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PREFACE

Research in the rapidly emerging field of stem cells is playing a pivotal role in regenerative
medicine. The first 3 chapters of this volume deal with mesenchymal stem cell research. In
chapter  1,  Wei  Seong  Toh  presents  the  emerging  role  of  mesenchymal  stem  cell  (MSC)
secretome as a new paradigm in treating cartilage regeneration. The study of MSC secretome
allows a better mechanistic understanding of the role of MSCs in tissue repair and disease
treatment.

Mauricio et al. describe a promising strategy for the optimization of hybrid systems through
the association of biomaterials to dental pulp stem cells, in chapter 2. Dental pulp stem cells
can be easily isolated from deciduous and definitive teeth. In chapter 3, Kan et al. describe the
recent progress and the opportunities as well as challenges in MSC research.

Arteta  et  al.,  in  chapter  4,  discuss  current  studies  that  underline  the  importance  of  liver
progenitor  cells  (LPCs)  for  constructing  bioartificial  livers  and  as  the  source  of  cells  for
transplantation.

In  the  next  chapter,  Ward et  al.  present  new exciting  developments  in  cardiogenesis  from
bench-to-bedside. They review the heart development in different organisms, supplemented
with  insights  from  stem  cell  biology  and  clinical  studies,  which  will  throw  light  on  the
development  of  effective  stem cell  treatments  for  myocardial  infarction  and  other  cardiac
diseases. Yue et al., in their chapter 6, present an overview of different Ca2+ signalling events
in the differentiation of embryonic stem cells into cardiomyocytes.

The  last  two  chapters  deal  with  neurodegenerative  diseases.  Zareen  Amtul,  in  Chapter  7,
highlights the regenerative cell-based therapies that can be used to combat neurodegenerative
disorders. In the last chapter, García-Montes and Drucker-Colín discuss in detail about the
central role of stem cell transplantation to cure Parkinson´s Disease. They discuss the current
challenges in optimizing stem cell therapy for the treatment of Parkinson’s disease.

We hope that the readers will enjoy the comprehensive reviews on new developments in stem
cell  and  regenerative  medicine  research.  We  wish  to  thank  the  editorial  staff  of  Bentham
Science  Publishers,  particularly  Dr.  Faryal  Sami,  Mr.  Shehzad  Naqvi  and  Mr.  Mahmood
Alam for their constant help and support.

Prof. Atta-ur-Rahman, FRS
Honorary Life Fellow

Kings College
University of Cambridge

Cambridge
UK

&

Dr. Shazia Anjum
Department of Chemistry

Cholistan Institute of Desert Studies
The Islamia University of Bahawalpur

Pakistan
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CHAPTER 1

The  Emerging  Role  of  Mesenchymal  Stem  Cell
Secretome in Cartilage Regeneration
Wei Seong Toh*

Faculty of Dentistry, National University of Singapore, Singapore
Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore

Abstract:  Articular  cartilage has a  limited capacity to  repair  following injury.  As a
result, cartilage injuries often progress to serious joint disorders such as osteoarthritis.
Mesenchymal stem cells (MSCs) are currently being evaluated in clinical trials as the
therapeutic cell source for treatment of cartilage lesions and osteoarthritis. In addition
to  their  differentiation  potential,  it  is  widely  accepted  that  the  beneficial  actions  of
MSCs can also be mediated by their secretome. Of note, it has been demonstrated that
MSCs are able to secrete a broad range of trophic factors and matrix molecules in their
secretome to modulate the injured tissue environment and direct regenerative processes
including  cell  migration,  proliferation  and  differentiation  to  mediate  overall  tissue
regeneration.  The  study  of  MSC  secretome  not  only  allows  a  better  mechanistic
understanding  of  the  role  of  MSCs  in  tissue  repair  and  disease  treatment,  but  also
enables  the  potential  development  of  the  next-generation,  ready-to-use,  highly-
amenable  and  ‘cell-free’  therapeutics  for  clinical  application.  In  this  chapter,  we
present  the  latest  understanding  of  MSC  secretome  and  its  components  as  a  new
paradigm for the treatment of cartilage lesions and osteoarthritis.

Keywords:  Cartilage,  Exosomes,  Extracellular  vesicles,  Immunomodulation,
Mesenchymal  stem  cells,  Osteoarthritis,  Secretome,  Tissue  regeneration.

INTRODUCTION

Articular  cartilage  is  a  unique  hypocellular,  avascularized  and  aneural  load-
bearing tissue, supported by the underlying subchondral bone [1].  Due to the lack
of vascularization, articular cartilage has a limited capacity for regeneration upon
injury.  Articular  cartilage  injuries  have  a  high  incidence  and  therefore  a  high
socio-economic  and  healthcare  impact  that  cannot  be  underestimated.  In  knee
joint  alone,  ~60%  of  patients  who  underwent  arthroscopy  displayed  cartilage
lesions  [2].  When left untreated,  these lesions can lead to osteoarthritis (OA), an
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inflammatory and degenerative joint disease characterized by the degradation of
the articular cartilage, subchondral bone, meniscus, ligaments, and the formation
of  painful  osteophytes.  OA  is  the  most  common  form  of  arthritis  affecting
numerous joints  including the knee joint,  hip joint,  and the temporomandibular
joint (TMJ), and is the leading cause of disability worldwide [3, 4].

Current  treatment  options  for  articular  cartilage  injuries  include  arthroscopic
lavage  and  debridement,  microfracture,  osteochondral  grafting,  and  autologous
chondrocyte  implantation  (ACI)  [2].  While  there  are  tissue  repair  with
symptomatic  relief,  most  cartilage  repair  techniques  lead  to  fibrocartilaginous
tissue repair that lacks the structural organization and matrix composition of the
native articular cartilage.

Stem cells represent a promising cell source for cartilage repair [5, 6]. Currently,
stem  cells  are  classified  into  embryonic  or  ‘pluripotent’  stem  cells,  and  non-
embryonic  ‘somatic’,  ‘adult’  or  ‘tissue’  stem /  progenitor  cells  [6].  Embryonic
stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass of a
blastocyst, an early-stage preimplantation embryo, and are defined by two distinct
properties: pluripotency and unlimited self-renewal. They are able to differentiate
into  cell  derivatives  of  the  three  primary  germ  layers  including  ectoderm,
endoderm and mesoderm [7]. With advances in stem cell biology, personalized
pluripotent stem cells, also known as induced pluripotent stem cells (iPSCs) can
be  derived  from  somatic  cells  through  reprogramming  using  defined  gene  and
protein factors [8]. Of note, several groups have reported differentiation of human
ESCs  and  iPSCs  to  chondrocytes  [9  -  12],  and  demonstrated  the  functional
efficacy  of  these  cells  for  cartilage  repair  in  animal  studies  [13  -  16].

Adult  stem  /  progenitor  cells  are  undifferentiated  multipotent  cells  present  in
various adult tissues as they contribute to the physiological cell turnover as well
as to tissue repair. Among these adult stem cells, mesenchymal stromal/stem cells
(MSCs) are the most extensively studied and used cell type in clinical trials and
have been heralded as the next major development for treatment of tissue injuries
and diseases (http://www.clinicaltrials.gov).  Of note,  MSCs are currently being
evaluated  in  clinical  trials  for  treatment  of  cartilage  injuries  and  osteoarthritis
(OA) [17, 18]. While it is clear that MSCs are able to differentiate in vitro into a
variety of cell  types including chondrocytes,  osteoblasts  and adipocytes,  MSCs
are  increasingly  being  investigated  and  harnessed  for  their  trophic  functional
abilities [6, 19]. This book chapter aims to discuss the role of MSCs in cartilage
regeneration  and  to  present  the  latest  development  of  MSC  secretome  and  its
components  as  a  new  paradigm  for  treatment  of  cartilage  injuries  and
osteoarthritis.

http://www.clinicaltrials.gov
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MESENCHYMAL STEM CELLS

Mesenchymal stromal/stem cells (MSCs) are multipotent adult stem cells capable
of  self-renewal  and  multi-lineage  differentiation  into  osteoblasts,  chondrocytes
and  adipocytes  [20].  They  are  easily  isolated  from  a  wide  variety  of  tissues
including bone marrow, muscle, adipose tissue, blood, and synovium [21 - 23].
MSCs are isolated as a heterogeneous cell population and characterized by their
ability to adhere to plastic, form colonies in colony-forming unit-fibroblast (CFU-
F) assay, and differentiate into osteoblasts, chondrocytes and adipocytes [20, 24].
According to the minimal criteria defined by the Mesenchymal and Tissue Stem
Cell Committee of the International Society for Cellular Therapy (ISCT), MSCs
are positive for cell surface markers CD73, CD90 and CD105, and negative for
CD34,  CD45,  CD11b,  CD14,  CD19,  CD79a  and  human  leukocyte  antigen
(HLA)-DR  surface  molecules  [25].

MESENCHYMAL STEM CELL-BASED THERAPIES FOR CARTILAGE
REPAIR

Several  MSC-based strategies for cartilage repair  have been reported in animal
[26]  and  clinical  studies  [17].  MSCs  can  be  used  in  direct  cell  transplantation,
and/or  in  combination  with  growth  factors  and  scaffolds  [26].  Direct
transplantation  of  MSCs  occur  commonly  in  the  form  of  fresh  marrow  or
monolayer expanded and selected cells [27]. The use of fresh marrow or freshly
isolated  mononuclear  cells  is  gaining  interest  due  to  their  rapid  availability
without the need for cell expansion [28]. Furthermore, fresh marrow comprises
not only MSCs but also accessory cells and growth factors.

However,  in  all  above  described  cell-based  strategies  for  cartilage  repair,  the
culture conditions remains an issue, and there is currently poor standardization for
the  culture  conditions  and  the  number  of  cells  needed  for  transplantation  with
respect to various sizes and types of cartilage lesions [29]. As with all cell-based
therapies, there exist significant logistical and operational challenges associated
with proper handling and cell storage to maintain the vitality and viability of the
cells for transplantation [30]. With advances in proteomics, it is becoming clear
that MSCs not only exhibits ability to differentiate into multiple lineages, but also
secrete  a  broad spectrum of  trophic factors  in  the secretome that  are  mediating
various aspects and processes of tissue repair and regeneration [19] (Fig. 1). In the
past  decade,  the  investigation  of  MSC  secretome  has  therefore  gained  much
attention,  with  the  interest  to  decipher  the  factor  (s)  mediating  the  biological
activity  of  MSCs  in  tissue  repair.



Frontiers in Stem Cell and Regenerative Medicine Research, 2017, Vol. 6, 21-70 21

CHAPTER 2

The Potential Clinical Application of Mesenchymal
Stem Cells from the Dental Pulp (DPSCs) for Bone
Regeneration
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Abstract:  The skeleton has  the  vital  role  of  providing support  and protection to  all
body organs, as well as to function as storage system for ions and other components
essential  to  its  homeostasis,  also  presenting essential  function in  the  movement  and
posture  of  the  individual.  Bone  fractures  are  a  fairly  common  situation  affecting
individuals of all ages, but gain importance when concomitant pathologies are present
or when the bone lesions’ extension exceeds the tissues’ intrinsic healing capabilities.
As  such,  biomedical  research  has  invested  in  unveiling  adequate  therapies  to  aid  in
those  cases.  The  tissue  engineering  field  has  therefore  evolved  in  the  direction  of
developing biomaterials and scaffolds to structure, support and promote bone ingrowth,
and  in  developing  strategies  to  optimize  these  biomaterials  in  vivo  performance,  by
including cell-based therapies and growth factors. Herein, we discuss one promising
strategy  for  the  optimization  of  these  hybrid  systems,  through  the  association  of
biomaterials to a specific source of mesenchymal stem cells: the dental pulp stem cells.
Dental  pulp  stem  cells  can  be  found  in  individuals  of  any  age,  and  can  be  easily
isolated  from deciduous  and definitive teeth,  expanded and cryopreserved for  further
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use.  These  cells  are  capable  of  differentiating  towards  multiple  lineages,  presenting
great potential for osteo-differentiation. Dental pulp stem cells have been demonstrated
to incorporate diverse biomaterial systems and promote mineral deposition both in vitro
and in vivo, aiming at the reconstruction of osseous defects, in either experimental or
clinical situations. The mesenchymal stem cells from the dental pulp can also be found
and  isolated  from  many  species  other  than  humans,  granting  them  potential  to  be
implemented not only in human medicine but also in veterinary care practices, and in
regenerative strategies for other organs and tissues, such as dental reconstruction and
nervous system regeneration.

Keywords:  Adult  teeth,  Animal  models,  Biomaterials,  Bone regeneration,  Cell
isolation,  Cell  sources,  Ceramic  biomaterials,  Deciduous  teeth,  Dental  cells,
Dental  pulp,  Dental  regeneration,  Differentiation,  Growth  factors,  In  vitro,  In
vivo,  Mesenchymal  stem  cells,  Nerve  regeneration,  Stem  cells,  Tissue
regeneration,  Tooth.

INTRODUCTION

Nearly 30 years ago, Vacanti [1] described the transplantation of cells using bio-
absorbable polymer matrices. That was the beginning of tissue engineering, then
described as “an interdisciplinary field that applies principles of engineering and
life  sciences  toward  the  development  of  biological  substitutes  that  restore,
maintain, or improve tissue function”. The fundamentals of tissue engineering are
based on three major pillars: scaffolds, cells and regeneration factors, all deemed
essential for the success of stem cells based therapies (Fig. 1) [2 - 4].

Stem  cells  are  responsive  undifferentiated  cells  with  varying  degrees  of  self-
proliferation and differentiation plasticity. These characteristics makes stem cells
attractive as tissue regeneration motors [5]. Although the number of stem cells is
higher before birth, in the adult there are still several “niches” with a significant
number of stem cells [6].

The  stem  cells  “niches”  in  adults  include  the  skin,  adipose  tissue,  peripheral
blood, bone marrow, pancreas, intestine, brain, hair follicles, and others, as well
as in the dental pulp [7]. In this review we focus on dental pulp derived stem cell
population. Dental stem cells (DPSCs) are one good alternative to other sources’
cells due to their easy collection from healthy donors and high proliferation and
differentiation  ability  [8  -  11],  with  the  advantage  of  being  collect  from  both
infants and adults, which are frequently subjected to dental orthodontic treatments
that imply the removal of healthy teeth.
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Fig.  (1).   The  three  pillars  of  tissue  engineering  –  the  biomaterial  scaffolds  that  provide  structure  and  a
protective  environment  for  the  tissue  regeneration;  the  cells  that  motor  the  regeneration  itself;  and  the
regeneration factors that promote and enhance cell growth and differentiation.

DENTAL STEM CELLS

Tooth Anatomy and the DPSCs Niche

Human teeth are an incredibly specialized organ composed of the crown (visible
part that protrudes from the gingiva), the neck (the transition area), and the root
(anchored to the alveolar bone). The external layer of the tooth is composed by
enamel that covers and provides protection to the intermediate dentine part, and
the  inner  pulp.  Throughout  life,  human  exhibit  two  series  of  teeth:  the  initial
deciduous  teeth  (that  start  sequentially  erupting  around  six  months  of  age),
followed by permanent / term or definitive teeth. The latest set of dentition starts
developing from the tooth germ at approximately six years of age and sequentially
‘pushes out’ the deciduous dentition, in approximately six years (with exception
for the 3rd molars or ‘wisdom teeth’ that, when present, arise around the twentieth
year of age) [12].
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CHAPTER 3

Mesenchymal  Stem  Cells  in  Regenerative
Medicine: The Challenges and the Opportunities
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Abstract:  Regenerative  medicine  generally  aims  at  re-establishing  the  normal
functions by replacing the damaged body parts through stem cells or other biomedical
approaches.  The  tremendous  opportunities  of  mesenchymal  stem  cells  (MSCs)  in
regenerative  medicine  have  long  been  recognized.  However,  this  potential  “off-the-
shelf” therapeutic product is still facing daunting challenges. In this chapter, we intend
to update the recent progresses and highlight the opportunities and the key challenges
in the field. Our discussion has direct implications for identifying new directions for
the future basic research as well as clinical applications of MSCs.

Keywords:  Autoimmune  diseases,  Bone  and  cartilage  diseases,  Cell  surface
markers, Cell therapy, Cell transplantation, Clinical trial, Degenerative diseases,
Immunomodulation, Mesenchymal stem cells (MSCs), “Off-the-shelf” therapeutic
product, Pre-clinical investigation, Regenerative medicine, Safety profile, Tissue
repair, Tissue engineering, Translational applications.

INTRODUCTION

Regenerative  medicine  deals  with  the  process  of  engineering,  replacing,  or
regenerating human cells, tissues or organs to restore or establish normal function.
Regenerative medicine, in its broad sense, is not a new medical discipline, since
the first  successful bone graft  (bone from a dog’s skull  used to repair defect in
human  cranium)  documented  by  van  Meenerenin  in  1668,  the  first  thyroid
transplant was  performed by the  Swiss  surgeon  Kocher  in  1883,  and  the  first

* Corresponding  author  Lixin  Kan:  School  of  Basic  Medical  Sciences,  Anhui  Medical  University,  Hefei,
Anhui,  China;  Department  of  Medical  Laboratory  Science,  Bengbu  Medical  College,  Bengbu,  Anhui,  China;
Department of Neurology, Northwestern University, Chicago, USA; Tel: 001-312-503-2791; Fax: 001-312-503-2793;
E-mail: l-kan@northwestern.edu

Atta-ur-Rahman & Shazia Anjum (Eds.)
All rights reserved-© 2017 Bentham Science Publishers

mailto:l-kan@northwestern.edu


72   Frontiers in Stem Cell and Regenerative Medicine Research, Vol. 6 Kan et al.

corneal  transplant  was  performed  by  Zirm  in  1906.  However,  the  term  of
“regenerative  medicine”  was  coined  much  later  by  Kaiser  in  1992  [1].

The  first  multipotent  adult  stem  cell  population,  the  hematopoietic  stem  cell
(HSC),  which  gives  rise  to  all  the  blood  cells,  was  discovered  in  the  1950s.
Subsequent investigations, in the 1960s -1970s, from Friedenstein and colleagues
found that bone marrow also contains non-hematopoietic clonogenic stromal cell
population [2 - 4], referred to as colony-forming unit-fibroblasts (CFU-F). These
studies revealed the plasticity of these marrow cells, i.e., these cells possess the
multipotent properties of adult stem cells. For this reason, these cells were later
called mesenchymal stem cells (MSCs) [5, 6].

Confusingly,  there  are  many  slightly  different  terms  or  definitions,  such  as
mesenchymal  stromal  cells  (MSCs)  [7],  multipotent  adult  progenitor  cells
(MAPCs) [7], multipotent adult stem cells (MASCs) [8], multilineage progenitor
cells  (MLPC)  [9]  and  skeletal  stem cells  (SSCs)  [10],  that  presumably  refer  to
similar,  if  not  exactly  the  same  cell  population  [11],  and  there  are  also  other
clearly  distinct  MSC  subpopulations  or  MSC-like  cells,  such  as  very  small
embryonic-like  (VSEL)  stem  cells  [12,  13],  multilineage-differentiating  stress
enduring (Muse) cells [14] and unrestricted somatic stem cells (USSC) [15] that
are presumably with unique cell surface markers and differential potentialities. All
these cause a great deal of controversies.

Nevertheless, since their original description, the presence of MSCs or MSC-like
cells has been proven in almost all adult tissues such as adipose tissue [16, 17],
muscle  [18],  peripheral  blood  [19],  lung  [20],  heart  [21],  corneal  stroma  [22],
dental pulp [23], placenta [24], endometrium [25], amniotic membrane [26], and
Wharton’s jelly [27]. More importantly, this adult stem cell population possesses
many desirable features, such as easy accessibility without any significant ethic
concern,  excellent  safety  profile  (non-tumorigenic  and  non-  or  low-
immunogenic),  ability  to  exert  trophic  effects,  self-renewal  and  multipotent
differentiation,  anti-apoptotic  and  immunomodulatory  effects,  and  capacity  for
migration to the injury site, i.e., homing [28], and participating in regeneration in
a variety of tissues (Table 1).  It  is  no wonder that  the translational potential  of
cells was almost immediately recognized, especially for regenerative medicine.

Recent  years  witnessed  the  incredible  progression  and  transformation  of
regenerative medicine, which mainly reflects the tremendous advances in the stem
cell field. In fact, armed with MSCs, regenerative medicine is now unquestionably
an active branch of translational research that could offer solutions and hope for
people  who  have  conditions  that  are  currently  beyond  repair.  The  typical
approaches of modern regenerative medicine include:1) the injection of stem cells
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or progenitor cells (cell therapies), 2) the induction of regeneration by biologically
active  molecules  administered  alone  or  as  a  secretion  by  infused  cells
(immunomodulation therapy), and 3) transplantation of in vitro grown organs and
tissues (tissue engineering).

Table 1. Advantages and disadvantages of the different types of stem cells.

Stem cells Advantages Disadvantages References

embryonic stem
cells(ES)

pluripotent, relatively easy to
propagate

ethical concerns, ability to form
tumors including teratoma

[34, 35]

induced pluripotent
stem cells (iPSC)

Similar to ES but less controversial,
no ethical concerns

low efficiency, genomic
insertion, incomplete
reprogramming

[36, 37]

mesenchymal stem
cells(MSC)

easy accessibility, no ethic concern,
excellent safety profile, trophic
effects, multipotent, anti-apoptotic,
immunomodulatory, homing

heterogeneous, long-term
expansion may cause
phenotypical changes and
senescence

[38 - 40]

The  unique  features  of  MSCs  and  the  enormous  unmet  needs  of  regenerative
medicine strongly justified the tremendous worldwide effects that have devoted to
realize  the  potentials  of  MSCs  for  treatment  of  a  variety  of  different  clinical
disorders  (see  Table  2  for  the  ongoing  clinical  trials).  In  fact,  the  scope  of  the
opportunities,  including basic  researches [29],  translational  researches [30]  and
clinical applications [31], are overwhelmingly broad to be covered at a reasonable
depth.  Therefore,  in  this  chapter,  we  will  have  to  focus  only  on  the  selected
subtopic,  i.e.,  1)  perspective  of  MSCs  in  regenerative  medicine,  2)  the
phenotypical  characteristics  of  MSCs  and  the  related  challenges,  and  3)  the
clinical  opportunities  and  the  challenges.  In  this  section,  we  focus  only  on
regenerative  medicine,  especially  the  highly  impact  disorders.

On the other hand, MSCs are also facing daunting challenges despite decades of
intense research and many ongoing clinical trials [32, 33] (Table 2). In fact, the
practical  and  theoretical  challenges  that  have  bottlenecked  the  field  so  far  are
almost  as  great  as  the  opportunities,  if  not  more  overwhelmingly.  Therefore,
similarly,  we  will  focus  only  on  the  most  important  challenges.

Overall, our main aims of this chapter are to outline the current understanding of
the selected field,  update the recent  progress  and highlight  the opportunities  as
well  as  the  key  challenges.  Hopefully,  our  discussion  will  help  clarify  the
confusion,  put  the  key  issues  in  right  perspective  and  identify  new  fruitful
directions  for  the  future  research  as  well  as  clinical  applications.
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CHAPTER 4

Liver Regeneration: An update on the Role of Non-
Parenchymal Cells
Beatriz  Arteta*,  Antonia  Alvarez,  Joana  Marquez,  Aitor  Benedicto  and
Enrique Hilario
Department  of  Cell  Biology  and  Histology,  School  of  Medicine  and  Enfermery,  University  of
Basque Country, E-48940 Leioa, Spain

Abstract:  Many  advances  have  been  made  during  last  years  in  the  field  of  liver
regeneration. Current studies underline the importance of liver progenitor cells (LPCs)
as one of the sources for constructing bioartificial livers (BAL) and as source of cells
for  transplantation.  However,  the  liver  microenvironment  is  also  formed  by  non-
parenchymal cells (NPCs) that interact with LPCs and parenchymal cells during liver
regeneration. Recent advances in liver tissue engineering have shown the importance of
NPCs in extracorporeal systems, such as bioreactors for BAL or in several systems of
3D  culture  in  combination  with  either  hepatocytes,  hepatoblast  or  LPCs.  A  precise
knowledge of the functional role and the relationships between the diverse liver cell
types is of great importance in the development of a liver organoid. Thus, this review
focuses on the role of NPCs during liver regeneration in regard to their relationship
with  LPCs,  and  their  potential  use  in  3D  and  extracorporeal  systems  in  order  to
improve  their  efficacy  and  thus,  their  potential  to  be  in  the  clinical  setting.

Keywords:  3D  co-culture,  Bioartificial  liver,  Bioreactor,  Extracellular  matrix,
Hepatic  stellate  cells,  Hepatic  stem  cells,  Hepatocytes,  Kupffer  cells,  Liver
progenitor  cells,  Liver  regeneration,  Liver  sinusoidal  endothelial  cells,  Non-
parenchymal  cells.

INTRODUCTION

The liver is a complex organ with an impressive regenerative potential to recover
normal  liver  function  after  injury.  Even  though  hepatocytes  are  the  main
contributors  to normal cell  turnover and to liver  regeneration (LR) after  partial
hepatectomy (PH),  when the  regenerative  capacity of the  liver is impaired, liver
progenitor cells (LPCs) become activated [1, 2], proliferate and differentiate.
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LPCs consist in a bipotential progenitor cells which differentiate into hepatocytes
as  well  as  into  cholangiocytes  [3]  depending  on  the  signals  they  receive  from
other liver cells present in the liver microenvironment, including liver sinusoidal
endothelial  cells  (LSECs),  liver macrophages,  Kupffer cells  (KCs),  and hepatic
stellate  cells  (HSCs),  and  also  by  signals  from  the  extracellular  matrix  (ECM)
they produce [2]. In fact, activating signals from such various sources can easily
reach the LPCs in liver diseases of diverse etiologies [4, 5].

The liver microenvironment is a complex milieu composed of different cell types
which  actively  interact  with  each  other  in  a  well-orchestrated  cellular  and
molecular  cross-talk  in  the  different  liver  cell  compartments  [6].  Interleukin-6
(IL-6),  Tumor  Necrosis  Factor-alpha  (TNF-α)  [7],  Osteopontin,  Transforming
Growth Factor beta (TGFβ) [8], TNF-like weak inducer of apoptosis (TWEAK)
[9], Hepatocyte Growth Factor (HGF) [10] are just a few examples of cytokines
and  growth  factors  produced  by  the  liver  cells,  capable  of  promoting  LPC-
mediated regeneration [11]. The joint action of these soluble factors together with
cell-cell interaction and with the surrounding ECM will decide the fate of LPCs
either into mature hepatocytes or cholangiocytes.

Nowadays, very active research is being carried out concerning the potential use
of NPCs and LPCs in the construction of bioartificial livers and 3D co-cultures
systems for clinical application. As a result many in vitro and in vivo models are
being developed to look deep into the mechanisms of liver injury and generate
new and improved models in order to apply them on a daily basis-clinical setting.
Even  though  this  active  investigation  has  led  to  a  significant  increase  in  our
knowledge in the last decade, more research is needed to comprehend the intricate
network of cells and molecules that form the liver microenvironment.

Non Parenchymal Cells within the Liver Microenvironment

The liver is mainly formed by parenchymal cells, namely hepatocytes, and NPCs
consisting  in  LSECs  [12],  KCs  [13],  HSCs  [14],  lymphocytes  and  biliary
epithelial cells [15, 16] (Fig. 1). Additionally, even though the liver contains less
proportion of ECM compared to other organs, liver ECM plays an important role
in maintaining the differentiated phenotype of hepatocytes and NPCs [17, 18]. In
this  review  we  will  focus  our  attention  on  the  main  NPCs  leaving  out  the
lymphocytes  for  further  studies  due  to  their  complexity  in  function  and  cell
components, and also the biliary component, which has been already extensively
reviewed [19, 20].

The  endothelial  cells  lining  the  hepatic  sinusoids  differ  in  many  aspects  from
other endothelial cells. They are fenestrated and do not possess a regular basement
membrane. Additionally, LSECs express multiple endocytic receptors and surface
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molecules which endow them with the ability to regulate the homeostasis and the
immunological function of the liver [21 - 23].

Fig. (1). Schematicview of the liver sinusoids and portal triad.  Liver progenitor cells  (LPCs)  are located
in the canal of Hering in the area of the bile ducts. LPCs are in close vicinity with nonparenchymal cells
(NPCs) which include liver sinusoidal endothelial cells (LSECs), Kupffer cells (KCs), hepatic stellate cells
(HSCs) and lymphocytes (NK cells, NKT cells, neutrophils, among others).

Liver macrophages/Kupffer cells lie in the hepatic sinusoids in close contact with
LSECs and represent the bigger population of resident macrophages of the body
[24]. They stand as a first line of defense against circulating pathogens and are
able  to  initiate  an  inflammatory  response  in  the  liver  by  releasing  multiple
mediators  involved  in  pathological  processes  [25].

The HSCs are resident perisinusoidal cells which possess a key role in normal and
injured liver.  HSCs take part  in  the diseases causing chronic liver  injury by its
contribution  to  portal  hypertension,  increased  fibrogenesis,  amplification  of
inflammation and altered matrix degradation [26].These myofibroblast-like liver
non-parenchymal  cells  mediate  the  ECM  deposition  and  remodeling  in  the
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CHAPTER 5

Cardiogenesis  and  Repair:  Insights  from
Development and Clinical Trials
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Abstract:  Cardiovascular  diseases  are  major  contributors  to  global  mortality.
Myocardial  infarction represents  a  significant  complication of  one such disease that
affects a very large population worldwide, with the ischemic region and the resultant
scar  tissue  generated  reducing  cardiac  function  and  becoming  a  focus  for  recurrent
infarctions.  Several  stem  cell  therapy  approaches  aimed  at  regenerating  the  non-
functional  myocardium  have  emerged  using  multipotent  and  pluripotent  stem  cells.
However, many of the pre-clinical and clinical trials have not yielded the anticipated
outcomes, and so different strategies are now being explored to achieve regeneration.
The failure of these stem cell therapies may be partially attributable to the dearth of
information  on  human cardiac  developmental  and  regenerative  pathways.  However,
numerous  studies  have  investigated  cardiogenesis  and  heart  regeneration  in  model
organisms,  which  have  provided  considerable  insights  into  the  processes  of  cardiac
development,  and  other  studies  on  the  differentiation  of  pluripotent  stem cells  have
largely  corroborated  these  findings.  Here  we  review  heart  development  in  different
organisms,  supplemented  with  insights  from  stem  cell  biology  and  clinical  studies,
which will underpin the development of effective stem cell treatments for myocardial
infarction and other cardiac insults.

Keywords:  Cardiogenesis,  Chicken,  CVD,  EPC,  Fruit  fly,  HSC,  Human,
Mesoderm,  Mouse,  MSC,  Myocardial  infarct,  Regeneration,  Stem  cells,  Toad,
Zebrafish.

INTRODUCTION

Cardiovascular  diseases  (CVDs)  –  including  coronary  heart  disease,  ischemic
heart  disease,  cardiomyopathies,  cardiac  dysrhythmias,  cerebrovascular  disease,
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peripheral  arterial  disease,  rheumatic  heart  disease,  congenital  heart  disease,
valvular  heart  disease,  deep  vein  thrombosis  and  pulmonary  embolisms  –  are
major causes of mortality worldwide. In 2008, CVDs were the leading cause of
mortality  due  to  non-communicable  diseases  globally  (17  million  deaths/57
million  total)  [1],  while  in  the  USA  the  deaths  attributable  to  non-congenital
CVDs  were  236.1  per  1000  in  2009.  CVDs  also  affect  the  quality  of  life  and
productivity of affected individuals [2]. Due to these glaring statistics, extensive
research has been directed towards understanding CVDs and developing effective
treatments.

Ischemic heart disease (IHD) is one of the major CVDs in terms of morbidity and
mortality.  IHD  is  caused  by  a  reduction  of  blood  flow  due  to  atheroma,
thrombosis  or  spasm,  or  decreased  blood oxygenation  due  to  anemia,  carboxy-
hemoglobulinemia and other causes. One of the main complications of ischemic
heart disease is myocardial infarction (MI), a consequence of ischemia-induced
cardiomyocyte  death,  which typically  occurs  due to  the rupture  or  erosion of  a
coronary artery plaque. MIs initially affect the sub-endocardial myocardium, but
prolonged  ischemia  can  extend  this  to  the  sub-epicardial  myocardium.
Complications  arising  due  to  MI  include  heart  failure,  myocardial  rupture,
aneurysmal  dilatation,  ventricular  septal  defect,  mitral  regurgitation,  cardiac
arrhythmias, atrial fibrillation, conduction disturbances and post MI pericarditis. It
was estimated that in the USA alone the number of individuals who have suffered
MI was 7.6 million and heart failure was 5.1 million [2]. Following a MI episode
a  cascade  of  events  occurs  in  the  myocardium  leading  to  activation  of  repair
mechanisms,  including  within  non-infarcted  myocardium.  This  is  principally
mediated by myofibroblasts that proliferate in response to tumor growth factor β
(TGFβ),  leading to formation of scar tissue due to the expression of type I  and
fibrillar  collagen  [3  -  5].  The  process  also  involves  the  activation  of  matrix
metalloproteinases  (MMPs)  that  facilitate  the  migration  of  circulatory
inflammatory cells such as neutrophils and monocytes to the infarct site, where
they participate in the phagocytosis and proteolytic digestion of infarcted tissue
[4,  6].  The  current  treatment  of  MI  involves  revascularization,  therapeutic
vasodilation and surgical interventions [7]. The management of this condition also
includes  changes  in  lifestyle  to  reduce  risk  factors  associated  with  further
episodes. These existing approaches provide relief from symptoms and survival
benefits, but fail to restore the damaged myocardial tissue to a healthy and fully
functional state.

Regenerative medicine represents the means to effectively treat CVDs, providing
the ability to generate new myocardial tissue in situ. However, to do so effectively
requires  a  detailed  understanding  of  cardiogenesis  and  cardiac  stem  cells.  A
variety  of  experimental  systems,  including  both  model  organisms  and  cultured
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stem cells, continue to provide important information in this regard. This Chapter
reviews these experimental systems, their  application to studying cardiogenesis
and cardiac repair, as well as the essential lessons learned for clinical applications.

MODEL ORGANISMS IN THE STUDY OF CARDIOGENESIS

Introduction to Cardiac Development

A  wide  variety  of  model  organisms  have  been  studied  to  understand  the
mechanisms  involved  in  embryonic  development,  which  has  provided
comprehensive insights with relevance to human development. For cardiogenesis,
these  include  invertebrate  species  like  insects,  such  as  fruit  fly  (Drosophila
melanogaster)  [8  -  10],  along  with  several  vertebrate  species,  most  notably
zebrafish (Danio rerio) [11 - 18], toad (Xenopus sp.) [19], chicken (Gallus gallus)
[20  -  32],  and  mouse  (Mus  musculus)  [33,  34].  Collectively,  studies  in  those
model organisms have revealed a high degree of conservation of the mechanisms
involved  in  cardiogenesis  during  evolution,  and  allowed  the  dissection  of  the
chronology,  morphogenesis,  cellular  ontogeny  and  molecular  pathways
underlying  this  process.

Fruit Fly Cardiac Development

Heart tube development in fruit fly has provided a unique model system for the
study of cardiogenesis. Its simplicity has facilitated the identification of the key
factors involved, while its accessibility has meant that the morphological events
during heart formation have been able to be dissected at the single cell level.

The heart or ‘dorsal vessel’ in the fruit fly consists of two types of cells, namely
the  cardioblasts  and  pericardial  cells,  each  of  which  develop  from  cardiac
progenitors  in  the  lateral  mesoderm  as  longitudinal  rows  (Fig.  1A).  The
cardioblasts develop segmentally and migrate to the midline to form the lumen of
the dorsal vessel (Fig. 1B). The fully-developed adult heart consists of this simple
linear tube, divided into anterior and posterior chambers, in which the contractile
cardiomyocytes are derived from the cardioblasts and are flanked by pericardial
cells (Fig. 1C) [35, 36].

The molecular events co-ordinating the regulated movements of cardiomyocytes
in  fruit  fly  are  highly  conserved,  with  their  vertebrate  homologs  shown  to  be
involved  in  cardiogenic  specification  and  heart  development  (Table  1).  The
tinman gene, encoding a homolog of NKX2.5, was found to be expressed in the
dorsal  tip  of  the  mesoderm,  which  contains  the  cardiac  precursor  cells  and
continues to be expressed in the heart progenitors until late embryonic stages [37].
The  induction  of  tinman  requires  expression  of  twist  in  the  presumptive
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CHAPTER 6

The Role of Ca2+ Signalling in the Differentiation of
Embryonic Stem Cells (ESCs) into Cardiomyocytes
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Abstract:  Embryonic  stem  cells  (ESCs)  possess  the  capability  of  self-renewal  and
pluripotency.  They can propagate indefinitely and differentiate into any type of cell
derived from the endoderm, mesoderm and ectoderm. This makes them ideal for basic
research  as  well  as  for  the  development  of  treatments  and  cures  for  a  variety  of
different diseases. This is especially so for developing methods to treat heart disease,
where  they  might  be  used  for  screening  cardiovascular  drugs  or  for  improving
transplantation procedures in a clinical application. Thus, understanding the pathways
involved  in  the  regulation  of  the  differentiation  of  ESCs  into  cardiomyocytes  and
developing  efficient  and  reliable  methods  to  induce  differentiation,  are  key  to  the
progress of cardiac research. In this chapter, the main methods currently used to induce
the differentiation of ESCs into cardiomyocytes are reviewed. These include the use of
embryoid  body (EB)-dependent  cultures,  two-dimensional  (2D)  monolayer  cultures,
and  the  co-culture  of  human  ESCs  (and  iPSCs)  with  mouse  visceral  endoderm-like
stromal  (END-2)  cells.  We  also  present  a  broad  overview  of  the  different  Ca2+

signalling  events  that  are  known  to  occur  during  the  differentiation  of  ESCs  into
cardiomyocytes. These include: 1) Ca2+ mobilization from the endoplasmic reticulum
(ER)/sarcoplasmic reticulum (SR) mediated by inositol 1,4,5-trisphosphate receptors
(IP3Rs)  and  ryanodine  receptors  (RyRs);  2)  the  possible  involvement  of  cluster  of
differentiation  38  (CD38)/cyclic  adenosine  diphosphate  ribose  (cADPR)  signalling;
and  3)  the  influx  of  Ca2+  from  the  extracellular  medium  via  L-type  Ca2+  channels
(LTCCs),  store-operated  Ca2+  entry  (SOCE),  transient  receptor  potential  vanilloid  1
(TRPV1), and transient receptor potential canonical 3 (TRPC3) channels. Moreover,
the  role  of  the  sarco/endoplasmic  reticulum  Ca2+-ATPase  (SERCA),  Na+/Ca2+

exchanger  (NCX)  and  calreticulin  in  regulating  cardiomyocyte  differentiation  by
maintaining  Ca2+  homeostasis  is  also  described.  Understanding  how  Ca2+  signalling
regulates the differentiation of ESCs into cardiomyocytes might provide valuable clues
for the development of efficacious treatments for cardiovascular disease.
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INTRODUCTION

Heart disease, also called cardiovascular disease, is one of the leading causes of
death in the world today. Because the human heart has a very limited capacity for
self-repair,  there  are  few  effective  treatments  for  congestive  heart  failure,
congenital  heart  disease,  and  heart  attacks  due  to  atherosclerosis  [1,  2].  In  the
most  severe  cases,  the  only  option  is  a  heart  transplant.  However,  there  is  a
paucity  of  healthy  organs  from  recently  deceased  donors  that  are  suitable  for
transplantation and various post-operative complications can occur, such as organ
rejection  [3].  Therefore,  it  is  imperative  to  develop  alternative  methods  for
treating heart disease. When embryonic stem cells (ESCs) were first isolated and
characterized, and their potential for cell therapy was recognized, a lot of effort
was subsequently spent in developing methods for treating cardiovascular disease
via cell replacement. ESCs are cells in the inner cell mass (ICM) of blastocysts
that possess the capacity of self-renewal and pluripotency [4, 5]. Thus, ESCs can
divide in an unlimited manner and can differentiate into all the derivatives of the
three germ layers (i.e., the ectoderm, mesoderm and endoderm) [6, 7]. This means
that ESCs hold great potential in cell therapy for the treatment of various kinds of
diseases, and in heart disease in particular. Following the discovery of ESCs, the
conversion of already-differentiated cells into so-called induced pluripotent stem
cells (iPSCs) was made possible. For example, mouse and human fibroblasts were
converted to iPSCs via the introduction of just four transcription factors, Oct3/4,
Sox2, C-myc and Klf4 [8, 9], and human somatic cells were dedifferentiated into
iPSCs  with  a  different  combination  of  factors,  i.e.,  Oct4,  Sox2,  NANOG  and
LIN28 [10]. iPSCs exhibit the same morphology and growth properties as ESCs,
which  makes  them  very  useful  in  drug  discovery,  disease  modelling  and
transplantation medicine. However, there are a number of major obstacles in the
application  of  both  ESCs  and  iPSCs  in  cell  therapy.  These  include  how  the
proliferation  of  transplanted  cells  might  be  controlled  and  how  functional
specifically-differentiated cardiomyocytes might be stably obtained. Therefore, a
better  understanding  of  the  cellular  and  molecular  mechanisms  involved  in  the
regulation  of  ESC  and  iPSC  differentiation  into  cardiomyocytes,  and  the
development of new methods of differentiation, are required before cells can be
used for cardiovascular drug discovery and ultimately for the treatment of heart
disease.
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Similar to the in vivo heart development of vertebrate embryos, the differentiation
of ESCs into cardiomyocytes is a multistep process, which is regulated by various
signalling  pathways,  including  the  BMP/SMAD,  Wnt,  FGF/FGFR,  and  Notch/
RBP-J  pathways  [11  -  15].  Following  the  identification  of  these  regulatory
mechanisms, a variety of cardiomyocyte differentiation protocols were developed
to specifically generate nodal, atrial, or ventricular-like cells. In addition, Ca2+ is
known  to  act  as  an  important  second  messenger  in  many  cellular  activities  in
cardiomyocytes, including excitation-contraction (EC) coupling and cell viability
[16]. Accumulating evidence indicates that Ca2+ signalling also plays a key role in
regulating  the  differentiation  of  ESCs  into  cardiomyocytes  [17  -  20].  In  this
chapter,  we  review  the  methods  currently  used  to  induce  the  differentiation  of
cardiomyocytes from ESCs as well as the role of Ca2+ signalling in this process.

METHODS  TO  INDUCE  IN  VITRO  CARDIOMYOCYTE  DIFFEREN-
TIATION

ESCs  provide  a  viable  system for  generating  cardiomyocytes  in  vitro  and  thus
facilitate the study of cardiogenesis with genetic manipulation or pharmacological
treatment  [21].  In  order  to  be  applied  effectively  in  drug  screens  and  cardio-
vascular disease modelling and therapy, functionally mature cardiomyocytes need
to be generated in large numbers. Currently, there are three main methods used for
inducing  the  differentiation  of  ESCs  into  cardiomyocytes:  (1)  embryoid  body
(EB)-dependent culture; (2) two-dimensional (2D) monolayer culture; and (3) co-
culture of ESCs with mouse visceral endoderm-like stromal (END-2) cells [22,
23]. The differentiation state of cardiomyocytes obtained via these methods can
be  verified  by  analyzing  the  expression  of  cardiomyocyte-specific  markers  via
RT-PCR and immunohistochemistry; by determining the sarcomeric organization
of the myofibrils in these cells; by measuring their Ca2+ handling signature; and by
measuring  their  electrophysiological  properties  to  determine  if  they  show  the
distinct action potential phenotypes of nodal, atrial, and ventricular-like cells (Fig.
1).  In  addition,  the  percentage  of  spontaneously  beating  cells  and  the  beating
frequency at early stages, as well as the presence of synchronous beating at later
stages, are used as a measure of successful cardiomyocyte differentiation [22, 24].
The development of synchronous beating is associated with the formation of gap
junctions;  thus,  the  expression  of  the  gap  junction  protein  connexin  43,  is  also
used as a means to determine the differentiation state of cardiomyocytes [25].

EB-dependent  differentiation  involves  the  3D  suspension  culture  of  EBs,  and
recapitulates to a certain extent the normal growth environment of these cells by
providing  similar  temporal  and  spatial  cues  that  might  occur  during  early
embryogenesis.  Using  this  method,  cells  derived  from  all  three  germ  layers,
including  cardiomyocytes,  can  be  generated  [26].  During  the  formation  of
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CHAPTER 7
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Abstract: This chapter is a brief overview of the burden of neurodegenerative diseases,
notably Alzheimer’s disease, on society, the short falls of current drug therapies and
emphasis on the reasons to increase our efforts in developing regenerative medicine-
based  stem  cell  therapeutics.  The  chapter  further  provides  caution  on  unsettled
translational  concerns  that  are  necessary  to  settle  before  proceeding  with  this
innovative treatment to the clinic, in addition to highlighting the promising basic strides
made in stem cell therapy of neurological disorders.
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INTRODUCTION

Approximately fifty million people around the world are affected by devastating
neurodegenerative disorders that cost society in physician visits, hospitalization,
medication, home care, and loss of productivity over 600 billion USD/year [1 - 4].
With  the  rise  in  life  expectancy  and  aging  population,  the  occurrence  of  age-
related  neurodegenerative  disorders  (such  as  Parkinson's  disease,  Alzheimer's
disease, Huntington's diseases,  amyotrophic lateral sclerosis,  multiple sclerosis,
Friedreich's ataxia and lysosomal storage disorders (for example Battens disease)
is  predicted  to  increase  inexorably  with  enormous  economic  and  human  costs.
Ironically, these neurodegenerative diseases lack effective treatment options for
patients.
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Alzheimer's disease, for instance a progressive neurodegenerative ailment, is the
frequent  reason  of  age-related  dementia  and  in  the  U.  S.  alone  affects  over  5
million people [5]. Over 95% of the cases of multifactorial Alzheimer's disease
are sporadic in nature. Clinically Alzheimer's disease gradually impairs cognition,
ability to learn, and the performance of daily activities. Pathology of Alzheimer's
disease includes depletion of large cortical cholinergic projection neurons, dep-
osition  of  the  extracellular  amyloid  β-peptide  containing  plaques  (in  brain
parenchyma and  blood  vessels)  [4,  6]  intracellular  neurofibrillary  tangles,  neu-
roinflammation, vascular impairment and synaptic and neuronal degeneration.

All amyloid disorders share compromised proteostasis as one of the key features
(amyloidosis  refers  to  the  abnormal  protein  folding  and  aggregation  of  amy-
loidogenic proteins) that result due to the formation of insoluble aggregates. Just
like amyloid plaques and neurofibrillary tangles  are  the misfolded protein agg-
regates in Alzheimer’s disease, mutated superoxide dismutase is in amyotrophic
lateral  sclerosis [7],  huntingtin and α-synuclein are in Huntington's disease and
Parkinson's disease [6, 8], respectively. The aggregation process can be caused by
the  overproduction  or  poor  clearance  of  these  amyloidogenic  proteins.  Several
reports suggest that in Alzheimer's disease, Parkinson's disease, and Prion disease,
amyloid  oligomers  are  the  most  toxic  species  rather  than the  insoluble  fibrillar
species [7, 9 - 11]. The particular amyloidogenic proteins that assemble and differ
among  amyloid  disorders  but  they  all  share  identical  structural  motifs.  These
structural  features  are  used  to  target  amyloidogenic  proteins  for  therapeutic
purposes.

Although a variety of  drugs for  proteostasis  can relieve some of  the symptoms
associated with these ailments but largely these drugs provide only moderate and
temporary relief to the sufferers. As a matter of fact, due to the strong faith in the
Amyloid Cascade Hypothesis, the bulk of Alzheimer's disease research during the
last  decades  has  been  Aβ-based,  which  is  unfortunately  not  supported  by  the
failure of late-stage clinical trials [12 - 14]. Clinical trials on prodromal familial
Alzheimer's disease cases began with the rationale that amyloid β-peptide triggers
the disease and hence initiation of the Aβ immunotherapies, several years before
any clinical symptoms of the disease appear, would be effective. So far, all efforts
to  develop  medications  that  aim  Aβ  or  other  pathogenic  pathways  in  sporadic
cases  of  Alzheimer's  disease  have  not  been  successful  in  late-stage  clinical
settings, with the very latest example is solanezumab by Eli Lilly phar-maceutical
company [12, 15]. Several promising therapeutic candidates were supposed to be
revolutionary  medicines  but  have been unsuccessful  in  current  trials  on  human
(reviewed in [12]). Presently there is neither a cure nor an effective prevention for
many of these diseases. Plausibly, a viable treatment for Alzheimer's disease has
been  to  boost  the  production  of  cerebral  acetylcholine  neurotransmitter  to
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augment  the  loss  of  cholinergic  neurons  [16],  however,  this  is  not  a  curative
measure  either.

It  has  been  challenging  to  learn  about  the  cell  biology  of  human  neuro-
degenerative  diseases  until  recently.  Stem cell  technology;  such as  neural  stem
cells (NSCs), mesenchymal stem cells (MSCs) [17], human embryonic stem cells
(hESCs),  pluripotent  stem cells  or  induced pluripotent  stem cell-derived neural
cells (iPSCs) [18] that are differentiated into diverse types of specific neural and
glial phenotypes have become an exceptionally appealing strategy, over the last
couple of decades, to study and intervene neurodegenerative disorders [19, 20].
Neural  cells  have  been  successfully  produced  in  the  brain  using  both  mes-
enchymal and neural stem cell transplantation and even via systemic injection of
small molecular compounds [21]. Next to stimulating enthusiasm in developing
therapeutics for neurodegenerative diseases, cell-replacement therapies also help
to interpret the typical roles of neural genes in both neurodegenerative conditions
as  well  as  in  neural  development.  Stem  cells  research  seems  to  be  an  ideal
translational therapy to progress into an effective treatment for patients suffering
from  Alzheimer’s  disease,  Parkinson’s  disease,  Huntington’s  disease  [22,  23],
spinal muscular atrophy [24] and amyotrophic lateral sclerosis [25, 26] (Table 1).
In  fact,  treatment  trials  for  amyotrophic  lateral  sclerosis,  based  on  stem  cell
therapy have already been permitted by US Food and Drug Administration [27,
28].

Table 1. Cell based therapies applied in Parkinson’s disease, amyotrophic lateral sclerosis, epilepsy,
Alzheimer’s disease and spinal muscular atrophy.

Donor cells Model Graft/Injection
site

Therapeutic outcome Possible
mechanism

Ref.

Fetal DA neurons
(mouse)

6-OHDA rat - Reduced apomorphine-
induced rotation

- [62]

Embryonic NSC
(human)

6-OHDA
macaque

- Lowered Gomez-
Mancilla dyskinesia

score

- [63]

Embryonic DA
neurons (rate)

6-OHDA rat - Improved survival,
reinnervation,

behavioral recovery

Direct
communication

between DA
neurons and

FGF-2

[64]

Mesenchymal
stromal cells

ALS human - Minor improvement - [65]
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Abstract: Significant effort in the past three decades has been dedicated to the concept
of restoring normal neurological functions through stem cell transplants, in devastating
neurodegenerative diseases including Parkinson's disease. The aim of this chapter is to
present an objective and up-to-date progress in this field. Specifically, the successes as
well  as  the  failures  and  the  lessons  learned  from  these  outcomes  towards  further
achievements in regenerative therapy are discussed. We build an easily understandable
progression  from  basics  to  more  complex  issues  and  the  current  challenges  in
optimizing  stem  cell  therapy  in  treatment  of  Parkinson's  disease.

Keywords:  Basal  ganglia,  Chromaffins,  Cell  replacement,  Grafts,  Parkinson's
Disease,  Stem  cells.

INTRODUCTION

Parkinson's Disease (PD) is the second most frequent neurodegenerative disease
after Alzheimer's disease [1]. Epidemiological studies have calculated that 1-3%
of 60-year-old people is affected with PD and it is predicted that this population
will  be doubled in 2030 [2].  In coincidence with tau pathologies,  PD increases
with age, and may affect up to a 9.3% in ages between 65 to 75, males being the
most affected group [3]. Clinical motor symptoms of PD are directly associated
with the degeneration of dopaminergic (DAergic) neurons in the Substantia Nigra
pars compacta (SNpc) and are correlated with the appearance of intra-cytoplasmic
inclusions called Lewy bodies (LBs) [4, 5]. Usually a patient diagnosed with this
pathology becomes clinically detectable as a consequence of a 30% of dopamine
(DA)  deficit  in  the striatum.  The decreased  number of  DAergic  neurons in  the
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SNpc,  discovered  by  Ehringer  and  Hornykiewickz  in  PD  patients  could
summarize the last 50 years of research, since these studies provided the cue to
treat  PD.  After  Cotzias  demonstrated  that  Levodopa  (L-DOPA)  restores  the
locomotion in PD patients in the 60´s [6], there was no other successful procedure
to  restore  dopamine  until  the  adrenal  medulla  (AM)  cell  transplantation  in  PD
patients in the early 80´s [7, 8]. The revolutionary idea opened the possibility to
treat  neurodegenerative  diseases  such  as  Alzheimer  disease  and  Parkinson's
disease. After the initial grafts performed in humans, many cells have since been
tested to restore the SNpc [8, 9]. It has therefore become increasingly important to
understand the mechanisms through which these cells cause repair in PD as well
as the specificities of the host zone. At present there are many questions on hold
and  new  technologies  such  as  neuro  navigators,  cell  sorting  techniques,  PET
Scans, better resonators, etc. have been developed to help improve implants and
selectively restore DAergic neurons. Despite all  these efforts,  there still  remain
many unraveled questions about the necessary modifications required to improve
the results of grafts when PD appears [10, 11]. Understanding changes induced by
loss of DA in the striatum is vital to determine how to increase bioavailability of
grafted cells. Currently there are new strategies to unmask the complex function
of the striatum [12, 13]. Common questions such as does grafting restore normal
activity  of  the  neural  circuits?  Does  graft  life  correspond  to  the  clinical
improvement? How can we avoid the damage caused by alpha synuclein in the
environment?, What properties do cells need in order to integrate into the existing
circuits?  These  and  other  questions  have  been  repeatedly  asked  in  this  area  of
research. In summary, nowadays there are few possibilities to restore nigrostriatal
innervation,  but  novel  cell  grafts  may  make  it  possible.  Many  cells  such  as
pluripotent stem cells (PSCs), multipotent stem cells (MSCs), olfactory bulb (OB)
cells, NTCells are still being studied, but even if we designed the perfect neuron
to  restore  a  neural  circuit,  there  still  would  be  a  great  need  to  deeply  study
proliferation and differentiation in  order  to  be  able  to  maintain  and control  the
grafted cells.

Parkinson's Disease

James Parkinson describes paralisis agitans in the essay “The shaking palsy” in
1817, and the symptoms were later integrated by Martin Charcot who named it
Parkinson´s  Disease (PD) [14].  PD diagnosis  is  based on clinical  evaluation of
motor  disabilities  such  are  bradykinesia  (slowness  of  movement),  akinesia
(poverty spontaneous movements and difficulty in initiating a movement), muscle
rigidity, postural instability and resting tremor. These symptoms are results of the
subsequent loss of DA neurotransmission and are related to the infiltration of LBs
(LBs) and Lewy neurites (LNs) [5, 15]. A clinical consensus has been adopted to
report the progress and quantify the symptoms of this illness in 1987, this is the
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Unified Parkinson Disease Rating Scale (UPDRS) which still  remains the most
accepted scale in the world. The UPDRS consist of four parts: The parts I, II and
III contain 44 questions measured on a 5-point-scale (0-4). These parts measure
behavior and mood, daily life activities and motor skills. The last part of the scale
is focused on complying with the requirements for adjunct therapy as well as the
complications. According to the infiltration of LBs, Braak has described 6 stages,
where stages 1-2 are preclinical and 3-6 correspond to LBs and LNs infiltration
into  the  striatum  [4].  The  Striatum  is  a  large  subcortical  structure  extensively
innervated by DAergic, serotoninergic, glutamatergic, and GABAergic inputs (see
details  in  Basal  Ganglia  section).  As  a  neurodegenerative  disorder  in  PD
mainly  the  nigrostriatal  fibers  degenerate  but  the  atrophy  of  nucleus  basalis
Meynert is also correlated with late Braak stages 5 and 6, and patients with this
atrophy  also  suffer  dementia  associated  with  PD  [4].  In  PD  conditions,  the
indirect  pathway  is  facilitated  and  the  direct  pathway  seems  to  be  weakened,
resulting in hypokinesia [16, 17] Fig. (1).

Fig. (1).  Different schematic representation of basal ganglia. A) The Classical basal ganglia representation.
SNpc;  Substantia  Nigra  pars  compacta.  GPe;  Globus  Pallidus  externus.  GPi;  Globus  Pallidus  internus.
SNpc;  Substantia  Nigra  pars  compacta.B)  The  Oscillatory  model  which  correlate  the  tremor  with  an
oscillation of 3-10 Hz. In the Parkinsonian state beta oscillations (11-30 Hz) are elevated. The pro-kinetic
oscilation is increased in dyskinesia 60–80Hz.

Parkinson's Disease Treatment

When PD is clinically detected, L-DOPA is administered as treatment. L-DOPA
is still the gold standard of treatment and is combined with aromatic amino acid
decarboxylase  inhibitors  to  avoid  the  peripheral  metabolism  of  L-DOPA  [18].
There  is  a  large  sum  of  evidence  showing  that  with  long  term  exposure  to  L-
DOPA there  is  a  loss  of  effectiveness  during the  first  2-5  years  and within  the
following few years increases in dosage are necessary reaching at times 1 gram a
day  although  the  maximal  recommended  dose  is  400mg/day  [18,  19].  The
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