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PREFACE

This  volume  of  Advances  in  Organic  Synthesis  presents  recent  exciting  developments  in
synthetic  organic  chemistry.  It  covers  a  range  of  topics  including important  researches  on
novel approaches to the construction of complex organic compounds. The chapters are written
by  authorities  in  the  field.  Topics  covered  in  this  volume  include  updates  in  asymmetric
synthesis of natural compounds, ynamide chemistry and its application in organic synthesis,
heterocyclic chemistry, application of tin(II) salts in specific organic reactions and the use of
(E)-N-methyl-1-(methylthio)-2-nitroethenamine (NMSM) as an ambiphilic synthon in organic
synthesis.

This book should prove to be a valuable resource source for organic chemists, pharmaceutical
scientists and postgraduate students seeking updated and critically important information on
recent important  developments in synthetic organic chemistry.  I  hope that  the readers will
find these reviews valuable and thought-provoking so that they may trigger further research in
the quest for new developments in the field.

I am thankful to the efficient team of Bentham Science Publishers for the timely efforts made
by the editorial personnel, especially Mr. Mahmood Alam (Director Publications), Mr. Obaid
Sadiq (in-charge Books Department) and Ms. Asma Ahmed (Manager Publications).

Prof. Atta-ur-Rahman, FRS
Kings College

University of Cambridge
Cambridge

UK
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CHAPTER 1

Remarkable Advances in the Asymmetric Synthesis
of Biologically Active Natural Compounds from the
Advent of Chiral Auxiliaries
Gaspar  Diaz-Muñoz1,*,  Izabel  Luzia  Miranda1,  Suélen  Karine  Sartori1,
Daniele  Cristina  de  Rezende1,  Jefferson  Viktor  Barros  de  Paula  Baeta2,
Fernanda  Rodrigues  Nascimento2  and  Marisa  Alves  Nogueira  Diaz2

1 Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais
31270-901, Brazil
2 Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa,
Minas Gerais 36570-900, Brazil

Abstract: This chapter reports advances in synthetic methodologies employing chiral
auxiliaries  for  the  stereoselective  synthesis  of  biologically  active  natural  molecules.
Derivatives of naturally occurring compounds such as amino acids, carbohydrates, and
terpenes, chiral auxiliaries have been described as an essential aid for the construction
of highly complex molecules. Among these auxiliaries, we highlight those of Evans,
Corey, Yamada, Enders, Oppolzer, Kunz, Meyers, and Schöllkopf, whose contributions
led to a remarkable progress in asymmetric synthesis in the last decades and continue
to bring advances until the present day.

Keywords:  Asymmetric  Synthesis,  Biologically  Active  Compounds,  Chiral
Auxiliaries,  Corey’s  Chiral  Auxiliary,  Evans’  Oxazolidinones,  Enders,  Kunz,
Meyers,  Oppolzer,  Schöllkopf,  Yamada.

INTRODUCTION

In the last decades, chiral auxiliaries have been widely used in the synthesis of
enantiomerically pure compounds [1].

The growing interest of the scientific community in the asymmetric synthesis of
biologically  active  compounds  occurred  from  the  discovery  of  substances  of
natural  origin,  which  often  have  only  one  of  the  enantiomers  with  pronounced
pharmacological activities only in their enantiomerically pure form [2, 3].

*  Corresponding author Gaspar Diaz-Muñoz:  Department of Chemistry, Universidade Federal de Minas Gerais,
Belo Horizonte, Minas Gerais 31270-901, Brazil; Tel: +553134095728; Fax: +553134095700;
E-mail: gaspardm@qui.ufmg.br
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A historical and striking incident that served as a lesson for global public health,
known  as  the  thalidomide  tragedy,  occurred  in  the  1960s  when  the  racemic
mixture of  thalidomide began to be used to relieve nausea in pregnant  women,
leading to a large increase in the incidence of fetal malformations. This was later
associated with the teratogenic activity of thalidomide’s S-enantiomer, which did
not exhibit the desired pharmacological activities exhibited only by the R-enan-
tiomer [4, 5].

This regrettable event was a general call  for pharmaceutical industries to adopt
new policies, employ a more stringent care in the production of new medicines,
and market drugs in their enantiomerically pure forms, when necessary.

Commonly,  enantio-  or  diastereomerically  pure  compounds  can  be  produced
employing  a  step  of  chemical  resolution,  such  as  chemical  or  enzymatic
desymmetrization, enzymatic kinetic resolution or racemic modification, or also
by  means  of  a  synthetic  route  having  as  starting  material  a  substrate,  reagent,
solvent or enantiomerically pure catalyst, characterizing an asymmetric synthesis
[2].

Several methodologies aimed at inducing stereoselectivity in chemical reactions
have been developed. In this context, the use of chiral auxiliaries is a powerful
and successful tool widely used to obtain intermediates and final products of total
synthesis [2].

Chiral  auxiliaries  are  molecules  capable  of  temporarily  binding  to  the  starting
compound, thus inducing chirality in one or more steps of a synthetic route [3].

Most  of  the  available  chiral  auxiliaries  are  derived  from compounds  of  natural
origin: amino acids, carbohydrates, terpenes, among others [3].

Some  factors  influence  the  choice  of  the  appropriate  chiral  auxiliary  for  each
reaction  and  must  also  be  taken  into  account  for  the  development  of  new
auxiliaries.  A  good  chiral  auxiliary  must  have  certain  characteristics  to  be
employed in asymmetric synthesis reactions: the addition and removal steps of the
auxiliary should be performed easily or under mild conditions and must generate a
high  chemical  yield,  the  chiral  transfer  step  should  occur  with  high
diastereoselectivity, and the auxiliaries should lead to the desired products with
excellent  enantioselectivity.  As  they  are  often  costly  or  non-trivial  and  used  in
stoichiometric quantities, it is of great interest that these auxiliaries be reused or
recycled [3] at the end of the synthetic route.

Currently, there is a wide range of efficient chiral auxiliaries frequently used in
carbon-carbon  bond  formation  reactions  with  high  stereoselectivity  and  in  the
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synthesis  of  compounds  of  natural  origin  and  compounds  with  pronounced
pharmacological activity. Some examples of common chiral auxiliaries are shown
in Fig. (1).

Fig. (1).  Selected chiral auxiliaries that have been successfully employed in asymmetric synthesis.

Corey's  chiral  auxiliary,  named  (+)-8-phenylmenthol,  and  its  enantiomer  have
been classified among the most versatile chiral auxiliaries of asymmetric organic
synthesis and have an important historical value, since they were the first of their
kind to be added to the arsenal of chiral auxiliaries known today [6].

Evans’ oxazolidinones are auxiliaries that also deserve to be highlighted [1, 7, 8].
The  increasing  interest  in  this  class  of  auxiliaries  may  be  evidenced  by  the
structural  variations  of  this  genus  (Fig.  2)  following  the  report  of  the  first
oxazolidinone  by  Evans  [1].

Next, some of the main chiral auxiliaries will be addressed individually, with their
most relevant contributions to the field of asymmetric synthesis, according to our
point of view, indicated through examples.

EVANS’ OXAZOLIDINONES

Evans’  chiral  auxiliaries  represent  one  of  the  most  widely  used  auxiliaries  in
asymmetric total synthesis [3]. The most prominent application of oxazolidinones
undoubtedly  occur  in  the  reactions  of  α-alkylation,  syn-aldol,  1,4-addition,  and
intramolecular Diels-Alder cycloaddition reactions [3, 9].
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CHAPTER 2

The Chemistry of Ynamide and Its Application in
Organic Synthesis
Siyu Ye1 and Na Wu1,2,*

1  State  Key Laboratory for  the Chemistry  and Molecular Engineering of  Medicinal  Resources,
School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004,
P.R. China
2  Chemistry  Department,  Science  Site,  South  Road,  Durham  University,  DH1,  3LE,  United
Kingdom

Abstract: Ynamide, is an understudied but attractive class of alkynes, activated by the
donating  ability  of  the  nitrogen  adjacent  to  alkynes.  With  the  nucleophilicity  on  β-
carbon and the electrophilicity on α-carbon of ynamides, this review summarizes the
syntheses  of  ynamides  and  miscellaneous  reactions  -  oxidation,  rearrangement,
cyclization,  and  cycloaddition  to  construct  complicated  heterocyclic  rings.  The
synthetic  methodologies  were  further  applied  into  natural  products  synthesis,  e.g.
marinoquinolines A and C, aplidiopsamine A, rigidin A, and 7-azaserotonin derivative.

Keywords:  Dipolar  Cycloaddition,  Haloenamide,  Keteniminium,  Polycyclic
Alkaloids,  Thioenamide,  Ullmann  Coupling,  Witulski  Rearrangment,  α-
Ketoimide,  Ynamide,  Yndiamide.

INTRODUCTION

The  carbon-carbon  triple  bond  is  one  of  the  most  fundamental  and  valuable
functional groups in the organic synthesis. A heteroatom substitution on the triple
bond  further  enriches  the  reaction  versatility.  One  useful  substrate  is  ynamine,
which contains a nitrogen atom directly connected to the triple bond. Conjugation
of the nitrogen lone pair readily assists the electrophilic functionalization of the β-
position  of  ynamines,  and  α-carbocation  initiated  nucleophilic  addition  or
cyclization  reactions  (Scheme  1).  However,  the  synthetic  utility  of  ynamines
remained  limited  due  to  difficult  preparation  and  handling.  They  are  liable  to
hydrolyse  to  amides  in  an  expensive  manner.  The  ynamides  were  therefore
tunable by introducing diversified amides, i.e., amides, sulfonamides, carbamates,

* Corresponding Author Na Wu: Chemistry Department, Science Site, South Road, Durham University, DH1, 3LE,
UK; Tel: +44(0)7827109705; E-mails: na.wu@durham.ac.uk, wuna07@gxnu.edu.cn
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oxazolidinones,  imidazolidinones,  and  lactams  (Scheme  1).  Ynamides,  with
weakened  electron-donating  electron  lone  pair  of  the  nitrogens  towards  the
alkynyl  motifs,  have  been  found  to  be  more  stable  and  practicable  than
conventional  ynamines.

Scheme 1.  General structures of ynamine and ynamide.

The ynamide chemistry, emerged several decades ago, has been gaining more and
more attention since 2000. Hsung’s group [1, 2] and Evano’s group [3, 4] have
published  elegant  reviews  to  cover  the  development.  This  review  focuses  on
recent  developments  of  syntheses  and  applications  of  ynamides  after  2010,  in
order to reveal the value of ynamide chemistry in organic synthesis.

PREPARATIONS OF YNAMIDES

Dehydrohalogenation

 

Dehydrohalogenation of halo-substituted enamides was the initial method of pre-
paring ynamides. Viehe et al.  [5] reported the first case of preparing ynamides.
N-(1-chloroalkenyl)urea 2, generated from secondary acetamide 1 and phosgene
immonium  chloride,  underwent  dehydrochlorination  at  room  temperature  with
t-BuOK to afford N-alkynylurea 3 in moderate yield (Scheme 2).
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Scheme 2.  The first case of synthesizing ynamide.

Another case is thymine/cytosine [6] derived chloroenamides 4 and 5, obtained by
nucleophilic  additions  of  thumines/cytosines  to  tetrachloroethylene.
Dechlorination  (lithium-chlorine  exchange)  of  4  and  5  with  n-BuLi  occurred
smoothly  at  -70  oC  to  render  ynamides  6  and  7  in  51%  and  34%  yields,
respectively  (Scheme  3).

Scheme 3.  Lithium-chlorine exchange of chloroenamides to ynamides.

Hsung  and  co-authors  [7]  furthered  explored  the  substrate  scope  to  β-
bromoenamides,  prepared  by  bromination  of  the  corresponding  enamides  8.  E2
elimination  of  hydrobromide  from  β-bromoenamides  9  with  t-BuOK  afforded
ynamides  10  in  36~88%  yields  (Scheme  4),  under  these  conditions,
pyrrolidinones,  oxazolidinones  and  imidazolidinones  were  tolerated.  However,
transformation of E-isomers of 9 into ynamides failed.

Brückner  [8,  9]  modified the substrates  for  ynamides via  dehydrohalogenation.
β,β-Dichloroenamides  12,  obtained  by  Corey-Fuchs  reaction  of  N-formy-
-tosylamides  11,  which  were  converted  to  terminal  ynamides  13  in  satisfying
yields, according to lithium-halogen exchange (Scheme 5). β,β-Dibromoenamides
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CHAPTER 3

Carbon-Heteroatom Bond Formation for Medium
Ring Heterocycles
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INTRODUCTION

Heterocycles have attracted much attention of chemists owing to their interesting
architecture  and  profound  bioactivities.  These  represent  a  privileged  class  of
compounds  of  natural  origin  essential  to  life,  such  as  nucleic  acids,  naturally
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Abstract:  In  major  classes  of  natural  products  and  pharmaceutical  compounds,
functional  groups  containing  carbon-heteroatom  bonds  are  present  and  often
responsible  for  significant  biological  activities.  Among  them,  medium-ring
heterocycles are found in a wide range of drug candidates. While the synthesis of five-
and six-membered ring systems is quite common, however, the formation of seven-,
eight-  and  nine-membered  heterocycles  is  not  as  abundant  as  entropy  factors  and
transannular interactions often hinder the cyclization method. The ubiquitous presence
and  use  of  heteroatoms  in  both  synthetic  and  naturally  occurring  pharmaceutical
compounds support  the review of carbon-heteroatom (particularly,  C–N, C–O, C–S,
C–S,  C–Se,  C–Te)  bond-forming reactions  reported in  the  literature.  In  general,  the
nucleophilic  cyclization,  organocatalyzed  reactions,  green  synthesis,  heterocyclo-
addition,  ring-closing  metathesis,  radical  cyclization,  metal-mediated  transition
cycloaddition, macrolactonization are discussed as the most commonly used strategies
for  medium-ring construction.  The ring expansion strategies,  such as  pericyclic  and
sigmatropic rearrangements, play an important role in the formation of C-X bonds. The
challenges faced involving structural complexity and biological activities prompted us
to review the literature for the synthesis of the heterocycles of the medium-ring size.
This chapter is dedicated to recent developments for the construction of C–X bonds in
seven-, eight- and nine-membered heterocycles.
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occurring pigments, vitamins, hormones and antibiotics, and most hallucinogens.
Their unique ability to be used as biomimetics as well as active pharmaco-core
has  rendered  them  valuable  motifs  in  the  arena  of  pharmaceuticals  as  low
molecular  weight  lead  compounds  in  drug  design.  Over  the  decades,  these
compounds have set a benchmark in pharmaceutical research, with many of them
being active drugs to date or have acted as templates for different drug molecules
[1]. In addition, heterocycles have also become a part of the modern society as
lead  compounds  for  pesticides,  herbicides,  fungicides,  dyes,  plastics,  and other
application-oriented products. Functional groups containing C–hetero bonds are
found  in  major  classes  of  natural  and  non-natural  pharmaceutically  active
molecules constituting nearly 90% of the active pharmaceuticals. Among these,
medium rings heterocycles represent an important motif for a wide range of drug
candidates. In particular are the seven-membered azepine, oxepine, thiazepine, or
the  eight-membered  ones  oxocin,  azocine,  and  other  associated  heterocyclic
analogs  have  created  a  stir  among  the  biological  community,  being  moieties
associated  with  significant  biological  relevance.  Few  representative  molecules
(E)- pterulone (1) [2], bauthinoxepin J (2) [3], buflavine (3) [4], helianuol A (4)
[5],  paeciloquinone  E  (5)  [6],  sclerotigenin  (6)  [7],  circumdatin  F  (7)  [8],
cleavamine (8) [9], balasubramide (9) [10], galanthamine (10) [11], cladoacetal A
(11)  [12],  balanol  (12)  [13],  imipramine  (13)  [14],  diazepam  (14)  [15]  and
loxapine  (15)  [16]  are  shown  in  Fig.  (1).  For  example,  the  seven-membered
heterocycle  imipramine  (trade  name  Prazepine)  is  the  first  of  the  tricyclic
antidepressants, and the tranquillizer diazepam (trade name Valium) is one of the
oldest medications used till date.

STRUCTURAL EFFECTS

As  introduced  by  Prelog  and  Brown  the  term  “medium-sized  ring”  is  usually
referred to cyclic compounds having eight to eleven members; however, seven-
and  twelve-membered  rings  are  frequently  included  for  comparison  purposes,
particularly  when  analyzing  the  conformational  effects  within  these  systems
[17a,b].

As the size of the ring increases, the range of compounds that can be obtained by
varying the number, type, and location of the heteroatoms increases enormously.

Nevertheless,  the  chemistry  of  heterocyclic  compounds  with  rings  seven-
membered or larger is much less developed than that of five- and six-membered
ring  heterocycles,  although  these  compounds  are  usually  stable  with  immense
practical  applications.  The  synthetic  community  is  always  on  the  run  for
developing  newer  methodologies  for  the  construction  of  7,  8  and  9  membered
heterocycles since decades [18]. Although, five- and six-membered ring systems
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are  quite  common but  the  formation  of  seven-,  eight-  and  nine  membered  ring
heterocycles  have  encountered  several  difficulties  as  cyclization  strategies  are
often hampered owing to entropy factors and transannular interactions [19].

Fig. (1). Some pharmaceutically important medium ring heterocycles.

RINGS WITH HETEROATOMS OTHER THAN O, N, AND S

The word heterocycle actually indicates the presence of at least one heteroatom
within the ring. Though the commonest among the rings are five- or six-members
containing mainly nitrogen (N), oxygen (O), or sulfur (S) atom(s), in addition, a
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CHAPTER 4

Tin(II) Salts: A Versatile and Efficient Lewis Acid
Catalyst in Reactions to Add Value to the Glycerol
and Terpenic Alcohols
Marcio J. da Silva* and Milena G. Teixeira
Chemistry Department, Federal University of Vicosa, Vicosa, Brazil

Keywords:  Esterification,  Glycerol,  Ketalization,  Terpenic  Alcohols,  Tin(II)
Catalysts.

INTRODUCTION

As the petroleum reserves have progressively diminished, a growing increase in
search  by  alternative  sources  of  renewable  fuels  has  been  noticed  in  the  wide
world.  The  biodiesel  is  a  liquid  fuel  that  can  be  blended  to  the  diesel  and  has
attracted the interest due to low environmental impact. Typically, the production
of biodiesel is performed through transesterification of animal fats or vegetable
oils with methyl or ethyl alcohol, leading to a formation of monoalkyl ester with
similar properties to the fossil diesel (Scheme 1).
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Abstract: Glycerol is a renewable origin compound that has been generated on a large
scale in biodiesel production processes. Terpenic alcohols are abundant raw material
present in several essential oils. Therefore, developing processes to convert this cheap
feedstock  to  a  more  value-added  compound  is  important  from  an  economic  and
environmental  viewpoint.  This  work  summarizes  the  main  advances  obtained  in
different kinds of tin (II) salts-catalyzed reactions in the last decade, where the goal
substrates were glycerol and terpenic alcohols. Tin (II) halides are water-tolerant Lewis
acids,  solid,  inexpensive  and  easy  handling,  which  showed  be  efficient  catalysts  in
reactions of carbamoylation and ketalization of glycerol, as well as in esterification of
terpenic  alcohols.  The  products  generated  from  terpenic  alcohol  esterification  are
valuable  ingredients  for  fragrance,  agrochemicals  and  pharmaceutical  industries.
Conversely, esters and glycerol ketals are useful as fuel additives. Terpenic carbamates
are  ingredients  in  agrochemical  synthesis.  Therefore,  due  to  great  success  on  these
reactions,  Sn  (II)  catalysts  are  an  attractive  option  to  the  traditional  Bronsted  acid
catalysts.
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Scheme 1.  Methanolysis of triglycerides.

Currently, the widespread use of biodiesel has two disadvantages:

The  impact  triggered  by  the  price  of  vegetable  oil  on  the  final  cost  of  the1.
biodiesel [1];
The  transesterification  process  generates  a  large  amount  of  glycerol,  which2.
demand new applications [2].

Therefore,  to  further  expansion of  industry  biodiesel,  it  is  necessary to  address
these  great  drawbacks.  Mainly,  to  develop  a  process  to  consume  the  glycerol
converting it to products with a high value-added can contribute to reducing the
cost  of  the  biodiesel  and  make  their  production  more  competitive  with  fossil
diesel. Glycerol is a coproduct of the biodiesel formed in a proportion of 10 wt. %
and has becomes an attractive raw material with potential industrial applications
[3]. Therefore, new approaches have been developed to valorize the glycerol and
consequently reduce the cost of production of the biodiesel.

In  addition  to  their  high  availability,  glycerol  is  a  versatile  feedstock  with
chemical and physical properties that make him a platform molecule for numerous
chemical transformations [4]. Thus, developing catalytic processes to converting
glycerol to high-value chemicals has been a goal pursued by several researchers.
The  strategies  of  synthesis  involve  glycerol  derivatives  already  used  at  an
industrial  scale  such  as  glycerol  carbonate,  1,2  and  1,3-  propanediol,  2,3-
butanediol, butanol, monoglycerides, and citric acid [5]. Moreover, glycerol is an
ingredient for the synthesis of solvents, surfactants, paints, and cosmetics [6].

The  production  of  acetals  and  cyclic  ketals  from  glycerol  with  aldehydes  and
ketones,  respectively,  has  demonstrated  to  be  an  interesting  route  from  an
industrial  viewpoint,  mainly  because  these  compounds  have  applications  as
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chemical  intermediates  [7].  Highlighted,  the  solketal  (i.e,  (2,2-dimethyl-1-
3-dioxolane-4-  yl)methanol)  has  received  significant  attention  due  to  their
properties as a fuel additive. Liquid catalysts such as p-toluenesulfonic acid are
industrially used in industry for glycerol acetalization, nonetheless, this process
requires  heating  (373  K)  for  long  reaction  time  (ca.  12  h)  [8].  Although
inexpensive, homogeneous acid catalysts have serious drawbacks such as the high
corrosiveness,  the  difficult  to  reuse,  and  the  necessity  of  neutralization  steps,
which  generate  effluents  and  residues,  being  environmentally  unfriendly.

The  use  of  solid  acid  catalysts  in  reactions  of  condensation  of  glycerol  with
acetone may circumvent these disadvantages [9]. Moreover, these acidic solid are
also used in routes to produce glycerol acetates, which is an attractive route for its
valorization. The synthesized products through this pathway can be used as fuel
additives, pharmaceuticals, cryogenics, and cosmetics [10]. Different processes to
produce acetyl  glycerides have been described in the literature,  which employs
acetic  acid,  aldehydes,  or  acetone  as  carbonylic  reactants  [11].  In  general,  the
esterification of glycerol with HOAc leads to the formation of mono-, di-, or tri-
esters  [12].  The  main  reaction  parameters  are  the  temperature,  molar  ratio  of
reactants, and catalyst load. Although uncatalyzed processes can be also used to
generate  acetyl  glycerides,  the  reaction  rates  are  influenced  by  the  operating
conditions;  generally,  high  temperatures  are  required  to  achieve  a  reasonable
conversion [13]. Conversely, when a Lewis or Brønsted acid catalyst is present,
the reactions are satisfactorily carried out at 333 K.

An  interesting  product  obtained  from  terpenic  alcohols  are  the  terpinyl
carbamates,  which  are  useful  in  the  synthesis  of  drugs,  or  in  the  chemical  of
peptides.  Carbamates  are  an  important  class  of  compounds  with  various
interesting properties, such as structural elements of many therapeutic agents, and
agricultural chemicals [20]. Structurally, the carbamate functionality is related to

Monoterpenes are a renewable raw material found in essential oils as well as in
rejects  of  Kraft-process  of  the  industry  of  cellulose.  Terpenes  derivatives
(terpenoids)  are  themselves  extensively  employed  in  producing  more  valuable
chemicals.  Terpenic  alcohols  as  β-citronellol  are  valuable  feedstock  for  the
industries of fragrance, food, pharmacy, and fine chemicals [14 - 16]. β-citronellyl
acetate  is  an  important  terpene  ester  which  finds  extensive  applications  as
fragrance  and  perfumery  ingredients,  intermediate  in  organic  synthesis  process
industries  [16].  This  valuable  compound  is  generally  synthesized  through
enzymatic processes or via Brønsted acid-catalyzed reactions [17, 18]. However,
the  high  cost  of  enzymatic  catalysts,  and  the  concerns  with  environmental
legislation,  has  moved  the  industries  toward  the  development  of  new  green
chemistry  methodologies  for  the  synthesis  of  β  -citronellyl  acetate  [19].
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CHAPTER 5

(E)-N-Methyl-1-(Methylthio)-2-Nitroethenamine
(Nmsm)  as  a  Versatile  Ambiphilic  Synthon  in
Organic  Synthesis
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Abstract:  (E)-N-methyl-1-(methylthio)-2-nitroethenamine  (NMSM)  1  is  a  versatile
molecule that contains four active sites with three functional groups on an ethane motif.
NMSM  as  a  precursor  reactant  has  been  widely  applied  in  the  diversity-oriented
synthesis  of  various  heterocyclic  motifs,  bis-heterocyclic,  fused  heterocyclic  and
spirocyclic scaffolds. These privileged scaffolds were synthesized via numerous types
of  reactions,  such  as  Michael  addition,  1,3-dipolar  cycloaddition,  heteroannulation
reaction and also many cascade reactions via multi-component reactions. Moreover, the
flexibility and high reactivity of NMSM as a versatile ambiphilic synthon signify it as a
suitable building block in medicinal chemistry and bulk drug synthesis. In the present
book chapter, we focused on the advances in the chemistry of NMSM as an effective
reagent in organic synthesis.

Keywords:  Ambiphilic  synthon,  Bulk  drugs,  Bis-heterocyclic  compounds,
(E)-N-methyl-1-(methylthio)-2-nitroethenamine,  Fused heterocyclic compounds,
Multi-component  reactions,  Nitroketene  N,S-acetal,  One-pot  reactions,
Spirocyclic  compounds.

INTRODUCTION

Ambiphilic synthons, which bear both nucleophilic and electrophilic sites, have
great  potential  in  developing new synthetic  routes  in  organic  synthesis.  Ketene
acetals  are  versatile  ambiphilic  synthons,  which bear  electron-withdrawing and
electron-releasing substituents,  lead to inimitable structural  features and earned
great  interest  to  synthetic  chemists  due  to  their  significance  as  useful  starting
materials in organic chemistry [1 - 5].
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Among  them,  nitroketene  N,  S-acetal,  (E)-N-methyl-1-(methylthio)-2-nitroe-
hena-mine  (1N-methyl-1S-methyl-2-nitroethylene)  (NMSM)  1  is  a  two-carbon
synthon that contains four active sites with three functional groups on an ethane
motif (Fig. 1) [6 - 8].

Fig.(1).  The reaction profile of NMSM.
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The three functional groups on the ethylene moiety include nitro, methylsfulfany
and methylamino, each one of which is suitable for synthetic utility and functional
group  manipulation.  With  a  strong  electron-withdrawing  nitro  group,  the
nitroethylene  substructure  in  NMSM  is  a  good  Michael  acceptor.  The
methylsulfanyl group is a good leaving group and also an electron donor. It can be
substituted  with  a  range  of  nucleophiles  following  the  nucleophilic  vinylic
substitution  (SNV)  mechanism.  The  methylamino  group  in  NMSM  acts  as  an
electron  donor  and  thus  is  a  good  Michael  donor.  The  ethylene  moiety  is  a
polarized  push–pull  alkene  and  due  to  polarization,  C2  exhibits  nucleophilic
characteristics  and  C1  exhibits  electrophilic  characteristics.  These  features  of
NMSM  make  it  highly  adaptable  and  simple  to  use  in  the  Michael  addition,
annulations,  cyclization  and  multicomponent  reactions.

NMSM is a synthetic equivalent of nitroacetic acid and glycine. It is also used in
industrial  scale  for  the  synthesis  of  anti-ulcer  bulk  drugs  ranitidine  [9,  10]  and
nizatidine [11]. NMSM participates in several commonly known reactions, such
as heteroannulation reaction, 1,3-dipolar cycloaddition, Michael addition, and also
several  cascade reactions,  to afford novel  N-,  O-  and S-containing heterocycles
with  high  regio-  and  stereoselectivities  [12].  These  qualities  make  NMSM  a
multi-faceted building block and utilized as a starting material for the construction
of  a  variety  of  heterocycles.  In  the  present  book  chapter,  we  demonstrate  the
chemistry  of  NMSM  in  terms  of  reactivity  pattern,  and  applications  in  the
synthesis  of  a  range  of  heterocycles.
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Preparation of NMSM

The  key  starting  material  in  the  preparation  of  NMSM  is  1,1-bis(methylthio)-
2-nitroethylene  2.  This  can  be  synthesized  by  the  addition  of  the  nitromethane
anion to CS2 and methylation to give 1,1-bis(methylthio)-2-nitroethylene 2 [13 -
15].  The  preparation  of  NMSM  involves  an  amination  of  1,1-bis(methylthio)-
2-nitroethylene 2  or  of  the corresponding monosulphoxide 3  with methylamine
(Scheme  1).  A  serious  problem  in  this  method  is  the  formation  of  1,1-
bis(methylamino)-2-nitroethylene, by further reaction with a second molecule of
methylamine.

Scheme (1).  Preparation of NMSM.

To avoid this problem, another approach was adopted for the synthesis of NMSM
[16,  17].  In  this  method,  nitromethane  was  allowed  to  react  with  dimethyl
methylcarbonimidodithioate 4 using a rare-earth (La, Pr and Sm)-exchanged NaY
zeolite as a catalyst (Scheme 2).

Scheme (2).  Preparation of NMSM.

APPLICATIONS OF NMSM IN THE SYNTHESIS OF HETEROCYCLES

Heterocyclic  compounds  exhibit  rich  chemistry  with  many  applications  in
medicinal  chemistry,  organic  chemistry  and  industry  [18].  Many  heterocyclic
compounds  exist  in  many  natural  products,  such  as  antibiotics,  hormones,
vitamins  and  dyes  [19].  It  is  highly  enviable  to  design  elegant,  cost-effective
novel methodologies for the synthesis of nitrogen-, oxygen-, and sulfur-containing
heterocycles.  Multi-component  reactions  (MCRs)  are  chemical  transformations
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