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PREFACE

There continues to be tremendous progress in the field of stem cell and regenerative medicine
research.  The  developments  promise  to  change  the  face  of  medicine.  This  4th  volume  of
‘Frontiers  in  Stem  Cell  and  Regenerative  Medicine  Research’  should  be  of  considerable
interest to the readers as it presents state-of-the art reviews written by renowned experts in
this fast moving field.

Ilham  Saleh  Abduljadayel  presented  a  comprehensive  review  in  chapter  1  on  epimorphic
regeneration  and  retrodifferentiation.  Both  processes  have  the  capacity  to  recreate  and
reconstruct tissue with precise positional integration of cells in such a way that will enable
healing  without  scars.  In  chapter  2  Fraser  et  al.  extensively  reviewed  the  unique  genetic
programmes that lead to mesendoderm formation and the pathways leading to mesoderm and
endoderm specification. They also present examples where mature cell types from both germ
layers interact to support their mutual development. These programmes are being employed to
direct  the  differentiation  of  pluripotent  cells  in  vitro  into  mesendoderm  derived  cells  and
tissues. Fraser et al. also reviewed the role of stem, progenitor and supportive cells within the
hematopoietic tissues as essential elements of regenerative medicine in chapter 3.

Cell-based  therapy  is  an  emerging  field  in  veterinary  medicine  that  has  been  used  for
developing  new  therapies  for  degenerative  diseases.  In  chapter  4  Izadyar  et  al.  described
different cell based therapies, their risks and benefits and their possible therapeutic use for
veterinary  medical  applications.  Mesenchymal  stem  cells  (MSCs)  are  the  most  favored
cellular candidates for regenerative therapeutics. Bhat et al. discussed how MSCs contribute
to  therapeutic  efficiency  include  facilitating  secretion  of  bioactive  factors,  induction  of
cellular  recruitment  and  retention  of  progenitor  faculties  in  the  last  chapter.

Knowledge  of  stem  cell  and  regenerative  medicine  research  continues  to  move  ahead  on
many fronts.  We hope  that  the  readers  will  enjoy  reading  about  the  latest  and  stimulating
development in this hot area in the 4th volume of this series.

We  are  pleased  to  place  on  record  our  heartfelt  thanks  to  all  the  authors  for  their
contributions.  We  are  also  grateful  to  the  editorial  staff  of  Bentham  Science  Publishers,
particularly Dr. Faryal Sami, Mr. Shehzad Naqvi and Mr. Mahmood Alam for their constant
support and great help.

Prof. Atta-ur-Rahman, FRS
Honorary Life Fellow

Kings College,
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CHAPTER 1

Retrodifferentiation:  From  Concept  to  Bedside
Stem Cell Therapy
Ilham Saleh Abuljadayel*

TriStem UK Ltd., London, England

Abstract: Epimorphic regeneration is a process by which damaged tissues or severed
body  parts  are  restored  to  the  original.  This  type  of  sophisticated  regeneration  is
observed  in  urodeles  and  fetal  mammals.  For  example,  through  this  process,  an
amputated  limb  of  a  salamander  can  be  restored,  by  re-growing  an  exact  replica,
irrespective of its age. During limb epimorphic regeneration: committed mesenchymal
cells at the stump site dedifferentiate, forming a cluster of heterogeneous population of
stem  cells,  known  as  the  blastema.  Upon  blastema  integration,  positioning  and
expansion, constituent cells embark on redifferentiation and remorphogenesis to restore
the lost appendage. Similar to epimorphic regeneration is retrodifferentiation in human
leukocytes. In response to ligation of monomorphic regions of MHC class II antigens
with monoclonal antibody CR3/43, human leukocytes retrodifferentiate into a variety
of heterogeneous stem cell types belonging to the mesoderm, ectoderm or endoderm
lineage, depending on culture media and conditions. During this process, leukocytes
lose lineage-associated markers home and undergo homocytic aggregation, upregulate
expression of stem cell antigens, and subsequently redifferentiate to give rise original
tissue  or,  transdifferentiate  into  a  different  tissue  altogether.  The  hematopoietic
retrodifferentiated stem cells have been shown to engraft an animal host in two proofs
of  principle  clinical  studies,  demonstrating  long-term  engraftment  and  safety  in
acquired aplastic anaemia, while transient amelioration of beta thalassemia major was
also observed. Binding of MHC class II antigens on leukocytes with the monoclonal
antibody CR3/43 appears to emulate stress and injury in human tissue in vitro, similar
to limb amputation in salamander. The ease by which various stem cell types can be
generated  from  human  peripheral  blood  has  allowed  the  design  of  various  kits  to
guarantee  the  specificity,  sterility and  efficacy of  stem cells  production  for  various

*  Corresponding  author  Ilham  Saleh  Abuljadayel: TriStem  UK  Limited,  571 Finchley  Road,
Unit   320,  London   NW3   7BN,  England;  Tel:  +  44  20  7722  5449;  Fax:  44  20  7586  5290;  E-mail:
iabuljadayel@tristemcorp.com
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All rights reserved-© 2017 Bentham Science Publishers
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clinical  and  research  applications.  The  robustness  and  efficacy  of  the
retrodifferentiation  process  in  generating  unprecedented  quantities  of  stem  cells
belonging to the three germ layers will enable organ and tissue reconstruction ex vivo,
using  bio-printing  and  various  scaffold  materials.  Epimorphic  regeneration  and
retrodifferentiation  both  have  the  capacity  to  recreate  and  reconstruct  tissue  with
precise positional integration of cells in such a way that will enable us to heal without
scars and to understand how to maintain tissue integrity and architecture in the face of a
hostile environment.

Keywords:  Axolotl,  Bioprinting,  Blastema,  Bone,  Dedifferentiation,  Ectoderm
Endoderm, Epimorphic Regeneration, Hematopoietic, Hepatocytes, Histogenesis,
Human  leukocytes,  Mesenchymal,  Morphogenesis,  Neurons,  Pluripotent,
Positional  integration,  Regeneration,  Retrodifferentiation,  Salamander,
Scaffolding,  Stem  Cells,  Tissue  Repair,  Transdifferentiation.

INTRODUCTION

The  ability  to  regenerate  an  entire  complex  tissue,  organ  or  appendage  upon
damage  is  almost  nonexistent  in  higher  vertebrates,  for  instance  in  an  adult
human. This is because neither all tissues in the human body are endowed with
stem  cells  that  have  the  ability  to  proliferate  and  differentiate  to  replenish
damaged  or  spent  cells  nor  the  adult  human  body  possess  sophisticated
regenerative processes that enable replacement of body parts lost to severe injury.
Most  injuries  are  dealt  with  simply  utilizing  repair  mechanism  which  entails
closure  of  the  injured  site  by  deposition  of  fibrous  tissue  instead  of  cells.  This
leads  to  altering  organ  geometry  and  architecture  including  deterioration  in
function. In stark contrast, amphibians and particularly a selected group of urodele
salamander can re-grow body parts, such as an amputated limb, even when old, in
a  process  known  as  epimorphic  regeneration.  In  this  process,  complex
mechanisms, including dedifferentiation,  innervation,  positional integration and
re-morphogenesis  occur  to  restore  the  severed  appendage.  During  the
dedifferentiation  phase,  fully  mature  specialised  cells  from  various  positions
around the circumference of the amputate, belonging to the mesenchymal lineage
home to the stump site and dedifferentiate. This leads to the formation of a cluster
of heterogeneous population of stem cells, known as the blastema. Homing and
integration  of  mesenchymal  cells  occur  according  to  positional  values.  This



Retrodifferentiation Frontiers in Stem Cell and Regenerative Medicine Research, Vol. 4   5

facilitates  alignment  and  arrangement  of  cells  of  different  lineages,  in  a
configuration  that  upon  re-morphogenesis  permits  restoration  of  the  original
geometry  and  architecture  of  the  limb.  Elucidation  and  understanding  of
epimorphic regeneration, including harnessing similar mechanisms in human, has
tremendous applications in regenerative medicine than mere production of stem
cells  which  at  best  proliferate  and  differentiate  ex-vivo,  but  may  fall  short  of
positional integration or morph into tumors when transplanted into humans. The
process which has been termed retrodifferentiation [1] is similar to the process of
cellular dedifferentiation which facilitates blastema formation in salamander [2].

Retrodifferentiation of human leukocytes into a variety of pluripotent stem cell
classes  occurs  in  response  to  ligation  of  the  monomorphic  region  of  the  major
histocompatibility  complex  beta  chain,  using  a  monoclonal  antibody  (clone
CR3/43) [3]. Each stem cell type generated is determined by the type of culture
media and conditions utilized during retrodifferentiation. Similar to mesenchymal
cell dedifferentiation in salamanders, leukocytes lose lineage associated markers,
undergo homing and homocytic aggregation, and form heterogeneous stem cell
colonies  which  subsequently  redifferentiate  into  cellular  components  of  the
original tissue. Unlike salamander regeneration, retrodifferentiation is capable of
transdifferentiation and histogenesis giving rise to entirely different tissues. In this
process, mature mononuclear leukocytes can be converted into a variety of stem
cell types belonging to the three germ layers: mesoderm, endoderm or ectoderm.
Three  hour  human  male  retrodifferentiated  haematopoietic  stem  cells  (RHSC)
have been shown to engraft in minimally irradiated NOD/SCID female mice [4].
Furthermore,  3  hr  autologous  RHSC were  capable  of  long term engraftment  in
severe  acquired  aplastic  anemia  patients  without  any  form  of  pre-conditioning
therapy  [5].  While  in  beta  thalassemia  major  [6],  a  genetic  blood  disorder,  the
autologous RHSC were only able to ameliorate the course of the disease for six
months.  The  ease  by  which  any  stem  cell  type  can  be  prepared  from  human
peripheral blood via retrodifferentiation, enabled the development of kits for the
treatment of haematological and degenerative disorders, as a bed side stem cell
therapy.  In  this  manner,  and  in  combination  with  leukopheresis  and  washing
devices, the automation of stem cell production, will guarantee efficiency, sterility
and  specificity  of  stem  cell  infusate.  Most  importantly,  retrodifferentiation



36 Frontiers in Stem Cell and Regenerative Medicine Research, 2017, Vol. 4, 36-100

CHAPTER 2

The Mesendoderm: A Wellspring of Cell Lineages
for Regenerative Medicine
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Abstract:  Regenerative  medicine  is  centred  around  the  premise  that  progenitor
populations can be engineered to give rise to mature cell lineages forming a complex
tissue  architecture  which  in  turn  produces  functional  organs.  The  potency  of  the
starting progenitor population is therefore a critical consideration. The mesendoderm is
a  rare  population  of  cells  present  in  the  embryo  only  at  gastrulation.  This  bipotent
population gives rise to the mesoderm and the definitive endoderm and all mature cell
types  derived  from  these  germ  layers.  Mesodermal  progenitors  generate  cardiac,
smooth  and  skeletal  muscle,  as  well  as  the  blood  and  vascular  lineages,  bone  and
connective  tissue  cells.  The  endoderm is  the  source  of  numerous  cell  lineages  with
potential utility for regenerative medicine including hepatocytes, pancreatic lineages
and the epithelial cells of the respiratory, gastrointestinal and reproductive tracts. The
development  of  numerous  organs  is  dependent  upon  mesoderm-derived  lineages
interacting with endodermal-derived cell  types.  The kidney,  adrenal  gland,  pancreas
and genito-urinary tract development all require interactions between mesodermal and
endodermal derivative cell  types.  Here,  we describe the unique genetic programmes
that lead to mesendoderm formation, the pathways leading to mesoderm and endoderm
specification and examples where mature cell types from both germ layers interact to
support their mutual development. We will also show how these programmes are being
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harnessed to direct the differentiation of pluripotent cells in vitro into mesendoderm-
derived  cells  and  tissues  which  can  be  used  to  improve  the  quality  of  human  life.
Finally,  we  will  discuss  considerations  for  combining  stem cell  differentiation  with
tissue engineering through 3D bioprinting modalities.

Keywords:  3D  bioprinting,  Embryonic  development,  Embryonic  stem  cells
(ESC),  Endoderm,  Germ  layer  specification,  Induced  pluripotent  stem  cells
(iPSC),  Mesendoderm,  Mesoderm,  Regenerative  medicine,  Tissue  engineering.

INTRODUCTION

The complex adult mammalian body is derived from three simple structures early
in embryogenesis termed the germ layers. These are: the ectoderm, which forms
the  skin  and  central  nervous  system;  the  endoderm  which  gives  rise  to  the
epithelial tissues of the viscera such as the respiratory, gastrointestinal and genito-
urinary tracts; and the mesoderm, which forms all of the connective tissue, blood,
vessels and muscle tissues. These three germ layers, can be first distinguished at
the developmental stage termed gastrulation. However, it has been proposed for
some time that the mesoderm and endoderm arise from a single cell type with the
potential to form both lineages. This cell type, termed the mesendoderm, can be
identified in simpler animal models such as the frog embryo, and an equivalent
cell type can be generated from mammalian pluripotent stem cells in culture. The
mesendoderm  is,  in  the  end,  responsible  for  the  formation  of  essentially  vast
amounts of the body except for the brain, skin (derived from the ectoderm) and
other tissues derived from a structure arising later in embryogenesis termed the
neural crest.

All of the epithelial tissues contain mesoderm-derived lineages. For example, the
gastro-intestinal  epithelial  tissue  has  a  mesoderm-derived  connective  tissue
component  essential  in  maintaining  structural  integrity.  Indeed,  it  is  now  clear
that,  in  many  organs,  extensive  cross-talk  must  take  place  between  endoderm-
derived  tissues  and  mesodermal-derived  structures  during  embryogenesis  of
organogenesis to proceed. The developing pancreas and liver (endoderm) require
signals from underlying blood vessels (mesoderm) to form [1, 2]. Removal of the
blood  vessels  leads  to  a  loss  of  appropriate  signals  and  failure  of  pancreatic
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development.  In  contrast,  most  mesoderm-derived  organs  lack  epithelial
structures.  For  example,  the  heart,  skeletal  muscle  and  bone  marrow  do  not
contain  endoderm-derived  cell  types  (Table  1).

Table 1. Organs and cells derived from the mesendoderm.

Organ Endoderm-derived Lineages Mesoderm-derived Lineages

Salivary gland Serous, mucosal and seromucosal
epithelial cells

Connective tissue fibroblasts, macrophages
endothelial cells, adipose cells

Trachea Goblet cells
columnar epithelial cells

Tracheal cartilage, lymphoid cells,
macrophages

Lungs Type I and II alveolar cells
Clara/club cells, Goblet cells

Endothelial cells
alveolar macrophages

Stomach Surface mucous cells
mucous neck cells
entero-endocrine cells
chief cells, parietal cells

Smooth muscle, adipocytes, endothelial cells
fibroblasts, lymphoid cells

Liver Hepatocyte
cholangiocyte

Sinusoidal endothelial cell
Kupffer cell, hepatic stellate cell

Gastrointestinal tract Gastric epithelium
glands (pyloric, cardiac, fundus)

Mesentric connective tissue fibroblasts
smooth muscle, endothelial cells, lymphoid
cells

Pancreas Acinar cells, centroacinar cells
pancreatic α, β and δ cells

Capillary endothelial cells
connective tissue fibroblasts

Kidney Tubular epithelial cells Glomerular endothelial cells, mesangial cells
podocytes, capsular stromal fibroblast

Prostate Cuboidal epithelial cells
columnar epithelial cells

Prostatic stroma fibroblasts, smooth muscle
connective tissue

Urinary bladder Urothelium Smooth muscle, hematopoietic cells,
endothelial cells

Bone Osteocytes, osteoblasts, chondrocytes,
endothelial cells, hematopoietic cells,
adipocytes

Thymus Cortical thymic epithelial cells
medullary thymic epithelial cells

Thymocytes (developing T lymphocytes)
dendritic cells, thymic macrophages

Spleen Capsule stromal fibroblasts, erythrocytes
lymphocytes, sinusoidal endothelium
macrophages

Gonads Leydig cells, Sertoli cells, follicular cells
thecal cells
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Abstract: The hematopoietic, or blood-producing, system resides in the bone marrow
of adult mammals. This system regulates the production of billions of new blood cells
per day in healthy adult humans. Even slight perturbations of this production can lead
to severe pathological conditions. One of the first applications of cellular regenerative
medicine in clinical practice was the transplantation of bone marrow cells to generate a
new, healthy blood production system in compromised patients. The success of bone
marrow  transplantation  is  dependent  upon  the  potency  of  stem  cell  and  progenitor
populations  within  the  adult  mammalian  bone  marrow.  The  utility  of  hematopoietic
stem  cell  (HSC)  transplant  has  been  extended  to  the  treatment  of  a  broad  range  of
hematological  diseases  and  disorders,  as  well  as  in  the  regeneration  of  the  blood-
producing tissue following radiation or chemotherapy. There is a strong push towards
the development  of  vast  numbers  of  mature  blood cells  in  vitro.  An in  vitro  system
resulting  in  the  consistent,  large-scale  production  of  patient-specific  mature
erythrocytes from HSCs or erythroid progenitors could alleviate the pressure felt  by
blood  donation  agencies.  The  cells  that  support  blood  cell  production  in  the  bone
marrow and other organs, known collectively as the hematopoietic niche, are critical in
blood cell  lineage regeneration.  The development  of  novel  regenerative therapies  to
treat myelodysplastic syndromes, anemia, leukemia and other blood diseases deserves
attention. Stem, progenitor and supportive cells within the hematopoietic tissues are
essential elements of regenerative medicine. The utility, limitation and promise of these
populations in regenerative medicine are described here.
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INTRODUCTION

A healthy adult human produces over 2 million new red blood cells per second or
nearly  2  billion  per  day.  This  extraordinary  rate  of  cellular  production  is
dependent upon a hierarchy of stem, progenitor and maturing cell types forming
in the hematopoietic organs. Hematopoietic stem cells (HSCs) are very rare cells
capable  of  giving  rise  to  all  of  the  major  blood  cell  types  when  transplanted.
These characteristics have led to HSCs being one of the cell types most frequently
transplanted for clinical treatment. Once HSCs have been transplanted from donor
to recipient, these cells home to the bone marrow where they reside and give rise
to the massive number of blood cells required to maintain human health. HSCs
also  give  rise  to  a  broad  variety  of  blood  cell  lineages.  These  range  from  gas
transporting erythrocytes (the most common form of blood cell in mammals) to
megakaryocytes  producing platelets;  granulocytes  (neutrophils,  eosinophils  and
basophils) offering immune protection against bacteria, fungi and parasites; and
the  lymphocytes  capable  of  forming  an  immunological  memory  of  pathogen
exposure.  Specialized  tissue  macrophages  and  dendritic  cells  are  also  derived
from HSCs. HSCs therefore have a profound capacity for regenerating the blood
compartment, which comprises approximately one fifth of all cells in the healthy
adult  human.  The  remarkable  capacity  of  HSCs  to  give  rise  to  the  entire
hematopoietic  system in  recipient  animals  and patients  has  led  to  utilization of
these cells in regenerative medicine. HSC transplantation can be performed from
transplanting  a  patient’s  own  stem  cells  (autologous  transplants)  or  from
transplanting  a  donor's  cells  (allogeneic  transplants).  Both  these  techniques  are
used commonly in medicine today and are often the only life saving or prolonging
treatment available to these patients.

Significant challenges lie ahead in hematopoietic regenerative medicine, and we
will discuss some of these in this chapter. In contrast to other stem cell types, such
as  embryonic  or  induced  pluripotent  stem  cells,  we  cannot  currently  maintain
HSCs  in  vitro  in  the  stem  cell  state  for  an  indefinite  period.  There  are  also
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significant challenges in finding appropriately matched HSCs for transplantation,
and  mitigating  the  many  complications  associated  with  HSC  transplantation.
Sourcing matched volunteers for blood donations for red blood cell and platelet
transfusions is a challenge globally. In some clinical cases, the problem is due to
defects in the hematopoietic niche, the supporting cells which maintain HSCs as
stem  cells.  Developing  novel  systems  to  obtain  patient-specific  HSCs  and
progenitors as well as novel methods for modifying and enhancing the HSC niche,
will  dramatically  improve  the  health  outcomes  of  a  vast  number  of  patients
suffering  from  hematopoietic  and  related  diseases.

Here,  we  will  discuss  the  link  between  blood  cell  generation  and  regenerative
medicine. In contrast to other systems, the hematopoietic system is more diffusely
scattered  throughout  the  body.  Regenerative  therapeutic  treatment  will  vary
according to patient needs and may include regeneration of failing bone marrow,
replacement of a deficient or defective thymus to produce T cells; re-construction
of a spleen or other hematopoietic tissue; or the generation of mature circulating
cells from an ex vivo or in vitro expanded progenitor population such as functional
red blood cells, mature platelets or granulocytes to supplement immunodeficient
individuals.

This discussion will  proceed in four sections.  Firstly,  the hematopoietic system
will be introduced. Secondly, the niches which regulate blood cell generation and
constant production will be described. The application of HSC transplantation to
the  treatment  of  a  range  of  human  diseases  is  one  of  the  major  forms  of
regenerative medicine and will be discussed at length in the third section. Finally,
focusing all of these studies onto future directions, we will discuss the application
of  novel  technologies  such  as  induced  pluripotent  stem  cells  and  tissue
engineering  of  blood  producing  tissues  to  the  treatment  of  hematological
disorders.

AN INTRODUCTION TO HEMATOPOIESIS

Hematopoiesis is the production of blood cells initiated in the early embryo and
maintained  throughout  life.  Maintenance  of  a  homeostatic  state  requires  the
genesis and consistent life-long production of a broad palette of blood cell types.
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CHAPTER 4

Cell-based Therapy in Veterinary Medicine
Chad Maki, Thomas Ramos and Fariborz Izadyar*
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Abstract: Cell-based therapy is a growing field in veterinary medicine and has created
a lot of hope and excitements for developing new therapies for degenerative diseases
that otherwise cannot be treated by traditional medical approaches. Clinical studies in
dogs, cats and horses show promising results indicating that stem cells and other cell-
based products may facilitate tissue repair and improve quality of life in companion
animals. In this review, different cell based therapies, their risks and benefits and their
possible therapeutic use for veterinary medical application will be discussed.

Keywords:  Companion  animals,  Degenerative  diseases,  Stem cells,  Veterinary
medicine.

RECENT ADVANCES AND APPLICATIONS OF CELL THERAPY

Cell  therapy  is  the  administration  of  live  cells  to  the  body  of  a  recipient  for
treatment of a medical condition. It could be for replacement of absent cells like
infusion  of  red  blood  cells  to  overcome  anemia,  administration  of  platelets  for
emergency thrombocytopenia, or application of T lymphocytes for regulation of
the  immune system and cancer  therapy.  This  type  of  cell  therapy  is  called  cell
replacement  therapy  and  is  commonly  used  in  medical  and  veterinary  medical
protocols. Cell therapy can also be used for regenerative medical applications. In
that case,  stem cells and progenitor cells  with the ability to produce other cells
will be used. A good example is the administration of bone marrow cells, which
contain hematopoietic stem cells for regeneration of the blood. This therapy can
help   reestablish   hematopoiesis   and   regenerate  blood  in  patients  undergoing
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cytotoxic  treatments  such  as  chemotherapy  or  radiotherapy.  Cell  products  with
regenerative  potential  can  regenerate  cells,  tissues  and  organs,  to  restore  or
establish  normal  function.  In  addition  to  live  cells,  regeneration  could  also  be
triggered  by  proteins  and  growth  factors,  extracellular  matrices,  scaffolds  and
small molecules, but these effects are generally transient, and repeated treatments
are required.

The nomenclature  to  identify  and describe  various  cells  is  to  use  the  cluster  of
differentiation (abbreviated as CD) distinction. It refers to protein structures (or
antigens)  embedded  on  the  outer  membrane  of  cells.  The  system  was  first
described to identify basic immune cells and since has been applied to many cell
types relevant for the immune system. Over the past 30 years, data generated by
the  Human  Leukocyte  Differentiation  Antigens  Workshops  have  led  to  the
characterization and formal designation of more than 400 CD molecules. These
CD molecules are commonly used as cell markers, allowing the identification and
isolation  of  leukocyte  populations,  subsets  and  differentiation  stages.  Some  of
these markers are commonly expressed by other cells including stem cells (Table
1).

Table 1. Some of the important CD molecules and their expression profile.

CD1 The first-named CD; this complex glycoprotein is expressed in immature T-cells, some B cells and
other, specialized immune cells in the skin.

CD3 A  multimeric  protein  complex,  known  historically  as  the  T3  complex,  and  is  part  of  the  T  cell
receptor.

CD4 A molecule on a mature “helper” T lymphocyte cell surface.

CD8 A molecule on a mature “cytotoxic” T lymphocyte cell surface.

CD19 A molecule on a mature B lymphocyte cell surface.

CD34 A monomeric cell surface antigen that is selectively expressed on hematopoietic progenitor cells.

CD90 Also  known  as  Thy-1.  CD90  is  expressed  on  neuronal  cells,  a  subset  of  CD34+  cells,  activated
endothelial cells and mesenchymal stem cells.

The  types  of  cells  used  in  cell  therapy  can  be  mature  cells,  such  a  T-cells  or
dendritic cells, to adult stem cells isolated from a fresh tissue source. An up and
coming  exciting  use  of  mature  cells  is  that  of  regulatory  T-cells  (Tregs)  in
therapeutic  applications.  CD4+Foxp3+  Tregs  are  long-lived  cells  that  suppress
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immune  responses  in  vivo  in  a  dominant  and  antigen-specific  manner.  Tregs
confer long-term protection against auto-inflammatory diseases in mouse models
and have been shown to be effective in suppressing alloimmunity in models of
graft-versus-host disease [1]. CD4+ Foxp3+ Treg therapy is now at the point to
evaluate its safety and efficacy within preclinical testing in humans [2, 3].

Another  interesting  mature  cell  type  being  explored  for  cell  therapy  is  the
dendritic  cell.  Dendritic  cells  are  highly  specialized,  bone  marrow-derived
antigen-presenting cells that induce or regulate innate and adaptive immunity. In
general, dendritic cells express CD11b and CD11c, although there are many more
markers to identify subsets of dendritic cells. Since the mid-1990s, dendritic cells
have been used in clinical trials as cellular mediators for therapeutic vaccinations
of patients with cancer. As sentinel members of the innate immune arm, dendritic
cells secrete protective cytokines (Table 2) in response to signals of inflammation
[4].  Interleukins  (ILs)  are  specific  types  of  cytokines  that  are  produced  by
leukocytes  for  regulating  immune  responses.  IL-6  and  IL-12  are  particularly
important because they play roles in establishing a local immune response. For
example, IL-6 secreted from dendritic cells has immunosuppressive properties and
IL-12 augments CD8 T cell activation. Dendritic cells capture process and present
antigens via  the major histocompatibility complex to naïve T-cells at  lymphoid
organs,  thereby  inducing  adaptive  CD4+  and  CD8+  T-cell-mediated  immune
responses [5, 6]. Dendritic cell based therapeutic immunotherapies with oncogene
inhibitors  in  patients  appear  to  be  the  method  of  choice.  Human  clinical  trials
investigating  targetable  tumors  are  underway  in  renal  cell  carcinoma,  prostate
cancer, breast cancer and melanoma [7, 8].

Table 2. Some of the important Cytokines produced and their function.

Cytokine Full Name Characteristic

IL-2 Interleukin-2 Promotes T cell expansion, used in immunotherapy to support large
numbers of tumor-infiltrating lymphocytes with anti-cancer activity.

IL-6 Interleukin-6
Multifunctional  cytokine  involved  in  modulating  various
physiological  events,  such  as  cell  proliferation,  differentiation,
survival,  and  apoptosis.

IL-10 Interleukin-10
Produced  by  cell  types  that  mediate  anti-inflammatory  activities,
induce regulatory T-cells, and are involved in immunosuppression
and tissue repair.
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Abstract:  Mesenchymal  stem  cells  (MSCs)  are  today,  the  most  favoured  cellular
candidates for regenerative therapeutics. Though discovered early in the 1960s, only
recent decades have witnessed extensive research involving MSCs. MSCs, termed as
multipotent mesenchymal stromal cells in 2006, by the International Society of Cellular
Therapy have gained greater acceptance in view of their ubiquitous presence in tissues,
exemption  from  ethical  concerns,  clonogenic  potential,  trilineage  differentiation,
versatile  plasticity  and  ability  to  orchestrate  host  tissue  interactions.  Biological
properties  of  MSCs  that  contribute  to  therapeutic  efficiency  include  facilitating
secretion  of  bioactive  factors,  induction  of  cellular  recruitment  and  retention  of
progenitor faculties. Researchers, however continue to be intrigued by variability in the
in vivo identity of MSCs which is influenced by various factors that include tissue of
origin, age of MSCs, number of isolates and isolation efficiency, associated metabolic
disorders, foetal or adult status, gene expression, protein and transcription factors and
allogenic  or  autologous  extract  .  Although  early  results  in  clinical  studies  are
promising, transformation of MSCs into a mature clinically viable option would mean a
patient wait.
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INTRODUCTION

Successive  failures  of  embryonic  stem cells  and induced pluripotent  stem cells
have potentiated the research utilization of mesenchymal stem cells (MSCs). As
defined by the International Society of Cellular Therapy, these multipotent, plastic
adherent spindle-shaped cells can be propagated through multiple passages in cell
culture and differentiated into osteogenic, adipogenic and chondrogenic lineages
under permissive conditions [1]. Conventionally isolated from the bone marrow,
over  the  past  couple  of  decades,  the  isolation of  MSCs has  been possible  from
virtually  every  tissue  [2]  exhibiting  similarity  in  morphology  and,  to  a  certain
extent in surface marker profile [3]. Culture-expanded MSCs may lose some of
these markers but continue to remain multipotential [3].

By  virtue  of  a  variety  of  biological  properties  exerted  either  individually  or  in
combination MSCs have contributed to therapeutic effects in a variety of disease
conditions  (Fig.  1).  The  distinguishable  properties  include  capability  to:
differentiate  into  different  cell  lineages,  homing  and  migration  to  sites  of
inflammation and injury, secrete bioactive molecules and promote repair, produce
immunomodulatory effects by interacting with the immune cells [4].

Though  all  MSCs  were  previously  regarded  as  having  low immunogenicity,  in
view of the low expression of MHC class I and II along with other co-stimulatory
molecules  such as  CD40,  CD80,  and CD86,  recent  studies  have suggested  that
allo MSCs may not be as immune-privileged [5] as previously reported except for
a few foetal origin MSCs [6], such as those from Wharton's jelly [7].

Owing to the ease of isolation and expansion, MSCs have been studied and have
undergone trials in a diverse range of clinical conditions ranging from graft versus
host  disease,  autoimmune  diseases  such  as  Crohn’s  disease,  cardiovascular
diseases such as acute myocardial infarction, stroke and orthopaedic applications
including bone and cartilage repair [8]. Primitive MSCs isolated from foetal and
perinatal tissues, umbilical cord, placenta, and amniotic fluid have been found to
possess longer telomeres [9], higher proliferative potential [10], greater colony-
forming capacity,  and ability to readily differentiate  into bone and muscle [11]
and in addition, into non-mesenchymal cells such as neural [12] and hepatic cells
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[13]. Increasing age of the MSC may limit the ability to be expanded, leading to
rapid  senescing  in  culture  and  restricted  differentiation  capacity.  In  addition,
differentiation capabilities, growth kinetics, and yield vary significantly between
MSC cell populations from different tissue sources, impacting their clinical utility
[14].

Fig. (1).  A schematic diagram of the biological properties of MSCs.

Safety profile of MSCs has been encouraging with no reports of any major health
concern in the various human disease settings and clinical trials conducted [15].
Further  studies  to  evaluate  tumor  formation  and  genomic  integrity  are  though
necessary, the results from current studies have demonstrated no solid evidence of
malignant  growth  or  cellular  transformation  induced  by  chromosomal
inconsistencies [16]. However there is concern about acquired mutations that may
induce transformation as a result of prolonged culture.

The lack of standard validated protocols for cell isolation, expansion, and quality
control hinder the monitoring of the clinical effectiveness of MSC-based therapy
[14].  The  absence  of  governmental  regulatory  policies  at  both  local  and  global
levels  may impact  the  advance  of  MSC-based  therapeutics  into  the  clinic  [17].
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