modes.  The  evolution  of  the  number  of
publications per year concerning SDME modes and related techniques, as well as
the  frequency  of  use  of  these  miniaturised  sample  preparation  approaches,  is
shown  in  Fig.  (1).

Fig. 1 contd.....
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CHAPTER 12

Membrane-Based  Microextraction  Techniques
with Emphasis on Hollow-fiber Microextraction
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Abstract:  Various  membrane-based  extraction  techniques  are  used  in  analytical
chemistry mainly for pretreatment before analyte determination using chromatographic
or  other  techniques.  Membrane  extraction  can  also  be  applied  for  the  extraction  of
various  metal  ions  and  is  then  followed  by  atomic  absorption  or  similar  detection
techniques. They allow high selectively for a number of analytes from chemically more
or less complex samples and high concentration enrichment, easily thousands of times.
Currently,  the  most  common  format  for  membrane  extraction  utilizes  hollow-fiber
membranes,  which  permit  easy  and  versatile  operation  with  a  minimum  of  cost.  A
number  of  applications  have  been  presented  involving  determination  of  polar  and
medium-polar  compounds  as  acids  and  bases  in  samples  of  environmental  and
biological  origin,  usually  in  combination  with  liquid  chromatography  and  mass
spectrometry. For other analytes in which membrane extractions are various metal ions,
the membrane extraction is followed by techniques like atomic absorption and similar.
Also applications to non-polar compounds in mainly environmental samples, followed
by gas chromatography, are described in the literature.

In this chapter, the basic theoretical principles for the common variants of membrane
extraction are described. Guidelines for the selection of operational parameters as well
as concrete advice for the practical implementation are provided.

Keywords:  Biomedical  samples,  Chromatography,  Determination  of  acids,
Determination  of  bases,  Enrichment,  Environmental  samples,  Extraction,  Food
samples, Hollow fibers, Mass spectrometry, Membrane extraction, Sample prepa-

* Corresponding author Estelle Larsson:Department of Occupational and Environmental Medicine, Skåne University
Hospital, SE-221 85 Lund, Sweden; Tel: +46 46 17 69 31; E-mail:estelle.larsson@med.lu.se

M. Valcárcel, S. Cárdenas, R. Lucena (Eds.)
All rights reserved-© 2017 Bentham Science Publishers

mailto:estelle.larsson@med.lu.se


Membrane-Based Microextraction Techniques Analytical Microextraction Techniques   381

ration, Selectivity, Supported liquid membrane (SLM).

12.1. INTRODUCTION

An  important  area  of  current  research  in  analytical  chemistry  aims  to  the
development  of  alternative  extraction  techniques  meeting  some  of  the
disadvantages  of  classical  techniques,  such as  solvent  extraction or  solid  phase
extraction. These activities are somewhat moderated by the fact that the area of
chemical  analysis  (especially  regarding  environmental  and  pharmaceutical
applications, but also in other areas) is heavily regulated by various international
and  local  rules,  leading  to  the  acceptance  of  new  technology  being  slow  and
costly.

The use of membranes for extraction in analytical chemistry has been increasing
during  recent  years.  Such  techniques  have  a  number  of  clear  advantages  over
other extraction techniques, especially concerning selectivity, enrichment power
and automation potential, but also economy and occupational health aspects. They
can selectively extract and enrich analytes from chemically more or less complex
samples in very efficient ways [1 - 8].

In membrane extraction, the membrane separates the sample phase (often called
donor solution) from the acceptor phase and the analyte molecules pass through
the  membrane  from  the  donor  to  the  acceptor.  This  principle  gives  a  clear
advantage over other sample preparation techniques, as all compounds that reach
the analytical instrument must travel through the membrane, acting like a barrier
between the sample and the analytical instrument. There is no direct connection
and  no  possibility  for  transferring  compounds  into  the  analytical  instrument  in
other ways. This leads to a high selectivity, i.e. efficient discrimination between
analytes and various unwanted matrix compounds.

There  are  in  principle  two  variants  of  liquid  membrane  extraction,  three-phase
systems and two-phase systems [1, 2].

The  three-phase  system  (aq/org/aq),  where  analytes  are  extracted  from  the
aqueous  sample  into  an  organic  liquid,  immobilized  in  a  porous  hydrophobic
membrane  support,  and  further  to  a  second  aqueous  phase,  is  suitable  for  the
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extraction  of  polar  compounds  (acidic  or  basic,  charged,  metals,  etc.)  and  it  is
compatible with reversed phase HPLC.

The  two-phase  system  (aq/org),  where  analytes  are  extracted  into  an  organic
solvent separated from the aqueous sample by a hydrophobic porous membrane is
suitable for more hydrophobic analytes and compatible with gas chromatography.

Both these techniques utilize a supported liquid membrane (SLM) i.e. an organic
liquid supported in the pores of a hydrophobic porous material. In this paper, the
focus is on basic and practical considerations for two- or three-phase supported
liquid  membrane  extraction  systems  in  hollow  fibers,  techniques  which  are
nowadays  usually  called  as  hollow  fiber  liquid  phase  microextraction  (HF-
LPME).

Earlier, similar extractions were mainly performed in flat-sheet format, which is
described in detail in the literature [1 - 3] and also in a practical tutorial [4]. The
hollow-fiber techniques were developed especially in pharmaceutical applications
by Rasmussen and Pedersen-Bjergaard [5, 6] and Lee with coworkers [7].

One main advantage with HF-LPME is that it is not sensitive to the presence of
particles  in  the  sample.  Clogging  (as  for  instance  when  using  solid  phase
extraction (SPE)) is no problem, which means that filtration is not required prior
to extraction of turbid samples.

It  is  possible  to  successfully  apply  HF-LPME  to  slurries,  as  was  recently
described  with  sewage sludge  [9]  and in  biological  samples  [10].  Furthermore,
compared  to  LLE,  there  is  no  problem  with  the  formation  of  emulsions  in  the
water-organic interface, which otherwise can be a significant practical problem.

Using hollow fibers, it is possible to perform extractions for sample clean-up and
enrichment with very cheap and simple equipment, leading to efficient enrichment
and high enrichment factors (easily thousands of times) for ultra-trace analysis.
The current “record” [11] seems to be 28 000 times.
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