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PREFACE

In  recent  decades,  global  demand  for  energy  has  increased  with  the  expanding  world
economy. For this reason, excessive use of non-renewable energy sources has been noticed.
Climate change, air pollution, and carbon dioxide emission were considered as the principal
disadvantages  of  the  excessive  use  of  fossil  energy  sources.  To  avoid  the  excessive
exploitation  of  fossil  energy  sources,  sustainable  energies,  which  are  produced  by  natural
resources  of  energy,  are  recommended.  Hydraulic  energy,  which  is  a  sustainable  energy
source, is within this context. Hydraulic rotors ensure the generation of electrical energy from
streams,  canals  of  irrigation,  or  rivers.  Indeed,  hydraulic  rotors  convert  the  water  kinetic
energy into mechanical power. Afterward, the mechanical power is converted into electrical
energy by a generator. Hydraulic rotors are categorized as hydraulic rotors with a horizontal
axis of rotation and others with a vertical axis of rotation. Many researchers have noted that
hydraulic rotors with a vertical axis of rotation present many benefits with regard to the ones
with a horizontal axis of rotation. The simplicity of the geometric form, the easy maintenance,
and the independence of the direction of the water are the major benefits of hydraulic rotors
with a vertical axis of rotation.

This book focuses on the performance optimization of different proposed configurations of
vertical axis water rotors. The book is composed of four chapters.

In the first chapter, the technology of the water turbines is presented. We introduce the water
turbines’  background  and  classification,  the  basic  parameters  that  characterize  the  water
turbines, and their performance characteristics formulations. A brief literature review is also
recapitulated to provide an idea about the improvement techniques carried out by researchers
to  boost  the  efficiency of  the vertical  axis  water  turbines,  to  situate  the present  work,  and
justify the novelty of our investigations.

In the second chapter, we discuss the governing equations and the numerical methods used in
Ansys Fluent as the adopted CFD software. Indeed, the impact of the numerical parameters
on  the  efficiency  of  different  forms  of  hydraulic  rotors  is  presented.  Furthermore,  the
meshing,  the  turbulence  model,  and  the  rotating  domain  size  effects  are  determined.  The
validation of the numerical model has been done with anterior results.

In the third chapter, we have conducted experimental and computational investigations of a
V-shaped  Darrieus  hydraulic  rotor.  The  experimental  results  are  used  to  validate  the
computational  fluid  dynamics  model.  The  spiral  angle  of  the  V-shaped  blades  has  been
varied. For each configuration, we present and discuss the hydrodynamic characteristics of
the water such as velocity field, magnitude velocity, and turbulence characteristics behind the
considered hydraulic rotor.

In the fourth chapter, the betterment of the performance parameters of spiral Savonius turbine
and  spherical  Darrieus  turbine  is  investigated  through  the  addition  of  an  aerodynamic
appendage.  In  fact,  two  deflector  systems  are  suggested  around  the  turbines.

Finally, we summarize the different findings obtained in light of the current study to optimize
the Darrieus rotor. We also propose new perspectives, which will be the subject of further
work.

i



ii

CONFLICT OF INTEREST

The author declares no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Declared none.

CONSENT FOR PUBLICATION

Not applicable.

Mabrouk Mosbahi, Ahmed Ayadi & Zied Driss
Laboratory of Electromechanical Systems (LASEM)

National School of Engineers of Sfax (ENIS)
University of Sfax (US)

B.P. 1173, Road Soukra km 3.5, 3038, Sfax
Tunisia



Recent Advances in Renewable Energy, Vol. 5, 2021, 1-32 1

CHAPTER 1

Bibliographic Study

1. INTRODUCTION

Recently,  electricity  is  known  to  be  an  essential  requirement  indicating  the
modernity of a society. It is considered a needed component in the development
of  a  country.  In  fact,  basic  human  needs,  such  as  health,  transport,  food,  and
education,  are  based  on  electrical  energy  (Jorgenson  et  al.,  2014).  There  are
several  technologies  accessible  that  could  be  used  to  provide  electricity  to  the
whole world. Fossil fuels are among the most important sources of energy. People
use  coal,  petroleum,  oils,  and  natural  gas  to  fulfill  their  needs  in  terms  of
powering  vehicles  and  electricity  production.

As a consequence of the extreme utilization of non-renewable energy sources, the
exhaustion of these sources has become threatening to humanity. The continued
demand  has  grown  beyond  its  peak  in  recent  years.  Owing  to  the  extravagant
utilization  of  non-renewable  energy  sources,  the  world  also  has  been  facing
environmental problems related to the emission of a huge amount of pollutants
(Apergis et al., 2014). The utilization of sustainable energy sources is necessary to
lower greenhouse gas emissions in the atmosphere (Chang et al., 2003). The solar,
geothermal, biomass, water, and wind sources are considered important sources in
many areas of applications. Among these sources of green energy, hydropower is
a renewable energy source that will  possibly be developed in the future (Paish,
2002). Although hydropower can not completely replace the traditional sources of
energy, it can be an interesting and green substitute.

2. HYDROPOWER

The  hydrological  cycle,  which  is  also  known  as  the  water  cycle,  fuels
hydropower. In fact, the heat produced by the solar radiation evaporates the water
contained on the earth’s surface, which turns into clouds and rain (Yüksel, 2010).
Water runoff is produced by the rain which falls on the land surfaces. Waterpower
is a sustainable and renewed source of energy as long as the sun shines since solar
energy powers the hydrological cycle. Since antiquity, it has been used by humans
to survive. In fact, there are different types of applications (Peng and Guo, 2019).

Mabrouk Mosbahi, Ahmed Ayadi and Zied Driss
All rights reserved-© 2021 Bentham Science Publishers



2   Recent Advances in Renewable Energy, Vol. 5 Mosbahi et al.

Fig. (1) presents the share of renewable energy sources in the global electricity
system in 2016. From this Figure, it has been noted that waterpower is the most
widely used for electricity generation (16.6%) compared to wind, solar, and other
renewables. Hydropower plants can be classified into four major kinds, such as
run (Killingtveit, 2019).

Fig. (1). Share of renewables in the global electricity system 2016 (Killingtveit, 2019).

2.1. Run-of-river Hydropower Plants

A run-of-river hydropower plant is a hydroelectric system that generates electrical
power from the available flow of the river. In fact, the water current is diverted
from the river and guided in a penstock, as shown in Fig.  (2).  The run-of-river
hydropower plant differs from other hydropower plants types in the absence of a
reservoir and large dam. However, a small dam can sometimes be used to ensure
enough water goes in the penstock. In addition, some storage capacity can be used
for a few hours.

2.2. Storage Hydropower Plants

This  water  power  plant  is  characterized  by  the  presence  of  a  water  tank,  as
presented in Fig. (3).  The confined water is released for eventual consumption.
The stored water in the reservoir furnishes flexibility to produce electrical power
on need and lowers dependency on the water  current  change.  A huge reservoir
could  stow  water  for  a  long  time.  However,  the  used  reservoir  for  a  storage
hydropower plant is designed for seasonal storage. Compared to the run of river
water power plant, the storage water power plant presents various advantages such
as:

��������	�
������

��������

����������

������������

���������
������

� !��"�������##�

$��!% 
������&'�

��(������������
����

#f1.1
#f1.2
#f1.3


Bibliographic Study Recent Advances in Renewable Energy, Vol. 5   3

Fig. (2).  Run-of-river hydropower plant (Breeze, 2018).

Fig. (3).  Storage hydropower plant (Breeze, 2018).

Provides the possibility to stow big volumes of energy.●

Provides the possibility to control water flows.●

The storage reservoir is a multipurpose system.●

2.3. Pumped-storage Waterpower Plants

This  waterpower  plant  is  used  by  the  systems  of  electrical  generation  for  load
balancing. In fact, water is pumped from a lower reservoir into an upper reservoir
when production surpasses the need, as shown in Fig. (4). When the demand for
electricity is high, the stored water in the upper reservoir is released back into the
lower reservoir in order to spin turbines that generate electricity. This cycle could
be  repeated  various  times  per  day.  The  pumped-storage  hydropower  plant  is

#f1.4
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CHAPTER 2

Numerical Parameters Effect

1. INTRODUCTION

Due to the rising costs incurred in the experimental studies of the design process
of the cross-flow rotors, researchers have adopted numerical methods, such as the
CFD  (Computational  Fluid  Dynamics)  technique.  The  CFD  method  offers  the
possibility  to  visualize  the  turbulent  properties  and  the  water  comportment
upstream and downstream a hydraulic turbine, which are tough to be examined
through experimental techniques. For example, a computational investigation of a
Savonius hydraulic turbine, which was characterized by spiral vanes with various
helix angles (From 0° to 25°), was developed by Kumar and Saini (2017). They
tested  the  impact  of  the  vanehelix  angle  increment  and  the  variation  of  the
Reynolds-number  on  the  operational  parameters  of  the  Savonius  hydraulic
turbine. In conclusion, the authors confirmed that a Reynolds number increases
the efficiency of the Savonius hydraulic turbine. Using a spiral Savonius turbine
with a helix angle of 12.5°, the peak value of the power-coefficient (PC) reached
0.39 at  a  water  flow velocity of  2 m.s-1.  Moreover,  the authors noticed that  the
helix angle affects the turbulent properties of the flow upstream and downstream
of  the  Savonius  hydraulic  turbine,  i.e.,  the  streamlines  of  the  velocity  and  the
static pressure. An experimental investigation of a Savonius hydraulic turbine was
carried out by Sarma et al. (2014). In addition, they developed a computational
investigation based on Ansys Fluent to examine the operational parameters of the
Savonius  hydraulic  turbine  at  feeble  values  of  water  speed.  A  computational
investigation was developed by Basumatary et al. (2018). They tested a Savonius
hydraulic  turbine  with  a  novel  vane  form.  In  conclusion,  they  noted  that  the
operational parameters of the Savonius hydraulic turbine were improved using the
novel  vane  form.  Indeed,  the  peak  value  of  the  PC  of  the  Savonius  hydraulic
turbine  attained  0.284  at  a  tip-speed  ratio  (TSR)  of  0.6.  In  our  work,  ANSYS
FLUENT software has been considered to carry out the different computational
investigations and then to visualize the turbulent properties of the water around
hydraulic turbines.

Mabrouk Mosbahi, Ahmed Ayadi and Zied Driss
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2. STRUCTURE OF THE CFD CODE

A  CFD  solver  presents  three  principal  parts,  which  are  the  pre-processor,  the
solver,  and  the  post-processor.  The  first  part  is  composed  of  the  input  of  the
workflow  to  computational  fluid  dynamics  code  using  an  operator-friendly
interface. The input is then converted into an appropriate form to be used by the
solver. At the pre-processing step, the user defines the computational domain, the
grid generation, the fluid properties, and the boundary conditions.

For the solver, it includes the discretization methods: the FDM (finite difference
method), the FVM (finite volume method), the FEM (finite element method), and
other methods used in specific applications, mainly the vortex method. ANSYS
Fluent 17.0 provides further two computational solver techniques:

• The pressure-based technique

• The density-based technique

It  is  known that  the pressure-based method is  used for incompressible fluids at
low speed. Although the density-based method is used for compressible fluids at
high speed. Recently, the pressure-based and the density-based approaches have
been  reformulated  to  be  operated  with  wide  variety  of  flow  conditions.  The
pressure-based  solver  utilizes  an  algorithm  wherein  the  mass  conservation
constraint of the velocity field is achieved by solving a pressure equation. This
equation  came  from  the  continuity  and  the  momentum  equations  so  that  the
continuity of the velocity field is achieved. The relation between the pressure and
the  velocity  in  the  overall  domain  can  be  inferred  in  the  entire  computational
domain.  The  pressure-based  solver  involves  iterations  where  the  governing
equations  are  resolved  continuously  until  the  convergence  of  the  solution.  For
post-processor, Ansys Fluent 17.0 is equipped with adaptable data visualization
packages that  include the plot  of contours for 2D and 3D, vectors,  streamlines,
forces monitoring, and other available output data.

3. MATHEMATICAL FORMULATION

The  main  advantage  of  a  commercial  CFD code  is  that  it  is  able  to  model  the
laminar or the turbulent fluid flow. In fact, a physic problem can be solved based
on steady-state or transient simulations. In the present chapter, three-dimensional
(3D)  unsteady  investigations  were  performed.  The  water  flow  upstream  and
downstream,  a  hydraulic  turbine  modeling  is  based  on  resolving  the  Navier-
Stokes (NS) equations that govern it. The NS equations according to a Newtonian
fluid  are  prescribed  under  the  continuity,  momentum,  and  turbulence  model
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equations. In many important applications, including turbulence, these equations
must be modified or otherwise approximated analytically in order to excerpt any
estimation.

3.1. Continuity Equation

The continuity equation could be expressed as follows:

(1)

Where

ui : Velocity component along i axis,

p : Fluid density,

xi : Cartesian coordinate,

t : Time.

3.2. Momentum Conservation Equations

The momentum equations can be written as follows:

(2)

Where

p : Pressure,

Fi : External forces.

are the turbulent stress and can be written as follows:

(3)
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CHAPTER 3

Investigation of Spiral Darrieusturbine

1. INTRODUCTION

The water turbines can be classified into two major kinds: the axial-flow rotors
(AFR) and the cross-flow rotors (CFR). The simplicity of the blade shapes and the
independence of the water current direction give the advantage to the CFR for the
generation of small-scale hydropower with regard to the AFR. With the aim of
performance  enhancement  of  CFR,  numerous  computational  and  experimental
tests were conducted recently. For example, Moghimi and Motawej (2020) carried
out  a  computational  test  of  a  twisted  Darrieus  water  rotor  (TDWR).  They
investigated  the  impact  of  the  twist  angle  on  the  operational  parameters  of  the
TDWR. In conclusion, the lowest coefficient of power value was obtained with a
120° twist angle. However, the peak one was recorded with a 30° twist angle at a
tip-speed ratio value of 3.5. Based on the FLUENT solver, Elbatran et al. (2017)
investigated  a  hydraulic  turbine  without  and  with  a  deflector  system.  In
conclusion,  they  confirmed  that  the  value  of  0.4375  was  the  optimal  diameter
ratio of the deflector system. Moreover, they affirmed that the performance of the
hydraulic rotor could be risen by 78% using a ducted nozzle. The peak value of
the  coefficient  of  power  reached  0.25  at  a  TSR  of  0.73.  Gorle  et  al.  (2016)
computationally  and  experimentally  tested  a  Darrieus  water  turbine.  They
analyzed the field of the fluid flow in the vicinity of the rotor and the performance
parameters  of  the  Darrieus  rotor.  Derakhshan  et  al.  (2017)  conducted
computational  and  experimental  tests  of  a  novel  CFR.  In  conclusion,  adequate
operational  parameters  were  obtained  for  the  area  with  height  ratios  and  for  a
distance of 13×D between neighbor turbines in a four turbine farm. Using Ansys
CFX, Marsh et al. (2017) studied the effect of two and three-dimension domain
selection  and the  turbulence  model  on  the  performance  characteristics  of  CFR.
They confirmed that the use of the three-dimension domain and k-ω SST model
with  a  boundary  layer  meshes  near  the  rotor  vanes  provides  accurate
computational results. Thakur et al. (2019) numerically tested a hydraulic turbine
with  and  without  an  impinging  jet  duct  design.  In  conclusion,  the  proposed
configuration improves the operational parameters of the hydraulic turbine. The
peak  value  of  the  coefficient  of  power  reached  0.35  at  a  TSR  of  0.64  for  a
conventional  turbine.  Nevertheless,  it  reached  0.5  at  a  TSR  of 0.61 using the
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proposed design. Fertahi et al. (2018) conducted computing investigations on the
Savonius-Darrieus  rotor.  The  influence  of  the  rotor  speed  direction  on  the
performance  parameters  of  the  hybrid  rotor  was  assessed.  In  conclusion,  they
noted that the hybrid turbine with identical rotor speed direction for Savonius and
Darrieus  turbines  outperformed  the  other  hybrid-studied  designs.  Liang  et  al.
(2017)  studied  a  combined  Darrieus-Savonius  rotor.  Computing  investigations
were  performed  using  the  URANS  equations.  The  tested  Darrieus  turbine
presented a NACA 0012 profile with a chord of 220 mm. Two-semicircle vanes
with an overlap distance of 0.1 characterized the Savonius rotor. In conclusion,
they affirmed that the attachment angle, the Darrieus turbine vanes number, and
the  radius  ratio  affected  the  performance  parameters  of  the  hybrid  rotor.  The
optimal design for the combined turbine presented a two-bladed Darrieus turbine,
a radius ratio of 0.25, and an attachment angle of 0°. The peak value of the power
coefficient  (PC)  of  the  optimal  design  reached  0.363.  Al-Dabbagh  and  Yuce
(2018) presented a computational test of spiral water rotors. The spiral rotors are
with  four  different  solidities  of  0.15,  0.2,  0.25,  and  0.3.  Computational  results
confirmed that the rotors with the solidity values 0.15 and 0.2 outperformed the
other two cases in terms of coefficient of power. As revealed by several published
papers,  scientists  have  focused  on  various  kinds  of  cross-flow  rotors.  Several
methods can be used to improve the efficiency of the cross-flow rotors, such as
the variation of the rotor geometrical parameters and the optimization of the test
bench form. This work attempts to explore the blade form optimization method
for  the  better  efficiency  of  spiral  Darrieus  turbine’s  (SDT).  Computational
transient investigations were performed with the use of ANSYS Fluent software
to  show  the  influence  of  the  blade  form  techniques  on  the  aerodynamic
performances  of  the  SDT.

2. EXPERIMENTAL METHODOLOGY

2.1. Spiral Darrieus Turbine

Due  to  the  form  complexity  of  the  SDT,  it  is  found  that  the  3D  printing
technology  is  more  suitable  as  a  manufacturing  process.  In  fact,  the  additive
manufacturing method is based on building up objects additively layer by layer,
starting from a three-dimensional digital model. The main components of the SDT
include three  spiral  blades  mounted over  a  central  shaft.  Fig.  (1)  illustrates  the
design of the SDT.

The  overall  geometrical  parameters  of  the  SDT  are  shown  in  Table  1.  The
optimization  of  the  blade  shape  of  the  spiral  Darrieus  hydraulic  rotor  is
investigated with the aim of performance betterment. For that, four spiral angles
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are suggested and put to tests to compare their characteristics. The proposed spiral
angles covered under this study are shown in Fig. (2).

Fig. (1).  Spiral Darrieus turbine.

Fig. (2).  SDT with various spiral angles.
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CHAPTER 4

Performance Investigation of Spiral and Spherical
Turbines

1. INTRODUCTION

Nowadays,  various  studies  have  shown  different  methods  to  enhance  the
efficiency  of  the  Savonius  turbine  (ST)  and  Darrieus  turbine  (DT)  based  on
computational  and experimental  techniques,  such as the variation of  the design
parameters  of  the  turbine.  The  aspect  ratio  (AR),  the  gap  distance,  the  vanes
profile,  and  the  number  of  the  vanes  are  the  prime  parameters  that  affect  the
performance  of  ST  and  DT.  Patel  et  al.  (2017)  presented  an  experimental
investigation of a Savonius water turbine. They studied the impact of the AR, the
gap distance and the end disk. They investigated various gap distances (From 0 to
0.174).  For a piece gap distance, they tested different ARs. In conclusion, they
noted  that  the  performance  parameters  of  the  ST could  be  enhanced  using  end
disks. Moreover, they confirmed that the ST efficiency rises with the rise of the
AR. The peak value of the power coefficient (PC) of the ST was reached for a gap
distance of 0.11 with an AR inferior to 0.6. Nevertheless, for AR values greater
than 1.8, the PC of the ST reached 0.2. Hassanzadeh et al. (2013) tested a spiral
Savonius turbine (SST) and a standard ST computationally. In conclusion, they
noted that the SST outperformed the standard ST in terms of PC. A computational
investigation  of  ST  was  performed  by  Kerikous  and  Thévenin  (2019).  The
influence of the vanes formed on the efficiency parameters of the ST was assessed
in their investigation; the summit PC value was recorded with a vane form flatter
on the concave side.  Additionally,  other investigations proposed other methods
for efficiency parameters of ST and DT, i.e., the placement of a deflector system
(DS)  upriver  the  turbine.  Using  ANSYS  FLUENT,  Ramadan  et  al.  (2021)
assessed the influence of a DS on the efficiency parameters of ST. In conclusion,
the installation of the DS upriver the ST improved the efficiency of the turbine by
84%. Shimokawa et al. (2012) experimentally assessed the effect of the placement
of DS round DT. In conclusion, they suggested that DS enhanced the performance
parameters of the DT. Amongst all suggested tactics, the DS could boost the flow
speed upriver the turbine and provides a pressure variation through the turbine.
Indeed, DS, a technique that receives little regard, could be considered for better
performance parameters of ST and DT.

Mabrouk Mosbahi, Ahmed Ayadi and Zied Driss
All rights reserved-© 2021 Bentham Science Publishers



Spherical Turbines Recent Advances in Renewable Energy, Vol. 5   95

The  major  objective  of  this  chapter  is  to  experimentally  investigate  a  spiral
Savonius turbine (SST). The performance betterment of the SST and the spherical
Darrieus  turbine,  which  is  presented  in  chapter  two,  using  DSs  is  the  second
objective.

2. SPIRAL SAVONIUS TURBINE

2.1. Experimental Methodology

Due to the form complexity of the SST, a three-dimensional (3D) printer has been
considered  for  the  SST  fabrication.  Fig.  (1)  illustrates  the  SST  model  details.
Indeed,  three  spiral  vanes  (With  a  spiral  angle  of  90 degrees)  fixed around the
rotational axis characterize the SST. The SST height and diameter are 16 cm and
18.2 cm, respectively. Table 1 provides the geometric details of the SST.

Fig. (1).  SST design.
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Table 1. Geometric details of SST.

Parameter Value

SST diameter 18.2 cm

SST height 16 cm

End disk diameter 19.6 cm

Shaft diameter 2 cm

Vanes number 3

chord of the vane 9 cm

Thickness of the vane 0.4 cm

spiral angle 90°

To  assess  the  efficiency  parameters  of  SST  experimentally,  experiments  are
realized in a canal of irrigation (Situated in El-Hamma government, Tunisia). The
flow speed in the considered canal is 0.87 m/s. Fig. (2) illustrates the measuring
system used to  determine the efficiency parameters  of  the SST (PC and torque
coefficient (TC)).

Fig. (2).  Measuring system.

To boost the performance parameters of the spiral Savonius turbine, a DS upriver
the SST is suggested and investigated computationally. Fig. (3) illustrates the DS
considered in this study which is composed of a straight blade (Airfoil:  NACA
0020)  and  a  deflector  plate.  The  deflector  plate  has  a  fixed  part  parallel  to  the
direction of the water flow. To optimize the suggested DS, various configurations
are investigated. The angle of deflection and the distance between the deflector
plates are the variable geometric parameters for the DS design. Table 2 provides
the geometric details of the various configurations of the DS.



Glossary
Cm torque coefficient dimensionless

Cp power coefficient dimensionless

C1ε constant of the k-ε turbulence model

c blade chord m

d rotating zone diameter m

D rotor diameter m

Di converging section diameter m

Do pipe section diameter m

e blade overlap

Fi force components N

Gk production term of turbulence kg.m-1.s-3

h fixed domain height m

H rotor height m

k turbulent kinetic energy m2.s-2

l fixed domain length m

Li converging section length m

Lo pipe section length m

M rotor torque N

p pressure Pa

P rotor power W

S rotor swept area m2

t time, s

ui velocity components m.s-1

Ui fluctuating velocity components m.s-1

V∞ water velocity m.s-1

w fixed domain width m

xi Cartesian coordinate m

x Cartesian coordinate m

y+ non dimensional parameter

y Cartesian coordinate m

z Cartesian coordinate m

ε dissipation rate of the turbulent kinetic energy W.kg-1
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μ dynamic viscosity Pa.s

μt turbulent viscosity Pa.s

ρ density kg.m-3

ω rotor revolution speed rad.s-1

λ tip-speed ratio

σk constant of the k-ε turbulence model

σε constant of the k-ε turbulence model

δ ij Chroneker indices
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