DENSITY MATRIX THEORIES IN QUANTUM PHYSICS

Boris V. Bondarev

Density Matrix Theories in Quantum Physics

Authored by

Boris V. Bondarev

Moscow Aviation Institute (National Research University),
Moscow,
Russia

Density Matrix Theories in Quantum Physics

Author: Boris V. Bondarev
ISBN (Online): 978-981-14-7541-2
ISBN (Print): 978-981-14-7539-9

ISBN (Paperback): 978-981-14-7540-5
© 2020, Bentham Books imprint.
Published by Bentham Science Publishers Pte. Ltd. Singapore. All Rights Reserved.
First published in 2020.

BENTHAM SCIENCE PUBLISHIERS LTD.

 End User License Agreement (for non-institutional, personal use)This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the ebook/echapter/ejournal ("Work"). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: permission@benthamscience.net.

Usage Rules:

1. All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit the Work or make the Work available for others to do any of the same, in any form or by any means, in whole or in part, in each case without the prior written permission of Bentham Science Publishers, unless stated otherwise in this License Agreement.
2. You may download a copy of the Work on one occasion to one personal computer (including tablet, laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it.
3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights.

Disclaimer:

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the Work.

Limitation of Liability:

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

General:

1. Any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims) will be governed by and construed in accordance with the laws of Singapore. Each party agrees that the courts of the state of Singapore shall have exclusive jurisdiction to settle any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims).
2. Your rights under this License Agreement will automatically terminate without notice and without the
need for a court order if at any point you breach any terms of this License Agreement. In no event will any delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement constitute a waiver of any of its rights.
3. You acknowledge that you have read this License Agreement, and agree to be bound by its terms and conditions. To the extent that any other terms and conditions presented on any website of Bentham Science Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail.

Bentham Science Publishers Pte. Ltd.

80 Robinson Road \#02-00
Singapore 068898
Singapore
Email: subscriptions@benthamscience.net

BENTHAM
SCIENCE
PREFACE i
INTRODUCTION vi
CHAPTER 1 New Theory of Step Kinetics 1

1. STEP KINETICS OF REACTIONS IN SOLIDS CORRELATION THEORY 1
1.1. Introduction 1
1.2. Kinetic Theory of Solid-Phase Reactions 3
1.3. Uniform Distribution of Particles in the Matrix 6
1.4. Conclusion 10
2. INFLUENCE OF HYDROGEN ATOM TUNNEL JUNCTION ON THE 'STEP" KINETICS OF SOLID-PHASE REACTIONS WITH PARTICIPATION OF RADICALS IN ORGANIC SUBSTANCES 10
2.1. Introduction 10
2.2. Tunnel Junction 11
2.3. Conclusion 14
2.4. Experimental Data Processing 15
3. DEATH KINETICS OF STABILIZED ELECTRONS IN POLYETHYLENE 16
3.1. Introduction 16
3.2. Study of loss of electrons 17
3.3. Explanation Experiment Theory 19
3.4. Conclusion 23
REFERENCES 24
ADDITIONAL LITERATURE 24
CHAPTER 2 Density Matrix 25
2.1. EQUATION FOR DENSITY MATRIX DERIVATION OF QUANTUM MARKOV KINETIC EQUATION FROM THE LIOUVILLE - VON NEUMANN EQUATION 25
2.1.1 Introduction 25
2.1.2. Method of Density Matrix and Non-stationary Perturbation Theory 28
2.1.3. Quantum Markov Kinetic Equation 29
2.1.4. Unitary Transformation 33
2.1.5. Conclusion 34
REFERENCES 34
ADDITIONAL LITERATURE 35
CHAPTER 3 New Theory of Superconductivity 35
3.1. HISTORY OF SUPERCONDUCTIVITY 35
3.1.1. Discovery of superconductivity 35
3.1.2 Meissner - Ochsenfeld effect. Silsbee effect 36
3.1.3. Energy Gap 38
3.2. DENSITY MATRIX METHOD VARIATIONAL PRINCIPLE FOR EQUILIBRIUM FERMIONS SYSTEM 39
3.2.1. Lagrange Method 39
3.2.2. The Hierarchy of Density Matrices 40
3.2.3. Introduction of the Occupation Numbers 42
3.2.4. The Unitary Transformation 45
3.2.5. Internal Energy of Fermions System 46
3.2.6. Entropy 47
3.2.7. Fermi - Dirac function 47
3.2.8. Mean-field Approximation for Fermions System 47
3.2.9. Multiplicative Approach of Second Order 50
3.3. ENERGY OF ELECTRONS IN CRYSTAL LATTICE 54
3.3.1. Unitary Transformation 54
3.3.2. Hamiltonian of Fermions System 56
3.3.3. The Energy of the Electrons in the Crystal Lattice 57
3.3.4. Fermi - Dirac Function and Distribution of Electrons Over the Wave Vectors 61
3.3.5. We Also Need to Find the Thermodynamic Functions 61
3.4. ANISOTROPY AND SUPERCONDUCTIVITY 62
3.4.1. Equation for Probability and Model Hamiltonian 62
3.4.2. Anisotropy 63
3.4.3. Mean-field Approximation 64
3.4.4. Isotropic Distribution of Electrons 65
3.4.5. Anisotropic Distribution of Electrons 66
3.4.6. Electron Distribution at $T=0$ 69
3.4.7. Superconductivity 70
3.4.8. Normalization Condition and Electron Energy 74
3.4.9. Electron Energy Calculation at $T=0$ 75
3.4.10. Real Distribution Function 78
3.4.11. Electron Mean Energy 80
3.4.12. Type-I and Type-II Superconductors 81
3.4.13. Density Matrix 82
3.4.14. Silsby Effect 83
3.4.15. Conclusion 84
3.5. SUPERCONDUCTIVITY DISAPPEARS 85
3.5.1. The Mean-field Approximation for $I=0$ 85
3.5.2. Real Distribution of the Electrons 86
3.5.3. Energy Gap 88
3.5.4. Medium Electron Energy 88
3.6. SUPERCONDUCTIVITY TYPE-II 89
3.6.1. Mean-field Approximation for $J=0$ 89
3.6.2. Distribution of Electrons at $T=0$ 94
3.6.3. Superconductivity Energy of States 95
3.6.4. Order Parameter 99
3.6.5. Mean Energy Dependence of Single Electron 100
3.7. MAGNETIC FIELD IN SUPERCONDUCTOR 102
3.7.1. Wave Function 102
3.7.2. The Kinetic Energy of Electrons in the Crystal Lattice 104
3.7.3. The Magnetic Field-dependent Unitary Transformation 106
3.7.4. Electrons Energy in Wave Vector Space 107
3.7.5. Equation for Electron Wave Vector Distribution Function 108
3.7.6. Meissner - Osnfeld Effect 112
3.7.8. The Magnetic Field in a Flat Superconductor 117
3.7.9. The Magnetic Field in the Superconducting Sphere 123
3.7.10. Magnetic Field in the Flat Disc of Superconductor 125
3.7.11. Supercurrent Flowing Through the Coil 127
3.7.12. Superconductivity Flowing Through the Solenoid 128
3.7.13. Quantum Levitation and Quantum Trapping 129
REFERENCES 133
ADDITIONAL LITERATURE 134
CHAPTER 4 New Theoflury of Super-Fluidty 135
4.1. NEW THEORY OF SUPER-FLUIDITY EQUILIBRIUM DENSITY MATRIX METHOD 135
4.1.1. Liquid Helium 135
4.1.2. Uniform Distribution of Particles in Space 135
4.1.3. Kinetic Energy of Particle 136
4.1.4. Particle Interaction Energy 137
4.1.5. Gas Internal Energy 139
4.1.6. Particle Pulse Distribution Function 139
4.1.7. Chemical Potential 141
4.1.8. Order Parameter 144
4.1.9. Gas Internal Energy Dependence on Temperature 145
4.1.10. Heat Capacity of Gas 148
4.1.11. Energy Spectrum of Particles 149
4.1.12. Superfluidity 150
4.1.13. Conclusion 152
REFERENCES 153
ADDITIONAL LITERATURE 153
CHAPTER 5 New Theory of Arbitrary Atom 154
5.1. METHOD OF DENSITY MATRIX NEW CALCULATION OF ENERGY LEVEL OF ELECTRONS IN ATOM. 154
5.1.1. Introduction 154
5.1.2. Statistical Operator 154
5.1.3. Density Matrix 155
5.1.4. Hamiltonian of the Electron System 157
5.1.5. Matrix Elements of the Hamiltonian 157
5.1.6. Wave Function of One Electron Moving Around an Arbitrary Nucleus 159
5.1.7. Matrix Elements of the Electron Interaction Hamiltonian 160
5.1.8. The Energy of the Electrons in Core is Recorded Using Density Matrix 162
5.1.9. The Pure State of Electrons in Atom 163
5.1.10. Conclusion 164
5.1.11. Comment 164
REFERENCES 164
ADDITIONAL LITERATURE 165
CHAPTER 6 New Theory of Laser 166
6.1. DENSITY MATRIX METHOD IN TWO-LEVEL LASER THEORY 166
6.1.1. Introduction 166
6.1.2. Kinetics of Quantum Transitions 168
6.1.3. Density Matrix 170
6.1.4. Equation for the Density Matrix 171
6.1.5. Equation for Density Matrix of the First-order Approximation 173
6.1.6. Equation for the Density Matrix of Zero-order 173
6.1.7. Diagonal Hamiltonian 177
6.1.8. Density Matrix in κ-Representation 181
6.1.9. The Transition Density Matrix from κ-Representation in Initial α-Representation 184
6.1.10. Dissipative Matrix 186
6.1.11. The Equation for the Density Matrix in κ-Representation 189
6.1.12. Kinetics of Laser 189
6.1.13. Equation for Non-diagonal Density Matrix 191
6.1.14. Kinetics of Radiation 191
6.1.15. Conclusion 193
REFERENCES 193
CHAPTER 7 Dissipative Operator 194
7.1. LINDBLAD EQUATION FOR HARMONIC OSCILLATOR UNCERTAINTY RELATION DEPENDING ON TEMPERATURE 194
7.1.1. Lindblad Equation 194
7.1.2. Energy Representation 195
7.1.3. Mean Value of the Coordinate 196
7.1.4. Mean Oscillator Energy 197
7.1.5. Kinetic Equation Expressed in Terms of Coordinate and Momentum Operators 198
7.1.6. Coordinate Representation 198
7.1.7. Momentum Representation 201
7.1.8. Wigner Function 202
7.1.9. Lindblad Equation is First-order Approximation 204
7.1.10. Conclusion 205
7.2. STATISTICAL OPERATOR IN THEORY OF QUANTUM OSCILLATOR DISSIPATIVE OPERATOR DAMPING 206
7.2.1. Introduction 206
7.2.2. Equation for Statistical Operator that Describes Damped Oscillations 207
7.2.3. Average Values of Position and Momentum 208
7.2.4. The Average Values of Squares of Position and Momentum 211
7.2.5. Conclusion 213
7.3. PARTICLE IN A STOCHASTIC ENVIRONMENT DISSIPATIVE MATRIX 213
7.3.1. Particle in a Homogeneous Isotropic Continuum 214
7.3.2. Equation for the Density Matrix 215
7.3.3. Equation for the Wigner Function 215
7.3.4. Conclusion 216
7.4. DENSITY MATRIX METHOD IN QUANTUM THEORY OF LIGHT EMITTING DIODE (LED) 216
7.4.1. Introduction 216
7.4.2. Light-diode 217
7.4.3. Connect LED 218
7.4.4. Equilibrium Distribution of Electron Energy 219
7.4.5. Impurity Semiconductors of p-Type 220
7.4.6. n-type Impurity Semiconductors 222
7.4.7. p - n transition 223
7.4.8. Lindblad Equation. Statistical operator 226
7.4.9. Density Matrix 227
7.4.10. Lindblad Equation Dissipative Operator 229
7.4.11. Equations for Density Matrix 230
7.4.12. Wigner Equation 231
7.4.13. Wigner Equations for Light Diode 231
7.5. THEORY OF BALL LIGHTNING 232
7.5.1. Introduction 232
7.5.2. Interaction of Electrons with Nuclei 233
7.5.3. Lindblad Equation 234
7.5.4. Dissipative Diffusion and Attenuation Operators 234
7.5.5. Equation for Statistical Operator of Atomic Nuclei 234
7.5.6. Average Values of Atomic Nucleus Coordinates 235
7.5.7. Average Value of Atomic Nucleus Pulse 237
7.5.8. Equation of Motion of Average Value of Nucleus Coordinates 240
7.5.9. Equation for Average Value $\left\langle\hat{r}^{2}\right\rangle$ 241
7.5.10. Equation for Average Value of $\left\langle\hat{p}^{2}\right\rangle$ 244
7.5.11. Equation for Average Value of Operator $\hat{r} \hat{p}+\hat{p} \hat{r}$ 247
7.5.12. Solution of Obtained Equations 251
7.5.13. Equation for Atomic Nucleus Density Matrix in Coordinate Representation 254
7.5.14. Wigner Equation 255
7.5.15. Distribution of Atomic Nucleus by Coordinates 255
7.6. THEORY OF TUNNEL TRANSITIONS 256
7.6.1. Introduction 256
7.6.2. Lindblad Equation and diSsipative Damping Operator 256
7.6.3. The Probability of Increasing the Crystal with Increasing Temperature 257
REFERENCES 257
ADDITIONAL LITERATURE 258
CHAPTER 8. The Beginning of Theoretical Nanophysics 259
8.1. EQUATION FOR DENSITY MATRIX SYSTEMS OF IDENTICAL PARTICLES 259
8.1.1. Introduction 259
8.1.2. Equation for the Density Matrix of One Particle 260
8.1.3. The Hierarchy for Statistical Operators 262
8.1.4. The Equation for Statistical Operators 263
8.1.5. The Equation for Density Matrix 264
8.1.6. Kinetic Equation 267
8.1.7. The Energy of the System of Identical Particles Unitary Matrix 267
8.1.8. Variational principle 269
8.1.9. Correlation Function 270
8.1.10. The Probability of Transition of Particle 270
8.1.11. Conclusion 271
8.2. NEW QUANTUM SPASER THEORY METHOD OF DENSITY MATRIX 271
8.2.1. Introduction 272
8.2.2. Kinetic Equation 274
8.2.3. Lindblad Equation 276
8.2.4. Equation for Density Matrix 276
8.2.5. Derivation of Quantum Kinetic Equation from Equation for the Density Matrix 277
8.2.6. Hamiltonian of an Atom with Two Energy Levels 278
8.3.7. Eigenvalue of Atom's Energy. Unitary Matrix 279
8.2.8. Transition of Density Matrix from α-Representation to κ-Representation 280
8.2.9. Equations for Density Matrices in Two Representations α and κ 281
8.2.10. Dissipative Matrix 281
8.2.11. Density Matrix Equation of the First Order of Approximation. 285
8.2.12. Zero-Order Density Matrix in κ-Representation 285
8.2.13. Equation for First-Order Density Matrix in κ-Representation 287
8.2.14. Spectral Density of Radiation Energy 288
4. QUANTUM THEORY OF GRAPHENE 290
8.3.1. Introduction 290
8.3.2. Electronic Structure of Graphene 291
8.3.3. Density Matrix and Average Energy of a Simple Crystal 293
8.3.4. Average Energy of Graphene 295
8.3.5. The Kinetic Energy of the Graphene 296
8.3.6. Energy of Interaction of Electrons in Graphene 301
8.3.7. Variational Principle 304
8.3.8. Equations for Distribution Functions 304
8.3.9. Conclusion 305
REFERENCES 305
CHAPTER 9 Perspective of Quantum Physics 307
9.1. THE LOOK INTO FUTURE OF QUANTUM PHYSICS 307
9.1.1. Introduction 307
9.1.2. Schrödinger Equation 307
9.1.3. Statistical Operator and Density Matrix 308
9.1.4. Something is Missing from Liouville - von Neumann Equation 309
9.1.5. Lindblad Equation for Statistical Operator 310
9.1.6. Equation for Density Matrix 310
9.1.7. Equation for Density Matrix is First Order Approximation 314
9.1.8. Equation for Density Matrix of System of Identical Particles 316
9.1.9. Energy of System of Identical Particles. Unitary Matrix 320
9.1.10. Transition Probability 321
9.1.11. Variational Principle 323
9.1.12. Conclusion 324
REFERENCES 324
AUTHOR'S LIST OF SCIENTIFIC ARTICLES AND BOOKS 355
SUBJECT INDEX 362

PREFACE

In this book, the author opens up new possibilities for the main quantities in quantum physics - the statistical operator $\widehat{\varrho}$ and the density matrix_ $\varrho_{n m}$. The meaning of the density matrix is that its diagonal elements $\varrho_{n n}$ are equal to the probability w_{n} that the system in the quantum state n. The point in this book is the Lindblad equation for the statistical operator $\hat{\varrho}$, where the main element of influence on the system of its environment is the dissipative operator \widehat{D} :

$$
\mathrm{i} \hbar \partial \widehat{\varrho} / \partial t=[\widehat{H} \widehat{\varrho}]+\mathrm{i} \hbar \widehat{D} .
$$

This operator is written in the most General form. In order for the Lindblad equation to be solved, the \widehat{D} operator must be specified. The author wrote down the dissipative diffusion and attenuation operators that will allow us to find the \widehat{D} operator. Now, this operator depends on the temperature T and describes the effect of the thermostat R on the quantum system S . This new equation is not difficult to write for the particle density matrix in coordinate representation as compared to the Wigner equation, which coincides with the Fokker - Planck equation. This proved the equivalence of quantum physics and classical statistical physics.

The author wrote the Lindblad equation for a harmonic oscillator and inserted a dissipative attenuation operator into it. And without any approximation, he derived the equation of damped oscillations for the average value of the $\bar{x}(\mathrm{t})$ coordinate with absolute accuracy.

Bondarev based on the Lindblad equation with another operator \widehat{D} developed the theory of the harmonic oscillator, in which he found the density matrix and proved the Heisenberg relation.

He further developed the theories of the light diode and ball lightning. In light diode theory, he used the diffusion and attenuation operators and derived the Fokker - Planck equations for electrons and holes. These equations present the terms that are responsible for radiation.

The theory of ball lightning is based on the assumption that the gas inside the ball is completely ionized and electrons, due to their lightness in comparison with nuclei, evenly fill this ball. The equation for the statistical operator $\widehat{\varrho}$ nuclei contains operators of diffusion and damping. This equation is a second-degree equation with respect to the coordinate and momentum operators. The probability of distribution of nuclei over the volume of a ball lightning is found.

Bondarev derived von Neumann equation from the Liouville, which is valid for a non-equilibrium system S and an equilibrium thermostat R, the equations for the density matrix S of a single particle and a system of identical particles. These equations have a remarkable property. When the density matrix has a diagonal form, they get turned into quantum kinetic equations for probabilities, which are obtained in the wave graphical representation.

The book presents new theories of such experimentally discovered phenomena as step kinetics of bimolecular reactions in solids, superconductivity, superfluidity, energy spectrum of an arbitrary atom, laser, spaser and graphene.

Kinetics is called as a stepwise process, in which the reaction suddenly stops at a constant temperature even in the presence of a lot of reagents. But as soon as the temperature is raised, the reaction starts again. The reason for this reaction is the tunnel effect, which is observed only in solids, when there are molecules in the bodies that hold the reagents near them. In liquids, these molecules can move along with the reagents and enter into a reaction that goes all the way while there are reagents. The reaction in liquids always obeys the Arrhenius law. To describe stepwise kinetics, the author came up with a correlation theory.

So, when processing the results of the step kinetics experiment using correlation theory, it was found that the Arrhenius law is also fulfilled here. And there was also an increase in localization volume with increasing temperature, as predicted by the tunnel effect.

Superconductivity can be described by the law of changing the probability $w_{\boldsymbol{k}}$ of filling the state of electrons with the wave vector k as a function of temperature. This law has long been known. It depends on the energy $\varepsilon_{\boldsymbol{k} \boldsymbol{k}^{\prime}}$ of the interaction of electrons with the wave vectors k and \boldsymbol{k}^{\prime}. When $\varepsilon_{\boldsymbol{k} \boldsymbol{k}^{\prime}}=0$, the probability $w_{\boldsymbol{k}}$ obeys the Fermi - Dirac law. Our goal was to find the energy $\varepsilon_{\boldsymbol{k} \boldsymbol{k}^{\prime}}$ of the interaction of electrons.

We denote the matrix elements of the interaction Hamiltonian of two particles as $H_{12,1^{\prime} 2^{\prime}}$, where 1 is the spin quantum number of the particles. If the particles are bosons, then the matrix elements must be antisymmetric, i.e. then the matrix elements must change the sign when replacing variables 1 and 2 , or 1^{\prime} and 2^{\prime}. This is possible if the matrix elements represent the sum of two terms of different characters. In the wave representation, the energy $\varepsilon_{-}\left(\mathrm{kk}^{\wedge}\right)$ will also represent two terms of different signs. But in this case, it is very difficult to solve the equation. Therefore, we roughly denote these terms as

$$
\varepsilon_{\boldsymbol{k} \boldsymbol{k}^{\prime}}=\mathrm{I} \delta_{\boldsymbol{k}+\boldsymbol{k}^{\prime}}-\mathrm{J} \delta_{\boldsymbol{k}-\boldsymbol{k}^{\prime}}
$$

where I and J are positive constants, $\delta_{\boldsymbol{k}}$ is the Kronecker symbol. Now we can substitute this function into the equation and get
$\ln \left[\left(1-w_{k}\right) / w_{k}\right]=\beta\left(\varepsilon_{\boldsymbol{k}}+I w_{-k}-J w_{k}-\mu\right)$.
This equation has a remarkable property. For some areas of \boldsymbol{k} will this inequality be true

$$
w_{\boldsymbol{k}} \neq w_{-\boldsymbol{k}} .
$$

The property that is expressed by this inequality is called anisotropy. The appearance of this property here is superconductivity.

Solving this equation, we obtain for $\mathrm{T}=0$ functions that have five values for one argument value. Since this function describes stationary states, the lowest energy is the value of the function where the electrons remain indefinite. This will be a superconducting state.

In theory, the parameter represents $\mathrm{f}=(J-I) /(J+I)$. This parameter divides superconductivity into two kinds. If $0 \leq \mathrm{f} \leq 1$, then it is a I-type superconductor, and if $-1 \leq \mathrm{f}<0$, then it is a II-type superconductor. Critical temperature is defined as $T_{c}=(I+J) /\left(4 k_{\mathrm{B}}\right)$. All the main effects and properties of superconductors are covered by this theory.

In the theory of superfluidity for liquid helium, He^{3} and He^{4}, all values that express the properties of this mixture are described by functions having multiple values in a certain temperature range. As a consequence, the heat capacity tends to infinity when the temperature approaches the temperature T_{λ} of the lambda transition.

The theory of the energy spectrum of an arbitrary atom begins with determining the energy using statistical operators:

$$
\mathrm{E}=\int \widehat{H}^{(1)} \hat{\varrho}^{(1)} \mathrm{dq}+1 / 2 \int \widehat{H}^{(2)} \hat{\varrho}^{(2)} \mathrm{d} q_{1} \mathrm{~d} q_{2},
$$

where $\widehat{H}^{(1)}$ is the Hamiltonian of one electron, $\widehat{H}^{(2)}$ is the Hamiltonian of two interacting electrons, $\hat{\varrho}^{(1)}$ and $\hat{\varrho}^{(2)}$ are the statistical operators of one and two electrons. The matrix $H_{\alpha_{1} \alpha_{2}, \alpha_{1}^{\prime} \alpha_{2}^{\prime}}$ of the Hamiltonian $\widehat{H}^{(2)}$ must be antisymmetric. To do this, it is taken equal to

$$
H_{\alpha_{1} \alpha_{2}, \alpha_{1}^{\prime} \alpha_{2}^{\prime}}=\int \Phi_{\alpha_{1} \alpha_{2}}^{*}\left(q_{1}, q_{2}\right) \widehat{H}^{(2)}\left(q_{1}, q_{2}\right) \Phi_{\alpha_{1}^{\prime} \alpha_{2}^{\prime}}\left(q_{1}, q_{2}\right) \mathrm{d} q_{1} \mathrm{~d} q_{2},
$$

where

$$
\Phi_{\alpha_{1} \alpha_{2}}\left(q_{1}, q_{2}\right)=1 / \sqrt{2}\left[\varphi_{\alpha_{1}}\left(q_{1}\right) \varphi_{\alpha_{2}}\left(q_{2}\right)-\varphi_{\alpha_{1}}\left(q_{2}\right) \varphi_{\alpha_{2}}\left(q_{1}\right)\right]
$$

there is an antisymmetric Slater function. The eigenfunctions of electrons in the hydrogen atom are taken as functions $\varphi_{\alpha}(q)$. After a series of calculations, an equation is obtained from which one can obtain the eigenfunction and energy $\varepsilon_{n m l \sigma}$ of electrons of an arbitrary atom.

In the following chapters, new theories of the laser and spaser are constructed, which are similar to each other in the content of the main quantum approaches to describing the phenomena occurring in them. The basis of these theories is the Lindblad equation. The equation for the density matrix will be written in a coordinate form with a known Hamiltonian and an unknown dissipative matrix. To find this matrix, we need to remember that we know the kinetic equation for active atoms, which follows from the equation for the density matrix in the representation where it has a diagonal form. So, a representation needs to be find out where the density matrix has a diagonal form. The closest to this representation is the representation in which the Hamiltonian of active atoms will also have a diagonal form. Thus, the Hamiltonian has two representations. One α representation is a coordinate representation. The other is the κ-representation, in which the Hamiltonian has a diagonal form. These two Hamiltonians are connected by the unitary matrix $U_{\alpha \kappa}$. The density matrices $\varrho_{\alpha \alpha^{\prime}}$ and $\tilde{\varrho}_{\kappa \kappa^{\prime}}$ will also be connected by the same unitary transformation:

$$
\varrho_{\alpha \alpha^{\prime}}=\sum_{\kappa \kappa^{\prime}} U_{\alpha \kappa} \tilde{\varrho}_{\kappa \kappa^{\prime}} U_{\alpha^{\prime} \kappa^{\prime}}^{*}
$$

We find the dissipative matrix in the κ-representation.
Now we need to create another equation in the α-representation. This is the most important equation in laser theory. This is the equation for the spectral energy density of radiation. To solve it, we will use the density matrix $\varrho_{\alpha \alpha^{\prime}}$. As a result, we will have the spectral energy density of the radiation from the laser.

Almost free electrons wander along the surface of graphene. For every carbon atom, there is one such electron. To obtain the kinetic equation of these electrons, their Hamiltonian must be reduced to a diagonal form. After these transformations, we will have a system of two equations that are equivalent to the equation obtained in the theory of superconductivity.

CONSENT FOR PUBLICATION

Not applicable.

CONFLICT OF INTEREST

The authors confirm that there is no conflict of interest.
ACKNOWLEDGEMENT
Declared none.

Boris V. Bondarev
Moscow Aviation Institute (National Research University)
Moscow
Russia

INTRODUCTION

1. Fundamentals of Quantum Mechanics. Schrödinger Equation

In quantum mechanics, the Schrödinger equation was obtained:

$$
\begin{equation*}
\mathrm{i} \hbar \partial \psi / \partial t=\widehat{H} \psi \tag{1}
\end{equation*}
$$

where the unknown

$$
\begin{equation*}
\psi=\psi(t, q) \tag{2}
\end{equation*}
$$

is called the wave function, \widehat{H} is the Hamilton operator энергии. Here q is a quantum variable on which the Hamiltonian acts. The physical meaning of the ψ function is that the product

$$
\begin{equation*}
w=\psi^{*} \psi \tag{3}
\end{equation*}
$$

is the probability of finding the system in state q. The probability satisfies the normalization condition

$$
\begin{equation*}
\int w(t, q) \mathrm{d} q=1 \tag{4}
\end{equation*}
$$

The energy operator \widehat{H} is by definition, such an action on the wave function $\psi(t$, q) to obtain the known energy $E(t, q)$ of the system:

$$
\widehat{H} \psi(t, q)=E(t, q) \psi(t, q)
$$

2. Liouville - von Neumann Equation

Soon another function was invented, it is called the density matrix:

$$
\begin{equation*}
\varrho=\varrho\left(t, q, q^{\prime}\right) \tag{5}
\end{equation*}
$$

At first, this function was equal to the product

$$
\begin{equation*}
\varrho\left(t, q, q^{\prime}\right)=\psi^{*}(t, q)\left(t, q^{\prime}\right) \tag{6}
\end{equation*}
$$

In this case, the state of the quantum system is called pure. This function satisfies the equation that can be easily deduced from the Schrödinger equation:

$$
\begin{equation*}
\mathrm{i} \hbar \partial \varrho / \partial t=[\widehat{H} \varrho] \tag{7}
\end{equation*}
$$

then there was invented the density matrix

$$
\begin{equation*}
\varrho_{n n^{\prime}}(t)=\int \psi_{n}^{*}(t, q) \hat{\varrho} \psi_{n^{\prime}}(t, q) \mathrm{d} q \tag{8}
\end{equation*}
$$

Here $\psi_{n}(t, q)$ is a set of wave functions, and $\hat{\varrho}$ is called the statistical operator.
The state described by the density matrix (8) is called mixed.
The physical meaning of the density matrix is that its elements

$$
\begin{equation*}
\varrho_{n n}=w_{n} \tag{9}
\end{equation*}
$$

are probabilities to find a quantum system in states n. The probability is such that

$$
\begin{equation*}
\sum_{n} w=1 \tag{10}
\end{equation*}
$$

The equation for the mixed state density matrix:

$$
\begin{equation*}
\text { i } \hbar \partial \varrho_{n n^{\prime}} / \partial t=\sum_{m}\left(H_{n m} \varrho_{m n^{\prime}}-\varrho_{n m} H_{m n^{\prime}}\right) \tag{11}
\end{equation*}
$$

It can be shown that the statistical operator $\hat{\varrho}$ satisfies the equation

$$
\begin{equation*}
\mathrm{i} \hbar \partial \hat{\varrho} / \partial t=[\widehat{H} \hat{\varrho}] \tag{12}
\end{equation*}
$$

The equations (11) and (12) are called Liouville - von Neumann equations. Both of these equations follow from the Schrödinger equation.

3. Lindblad Equation

The Schrödinger equation includes only the operator \widehat{H} of the quantum system energy. The equation for the statistical operator was first supplemented by Lindblad [1]:

$$
\begin{equation*}
\mathrm{i} \hbar \partial \widehat{\varrho} / \partial t=[\widehat{H} \widehat{\varrho}]+\mathrm{i} \hbar \widehat{D}, \tag{13}
\end{equation*}
$$

where the operator \widehat{D} can be called a dissipative operator. According to Lindblad, this operator is

$$
\begin{equation*}
\widehat{D}=\sum_{j k} C_{j k}\left\{2 \hat{a}_{j} \hat{\varrho} \hat{a}_{k}^{+}-\hat{a}_{k}^{+} \hat{a}_{j} \hat{\varrho}-\hat{\varrho} \hat{a}_{k}^{+} \hat{a}_{j}\right\} \tag{14}
\end{equation*}
$$

$C_{j k}$ are some numbers, \hat{a}_{j} is an arbitrary operator. The operator \widehat{D} can be written as follows:

$$
\widehat{D}=\sum_{j k} C_{j k}\left\{\left[\hat{a}_{j} \hat{\varrho}, \hat{a}_{k}^{+}\right]+\left[\hat{a}_{j}, \widehat{\varrho} \hat{a}_{k}^{+}\right]\right\}
$$

Operators \hat{a}_{j} are still to be found.

4. Equation for the Density Matrix

The Liouville - von Neumann equation (11) is applied to the composite system R $+S$, where R is a thermostat and S is an arbitrary system that is much smaller than the thermostat. The author of this work has derived from equation (11) the equation for the density matrix of the system S [2]:

$$
\begin{equation*}
\text { i } \hbar \partial \varrho_{n n^{\prime}} / \partial t=\sum_{m}\left(H_{n m} \varrho_{m n^{\prime}}-\varrho_{n m} H_{m n^{\prime}}\right)+\mathrm{i} \hbar D_{n n^{\prime}} \tag{15}
\end{equation*}
$$

where $D_{n n^{\prime}}$ is a dissipative matrix that equals to

$$
\begin{equation*}
D_{n n^{\prime}}=\sum_{m m^{\prime}} \gamma_{n m, m^{\prime} n^{\prime}} \varrho_{m m^{\prime}}-1 / 2 \sum_{m}\left(\gamma_{n m} \varrho_{m n^{\prime}}+\varrho_{n m} \gamma_{m n^{\prime}}\right), \tag{16}
\end{equation*}
$$

$\gamma_{n m, m^{\prime} n^{\prime}}$ - a matrix,

$$
\begin{equation*}
\gamma_{n n^{\prime}}=\sum_{m} \gamma_{m n^{\prime}, n m} \tag{17}
\end{equation*}
$$

5. Quantum Kinetic Equation

At the moment of time when the density matrix $\varrho_{n m}$ is diagonal:

$$
\begin{equation*}
\varrho_{n m}=w_{n} \delta_{n m}, \tag{18}
\end{equation*}
$$

where $\delta_{n m}$ is the Kronecker symbol. Then from equation (16) follows the kinetic equation

$$
\begin{equation*}
\partial w_{n} / \partial t=\sum_{m}\left(p_{n m} w_{m}-p_{m n} w_{n}\right), \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{n m}=\gamma_{n m, m n}=(2 \pi / \hbar) \sum_{N} \sum_{M}\left|v_{n N, m M}\right|^{2} W_{M} \delta\left(\varepsilon_{n}-\varepsilon_{m}+E_{N}-E_{M}\right) \tag{20}
\end{equation*}
$$

is the probability of transition of the system S from the state m to the state n per unit of time,

$$
W_{N}=v \exp \left(-\beta E_{N}\right)
$$

is a probability that the system R is in a state N with energy E_{N}, v is the normalization factor,

$$
\beta=1 /\left(k_{\mathrm{B}} T\right)
$$

is the inverse temperature of the thermostat; $v_{n N, m M}$ is the matrix element of the energy of interaction of the system S with thermostat R. Formula (20) is the Fermi Golden rule. Equations (13) and (15) are used in the articles included in this book.

6. Connection Dissipative Matrix and Dissipative Operator

Equations (14) and (16) are connected by the ratio

$$
\begin{equation*}
\gamma_{n m, m^{\prime} n^{\prime}}=2 \sum_{j k} C_{j k} a_{n m, j} a_{m^{\prime} n^{\prime}, k}^{+}, \tag{21}
\end{equation*}
$$

where $a_{n m, j}-$ matrix elements of operators \hat{a}_{j}.

7. Probability of Transition and Relaxation

Rule (20), together with the Boltzmann principle, allows to record the probability of transition in the form of

$$
p_{n m}=p_{n m}^{(\mathrm{o})} \exp \left[-\beta\left(\varepsilon_{n}-\varepsilon_{m}\right) / 2\right],
$$

where

$$
p_{n m}^{(\mathrm{o})}=p_{m n}^{(\mathrm{o})}
$$

I
Let's use formula (20):

$$
p_{n m}=\gamma_{n m, m n}
$$

We express the matrices $\gamma_{n m, m^{\prime} n^{\prime}}$ and $\gamma_{n n^{\prime}}$ by the transition probability $p_{n m}$. We will have

$$
\gamma_{n m, m^{\prime} n^{\prime}}=\sqrt{p_{n m} p_{n^{\prime} m^{\prime}}}, \quad \gamma_{n n^{\prime}}=\sum_{m} \sqrt{p_{m n^{\prime}} p_{m n}}
$$

Substituting these matrices into formula (6.2), we obtain the dissipative matrix in the form

$$
\begin{gathered}
D_{n n^{\prime}}=\sum_{m m^{\prime}}\left\{\sqrt{p_{n m} p_{n^{\prime} m^{\prime}}} \varrho_{m m^{\prime}}-\right. \\
\left.-1 / 2\left(\sqrt{p_{m^{\prime} m} p_{m^{\prime} n} n} \varrho_{m n^{\prime}}+\varrho_{n m} \sqrt{p_{m^{\prime} n^{\prime}} p_{m^{\prime} m}}\right)\right\}
\end{gathered}
$$

If we put the density matrix $\varrho_{n n^{\prime}}=w_{n} \delta_{n n^{\prime}}$ and $n=n^{\prime}$ in this formula, we get the dissipative matrix

$$
D_{n n}=\sum_{m}\left(p_{n m} w_{m}-p_{m n} w_{n}\right)
$$

If the matrix $p_{n m}$ is such that

$$
\pi_{n m}=\gamma_{n} \delta_{n m},
$$

then

$$
\gamma_{n m, m^{\prime} n^{\prime}}=\sqrt{\gamma_{n} \gamma_{n^{\prime}}} \delta_{n m} \delta_{n^{\prime} m^{\prime}}
$$

Here with

$$
\gamma_{n n^{\prime}}=\gamma_{n} \delta_{n n^{\prime}},
$$

the dissipative matrix will be equal to

$$
D_{n n^{\prime}}^{(r)}=-\Gamma_{n n^{\prime}} \varrho_{n n^{\prime}},
$$

where

$$
\Gamma_{n n^{\prime}}=1 / 2\left(\gamma_{n}+\gamma_{n^{\prime}}\right)-\sqrt{\gamma_{n} \gamma_{n^{\prime}}} \geq 0
$$

The value

$$
\Gamma_{n n}=0
$$

The matrix $D_{n n^{\prime}}^{(r)}$ describes the relaxation of the system S, which is the pursuit of zero non-diagonal elements of the density matrix.

8. Heisenberg Uncertainty Relation

The seventh chapter discusses two dissipative matrices that are used for the quantum oscillator. First, in a dissipative operator, we put the operator

$$
\hat{a}=(\mathrm{i} \hat{p} / \sqrt{m}+\sqrt{\kappa} \hat{x}) / \sqrt{2 \hbar \omega},
$$

which is used to describe the harmonic oscillator. Equations for density matrix in different representations are written. An equilibrium density matrix is found from these equations. The equation for the Wigner function is written. The equilibrium solution of these equations is found and with the help of this function, the Heisenberg uncertainty relation for the quantum harmonic oscillator is found:

$$
\overline{x^{2}} \cdot \overline{p^{2}}=\hbar^{2} / 4\left[\left(e^{\beta \hbar \omega}+1\right) /\left(e^{\beta \hbar \omega}-1\right)\right]^{2}
$$

In the future articles, the dissipative operator using the operator

$$
\hat{a}=\hat{x}+\mathrm{i} \hbar \beta \hat{p} /(4 m),
$$

is applied to describe the motion of the damped oscillator. It has been proved that from the Lindblad equation with such a dissipative operator, the Newton equation for the mean value of $\bar{x}(t)$ follows exactly, which describes the damped oscillations of the pendulum.

REFERENCES

[1] G. Lindblad, "On the generators of quantum dynamical semigroups," Commun. Math. Phys., vol. 48, pp. 119-130, 1976.
[2] B.V. Bondarev, "Derivation of the quantum kinetic equation from the equation Liouville - von Neumann", Theor. Math. Phys., vol. 100, pp. 33-43, 1994.

New Theory of Step Kinetics

1. STEP KINETICS OF REACTIONS IN SOLIDS CORRELATION THEORY

1.1. Introduction

One of the most characteristic features of the kinetics of low-temperature reactions occurring in the condensed phase is the kinetic stop of the reaction. The phenomenon of kinetic stopping is observed in the recombination of radicals (radical R is a particle with an unpaired electron), in the interaction of radicals with oxygen, etc. The particles entering these reactions appear due to the irradiation of a solid at a low temperature by ionizing radiation. After irradiation of the solid body, the reaction is not observed. If the temperature is increased to a certain level and kept constant, the reaction begins to proceed and then stops. If the temperature is increased once again by some value, the reaction resumes. The kinetics of this reaction is called stepwise.

In this paper, the theory of solid-phase reactions is presented, the essence of which is that the reactivity of particles is characterized not only by one constant of velocity, but during the reaction the correlation function is determined by the mutual arrangement of particles changes [1]. Consider two particles A and B, which appear in a solid under the action of ionizing radiation, when the temperature of the solid body is not very high. These particles might react, but for some reason, they do not react. If the temperature is not much increased, then the reaction will proceed. But after a while, it will stop again. This is called step kinetics of a bimolecular reaction.

In solids, there are various kinds of heterogeneities. When new particles appear in a solid, they are localized in the vicinity of these inhomogeneities. Fig. (1) shows particles A and B, arising at a constant temperature in the body under irradiation. Black dots represent the heterogeneity of the solid body. Particles A and B are localized in some volumes in the vicinity of these inhomogeneities. The particles are moving all the time inside these volumes of localization, making the "tunnel" transitions at the node of the crystal lattice. In Fig. (1), it can be observed that particles A and B can not meet and react, since the volumes of their localization are
small. In the next article, it will be shown that, according to the laws of quantum mechanics, the volume of localization increases with the increase in temperature.

Fig. (1). The volumes of localization of particles \mathbf{A} and \mathbf{B} at constant temperature are small. Therefore, the particles cannot meet and react.

If the temperature is increased to a certain level, the volume of localization will increase, particles A and B will meet and react (see Fig. 2).

Fig. (2). The volume of localization of particles with increasing temperature expanding and after a while particles \mathbf{A} and \mathbf{B} meet and react.

This paper presents the theory of kinetics of solid-phase reactions, taking into account the correlation of the distributions of reacting particles. Kinetic equations are derived. Their solution for the homogeneous case is given. The obtained solution explains the basic laws of "step" kinetics.

1.2. Kinetic Theory of Solid-Phase Reactions

Let the particles A and B stabilize in some matrix, which can react as follows:

$$
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB}
$$

Each of these particles is localized around some center, which will be called the stabilization center and the particles move through diffusion in the microregions surrounding the center. The area in which the microdiffusion of the particle occurs increases with temperature. At a certain temperature, the size of this area becomes so large that the particle can be considered almost "free". In this case, the particle movement in the matrix volume is determined by the macrodiffusion process.

$$
n_{\mathrm{A}}=n_{\mathrm{A}}\left(\boldsymbol{r}_{\mathrm{A}}, t\right) \quad \text { and } \quad n_{\mathrm{B}}=n_{\mathrm{B}}\left(\boldsymbol{r}_{\mathrm{B}}, t\right)
$$

denote concentrations of the centers of particle stabilization A and B, respectively.
By definition

$$
\begin{equation*}
\int n_{\mathrm{A}} \mathrm{~d} V_{\mathrm{A}}=N_{\mathrm{A}}, \quad \int n_{\mathrm{B}} \mathrm{~d} V_{\mathrm{B}}=N_{\mathrm{B}} \tag{1.1.1}
\end{equation*}
$$

where N_{A} and N_{B} are the numbers of particles A and B stabilized in volume V of the matrix. Let the probability be given as:

$$
F_{\mathrm{AB}}=F_{\mathrm{AB}}\left(\boldsymbol{r}_{\mathrm{A}}, \boldsymbol{r}_{\mathrm{B}}, t\right)
$$

where F_{AB} is formation per unit time of a composite particle AB from two arbitrarily selected particles A and B, whose stabilization centers are at points $\boldsymbol{r}_{\mathrm{A}}$ and $\boldsymbol{r}_{\mathrm{B}}$. The function F_{AB} satisfies the following relations:

$$
\begin{equation*}
\int F_{\mathrm{AB}} \mathrm{~d} V_{\mathrm{A}}=\int F_{\mathrm{AB}} \mathrm{~d} V_{\mathrm{B}}=k, \tag{1.1.2}
\end{equation*}
$$

where k is the reaction rate constant given as:

$$
\begin{equation*}
k=4 \pi r_{\mathrm{o}} D p \mathrm{e}^{-E /\left(k_{\mathrm{B}} T\right)}\left(1+r_{\mathrm{o}} / \sqrt{\pi D t}\right) \tag{1.1.3}
\end{equation*}
$$

where r_{o} is the distance between the particles at which their active interaction begins; D is the microdiffusion coefficient, p is the steric factor, and E is the activation energy of the reaction.

Density Matrix

2.1. EQUATION FOR DENSITY MATRIX DERIVATION OF QUANTUM MARKOV KINETIC EQUATION FROM THE LIOUVILLE - VON NEUMANN EQUATION

In the framework of the second-order kinetic perturbation theory, the quantum Markov kinetic equation is derived from the Liouville - von Neumann equation [1]. This equation holds when the density matrix is diagonal. An arbitrary representation of the resulting equation is called the equation for the density matrix. The last equation written in the operator form is called the Lindblad equation [2].

2.1.1. Introduction

From a practical point of view of the problems of statistical physics, the kinetics of a stochastic system interacting with its environment is crucial. One of the main goals of the experimental or theoretical study of an open system, which was initially in some arbitrary nonequilibrium state, is the study of relaxation processes that lead this system to an equilibrium state. The basis of kinetic studies of the open system is the equation that controls the evolution of its States in time. The derivation of this equation, which is called a generalized kinetic equation, is generally a very complex problem.

A mathematically rigorous theory can not raise doubts about its validity only if it is built on the first principles. In the quantum theory of nonequilibrium processes, the first principle is expressed by the Liouville - von Neumann equation for the density matrix. Therefore, various methods for obtaining a generalized kinetic equation from the Liouville - von Neumann equation are of interest. The simplest form of the generalized kinetic equation takes when it describes a random Markov process.

The kinetic theory of an open system is usually formulated on the basis of the "system - reservoir" model, when the "small" system S interacts with the "large" system R, which is considered as an infinitely capacious heat reservoir. It is assumed that the composite system $S+R$ is closed and the evolution of its States is described in the framework of quantum theory by the Liouville - von Neumann equation for the statistical operator $\hat{\rho}(t)=\hat{\rho}_{S+R}(t)$:

$$
\begin{equation*}
\mathrm{i} \hbar \dot{\hat{\rho}}=[\widehat{\mathcal{H}} \hat{\rho}] \tag{2.1.1}
\end{equation*}
$$

where the complete Hamiltonian

$$
\begin{equation*}
\widehat{\mathcal{H}} \equiv \widehat{\mathcal{H}}_{S+R}=\widehat{H}_{S}+\widehat{H}_{R}+\widehat{V} \tag{2.1.2}
\end{equation*}
$$

consists of Hamiltonian \widehat{H}_{S} and \widehat{H}_{R} of system S and reservoir R, respectively, and Hamiltonian of their interaction \hat{V}.

Statistical operator

$$
\hat{\varrho}_{S}=\widehat{\varrho}(t)
$$

of system S is determined by the ratio

$$
\begin{equation*}
\hat{\varrho}(t)=\operatorname{Tr}_{R} \hat{\rho}(t) . \tag{2.1.3}
\end{equation*}
$$

The main task is to obtain an equation for the operator (3). There are two ways to solve this problem: 1) the generalized kinetic equation can be derived from the Liouville - von Neumann equation and 2) the quantum Markov kinetic equation can be obtained phenomenologically taking into account the basic properties of the statistical operator, such as Hermitian, positive certainty, and normalization. The first way attracts the rigor and sequence of actions that lead to the desired equation. But this path is very difficult. Mathematically correct and practically useful results can be obtained in this way only in extreme cases. It is usually assumed that the interaction of the system with its environment is "weak", and at a certain stage of calculations make a thermodynamic limit transition. In addition, you have to make others strong and well-educated guesses. As for the second way, it should be noted that the phenomenologically obtained quantum Markov kinetic equation makes it possible to explain successfully many qualitative and quantitative regularities of kinetic phenomena in quantum open systems. It is therefore interesting to compare these two approaches and derive the quantum Markov kinetic equation directly from the Liouville - von Neumann equation.

Formally, the general solution of equation (2.1.1) can be represented as

$$
\begin{equation*}
\hat{\rho}(t)=\exp \left[-\mathrm{i} / \hbar \int_{0}^{t} \widehat{\mathcal{H}}\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right] \hat{\rho}(0) \exp \left[\mathrm{i} / \hbar \int_{0}^{t} \widehat{\mathcal{H}}\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right] \tag{2.1.4}
\end{equation*}
$$

It is usually assumed that at the initial time $t=0$, the states of the system and the reservoir are statistically independent, and the latter is in a state of statistical equilibrium. This assumption corresponds to the equality

$$
\begin{equation*}
\hat{\rho}(0)=\hat{\varrho}_{S}(0) \hat{\varrho}_{R}^{(\mathrm{eq})}, \tag{2.1.5}
\end{equation*}
$$

where $\widehat{\varrho}_{S}(0)$ is an arbitrary statistical operator describing the initial state of the system;

$$
\begin{equation*}
\hat{\varrho}_{R}^{(\mathrm{eq})}=v \exp \left(-\beta \widehat{H}_{R}\right) \tag{2.1.6}
\end{equation*}
$$

is the statistical operator of the equilibrium state of the reservoir, v is the normalizing multiplier,

$$
\beta=1 /\left(k_{\mathrm{B}} T\right)
$$

is return temperature. Using formulas (2.1.3) - (2.1.6), it is not difficult to obtain a relation linking the statistical operators $\widehat{\varrho}_{S}(0)$ and $\widehat{\varrho}_{S}(t)$. Unfortunately, this formal solution to the problem is almost useless because of its complexity.

As it is known, the density matrix $\varrho_{n n^{\prime}}$ of the system S must be self-adjoint, normalized, and positive definite at any time t. The quantum Markov kinetic equation, which guarantees the preservation of these properties of the density matrix, in the most general case has the form
$\mathrm{i} \hbar \dot{\varrho}_{n n^{\prime}}=\sum_{m}\left(h_{n m} \varrho_{m n^{\prime}}-\varrho_{n m} h_{m n^{\prime}}\right)+\mathrm{i} \hbar\left[\sum_{m m^{\prime}} \gamma_{n m, m^{\prime} n^{\prime}} \varrho_{m m^{\prime}}-\right.$ $\left.1 / 2 \sum_{m}\left(\gamma_{n m} \varrho_{m n^{\prime}}+\varrho_{n m} \gamma_{m n^{\prime}}\right)\right]$,
(2.1.7)
where $h_{n m}$ are matrix elements of the effective Hamiltonian of the system, variables n, m, \ldots the essence of the quantum numbers that characterize its state,

$$
\begin{equation*}
\gamma_{n m, m^{\prime} n^{\prime}}=\sum_{j} a_{n m, j} a_{n^{\prime} m^{\prime}, j}^{*}, \tag{2.1.8}
\end{equation*}
$$

$a_{n m, j}$ are a system of arbitrary linearly independent matrices, $\gamma_{n m}=\sum_{l} \gamma_{l m, n l}$.
The purpose of this paper is to derive the quantum Markov kinetic equation (7) from the Liouville - von Neumann equation and to obtain calculation formulas for

CHAPTER 3

New Theory of Superconductivity

3.1. HISTORY OF SUPERCONDUCTIVITY

3.1.1. Discovery of Superconductivity

Kamerlingh Onnes discovered the phenomenon of superconductivity at the Leiden Laboratory, Holland, in 1991 [1]. While studying the dependence of Hg resistance on temperature, he found out that when the material is cooled down to the temperature of about 4 K the resistance drops abruptly to zero. This phenomenon was called superconductivity. Soon after that, other elements with similar properties were discovered. Fig. (3.1.1) demonstrates the scheme of measurement of superconductor resistance.

Fig. (3.1.1). The magnetic needle detects a supercurrent-induced magnetic field.
A superconductor is immersed in liquid helium. Initially, a weak current is supplied from a battery, then temperature is reduced. When the temperature falls below a certain value, the superconductor circuit is shortened. The current in the superconductor circuit can be sustained for a long time. A magnetic needle provided as a detector indicates the magnetic field produced by the current in the solenoid.

Fig. (3.1.2) shows the dependence of resistivity ρ on temperature T in a superconductor. Temperature T_{c} is called critical temperature. This means that we cannot measure the resistance of the superconductor at $T<T_{\mathrm{c}}$. At the same time, we cannot say that the resistivity ρ is equal to zero. The superconductor has a property that makes it impossible to measure the resistivity.

3.1.2. Meissner - Ochsenfeld Effect Silsbee Effect

It was discovered that superconductivity disappears when a test piece is placed in a relatively weak magnetic field. This phenomenon was discovered by Meissner and Ochsenfeld [2]. Value H_{m} of the magnetic field strength in which superconductivity is disrupted is called a critical field. The temperature dependence of the critical field is described by the following empirical formula:

$$
\begin{equation*}
H_{\mathrm{m}}(T)=H_{\mathrm{m}}(0)\left[1-\left(T / T_{\mathrm{c}}\right)^{2}\right], \tag{3.1.1}
\end{equation*}
$$

where $H_{\mathrm{m}}(0)$ is a critical field produced at absolute zero of temperature energy gap $T=0$. Dependence (1.1) is shown in Fig. (3.1.3). Plane (H, T) represents a phase diagram of the superconductive state. The substance in the superconductive state S is shown below the curve (3.1.1) and this substance in the normal state N is above the curve. The superconductor that demonstrates such states is called the type-I superconductor. Superconductivity is disrupted when the current in the substance exceeds a certain critical value (The Silsbee effect).

Fig. (3.1.2). The dependence of the resistivity on temperature.

Fig. (3.1.3). Phase diagram of the type-I superconductive state at coordinates (H, T).
There are two magnetic fields in the superconductor. One magnetic field is created by the supercurrent and another external field is induced from other sources. The compass needle shown in Fig. (3.1.3) responds to the supercurrent-induced field. Let us denote such strength of field by parameter $\boldsymbol{H}^{\text {(super) }}$ and name this field the superconductor self-generated magnetic field. We shall denote the strength of other magnetic fields by parameter $\boldsymbol{H}^{\text {(exter) }}$. This is an external magnetic field. Let the strength of the external magnetic field on the surface of the superconductor be equal to $H^{\text {(exter) }}=H_{0}$. The Meissner - Ochsenfeld effect can be expressed by the following inequality. Superconductivity is generated in metal when its temperature T drops down below the critical temperature T_{c} :

$$
\begin{equation*}
T<T_{\mathrm{c}}, \tag{3.1.2}
\end{equation*}
$$

where the strength of the external magnetic field at the surface of the superconductor is less than that of the critical field:

$$
\begin{equation*}
H_{\mathrm{o}}<H_{\mathrm{m}}(T) . \tag{3.1.3}
\end{equation*}
$$

In other cases, the superconductor will show ordinary metal properties.
There are superconductors of type II, for which the phase diagram has the form shown in Fig. (3.1.4). The state of the superconductor, which lies between the normal state N and superconducting state S is called mixed.

CHAPTER 4

New Theory of Superfluidity

4.1. NEW THEORY OF SUPER-FLUIDITY EQUILIBRIUM DENSITY MATRIX METHOD

4.1.1. Liquid Helium

Gaseous helium at atmospheric pressure becomes liquid when its temperature reaches a value of 4.44 K . Solid helium can only exist at a pressure of at least 25 atm. At lower pressures, helium remains liquid down to zero absolute temperature.

There are two isotopes of helium: He^{3} and He^{4}. In the liquid He^{4}, a phase transition occurs at a temperature $T_{\lambda}=2,18 \mathrm{~K}$, i.e. two helium phases are distinguished, which denote He I and He II. At temperature $T<T_{\lambda}$, helium He^{4} is in a phase He II. In this case, helium behaves so, as if it is a mixture of two liquids, which are called normal and superfluid components. Distinctive features of the latter are 1) its zero entropy and 2) the lack of friction of this component with the normal component and the walls of the vessel.

The phenomenon of superfluidity of helium He II was discovered in 1937 by the Soviet physicist, Peter Leonidovich Kapitsa. In 1978, he received the Nobel prize for this discovery.

As the temperature decreases, the density ρ_{N} of the normal component decreases, and the density ρ_{S} of the superfluid increases. The density of He II is:

$$
\rho=\rho_{N}+\rho_{S} .
$$

Temperature dependence of the relationship ρ_{N} / ρ is set experimentally. The dependence presented in this graph is satisfactorily described by the empirical formula as,

$$
\rho_{N} / \rho=\left\{\begin{array}{ccc}
\left(T / T_{\lambda}\right)^{5,6} & \text { at } & T<T_{\lambda} \\
1 & \text { at } & T \geq T_{\lambda} .
\end{array}\right.
$$

Experimental dependence of $C=C(T)$ helium heat capacity on temperature it resembles the letter λ. Therefore, this phase transition is called λ-transition. At the point $T=T_{\lambda}$ the function $C=C(T)$ becomes infinitely large.
Atoms He^{3} are fermions, and atoms He^{4}-- bosons. It is therefore natural to assume that the λ-transition in He^{4} is somehow related to the possible Bose condensation of helium atoms.

Today, the question of Bose condensation has aroused quite a keen interest in the study of the nature of this phenomenon and the thermodynamic properties of multifrequency systems. The most general statistical formulation of a multifrequency system in quantum mechanics is obtained by applying a density matrix. To describe the density matrix of the boson equilibrium system, the variational principle [1] is used in this paper.

4.1.2. Uniform Distribution of Particles in Space

For analysis of equilibrium states of quantum gas consisting of angular momentum zero-spin particles, we apply a variational density matrix method. We assume that N of the above particles finds itself within a certain space area with the volume equal to V. If the particles have their mean uniform distribution, a single-particle density matrix, which in coordinate representation depends on radius vectors \boldsymbol{r} and \boldsymbol{r}^{\prime}, will obtain the form as follows:

$$
\begin{equation*}
\varrho_{r r^{\prime}}=1 / V \sum_{k} p_{k} \mathrm{e}^{\mathrm{i} k\left(r-r^{\prime}\right)} \tag{4.1.1}
\end{equation*}
$$

where p_{k} is the probability that an arbitrarily accepted particle is in the state defined by wave vector \boldsymbol{k}. Particle momentum

$$
\boldsymbol{p}=\hbar \boldsymbol{k} .
$$

Probability $p_{\boldsymbol{k}}$ meets its normalizing condition,

$$
\begin{equation*}
\sum_{k} p_{k}=1 \tag{4.1.2}
\end{equation*}
$$

As formula (4.1.1) indicates, the momentum representation density matrix is diagonal, i.e.

$$
\varrho_{\boldsymbol{k} \boldsymbol{k}^{\prime}}=p_{\boldsymbol{k}} \delta_{\boldsymbol{k} \boldsymbol{k}^{\prime}},
$$

and transition from momentum representation to the nodal one is affected by a unitary matrix

$$
\begin{equation*}
u_{r k}=1 / \sqrt{V} \mathrm{e}^{\mathrm{i} \boldsymbol{k} r} \tag{4.1.3}
\end{equation*}
$$

which is subject to the condition as follows:

$$
\int u_{r \boldsymbol{k}} u_{r \boldsymbol{k}^{\prime}}^{*} \mathrm{~d} \boldsymbol{r}=\delta_{\boldsymbol{k} \boldsymbol{k}^{\prime}} \quad \text { or } \quad 1 / V \int \mathrm{e}^{\mathrm{i}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right) \boldsymbol{r}} \mathrm{d} \boldsymbol{r}=\delta_{\boldsymbol{k} \boldsymbol{k}^{\prime}} .
$$

4.1.3. Kinetic Energy of Particle

Particle kinetic energy operator $\widehat{H}^{(1)}$ takes the form as follows:

$$
\begin{equation*}
\widehat{H}^{(1)}=-\hbar^{2} \nabla^{2} /(2 m), \tag{4.1.4}
\end{equation*}
$$

where m - particle mass.
Applying formula:

$$
H_{\boldsymbol{k} \boldsymbol{k}^{\prime}}=\int u_{\boldsymbol{r} \boldsymbol{k}}^{*} \widehat{H}^{(1)} u_{\boldsymbol{r} \boldsymbol{k}^{\prime}} \mathrm{d} \boldsymbol{r}
$$

we can find elements of operator $\widehat{H}^{(1)}$ in momentum representation:

$$
\begin{equation*}
H_{\boldsymbol{k} \boldsymbol{k}^{\prime}}=\varepsilon_{\boldsymbol{k}} \delta_{\boldsymbol{k} \boldsymbol{k}^{\prime}} . \tag{4.1.5}
\end{equation*}
$$

where $\varepsilon_{\boldsymbol{k}}$ is the particle kinetic energy with pulse $\boldsymbol{p}=\hbar \boldsymbol{k}$:

$$
\begin{equation*}
\varepsilon_{\boldsymbol{k}}=\hbar^{2} \boldsymbol{k}^{2} /(2 m) . \tag{4.1.6}
\end{equation*}
$$

4.1.4. Particle Interaction Energy

We assume that $U_{r r^{\prime}}=U_{r-\boldsymbol{r}^{\prime}}$ is potential two particle interaction energy. In virtue of translation invariance, the potential energy depends on vectors difference $\boldsymbol{r}_{1}-\boldsymbol{r}_{2}$ only and it is represented by its symmetrical function:

$$
U_{r r^{\prime}}=U_{r^{\prime} r}
$$

In this case, interaction Hamiltonian matrix elements shall be formulated by the following method:

New Theory of Arbitrary Atom

5.1. METHOD OF DENSITY MATRIX NEW CALCULATION OF ENERGY LEVEL OF ELECTRONS IN ATOM

In this chapter, we apply a stationary Shrödinger equation, the solution of which allows us to find the energy levels of electrons in an arbitrary atom. This approach is based on the density matrix method. The density matrix was used to find the average electron energy in the atom. The main idea of this paper is that all twoelectron matrices must be antisymmetric. To ensure that the two-electron Hamiltonian is anti-symmetric we use the Slater two-particle wave function.

5.1.1. Introduction

The density matrix is the most general description of the system in quantum mechanics. The state of the system, which is described by the density matrix, is called mixed. In a particular case, the density matrix can be proportional to the product of two wave functions. In this case, the state of the system is called pure.

At first, the concept of density matrix was defined [1, 2]. The method of calculation of energies in the spectrum of an arbitrary atom, which is called the Hartree Fock method, is used. Based on the variational principle, this method applies different combinations of single-electron wave functions that take into account their anti-symmetry. This makes electrons to be fermions.

Here, the density matrix method is used to derive the average energy of electrons in an atom. The Slater wave function is used to obtain an anti-symmetric twoelectron Hamiltonian. The stationary Schrödinger equation for the wave function is written. The solution of this equation makes it possible to find the energy levels of electrons in an atom.

5.1.2. Statistical Operator

The system of identical particles in quantum mechanics is characterized by a hierarchical sequence of statistical operators as given below:

$$
\hat{\varrho}^{(1)}, \hat{\varrho}^{(2)}, \hat{\varrho}^{(3)}, \ldots
$$

We need only the first two operators from this sequence: $\hat{\varrho}^{(1)}$ and $\hat{\varrho}^{(2)}$. Let q_{1} and q_{2} be quantum coordinates that determine the States of two particles of the system. The first of these operators $\widehat{\varrho}^{(1)}$ depends only on one of these numbers:

$$
\begin{equation*}
\hat{\varrho}^{(1)}=\hat{\varrho}^{(1)}(q) . \tag{5.1.2.1}
\end{equation*}
$$

The statistical operator $\widehat{\varrho}^{(2)}$ depends on these two numbers:

$$
\begin{equation*}
\hat{\varrho}^{(2)}=\hat{\varrho}^{(2)}\left(q_{1}, q_{2}\right) . \tag{5.1.2.2}
\end{equation*}
$$

Electrons are identical particles. The consequence of the indistinguishability of two electrons is the symmetry of the operator $\hat{\varrho}^{(2)}$, i.e.

$$
\begin{equation*}
\hat{\varrho}^{(2)}\left(q_{1}, q_{2}\right)=\hat{\varrho}^{(2)}\left(q_{2}, q_{1}\right) . \tag{5.1.2.3}
\end{equation*}
$$

By definition, we will use equality

$$
\begin{equation*}
\operatorname{Tr}_{q} \hat{\varrho}^{(1)}(q)=N \tag{5.1.2.4}
\end{equation*}
$$

where N is the number of particles in the system;

$$
\begin{equation*}
\operatorname{Tr}_{q_{1} q_{2}} \hat{\varrho}^{(2)}\left(q_{1}, q_{2}\right)=N(N-1), \ldots \tag{5.1.2.5}
\end{equation*}
$$

5.1.3. Density Matrix

The density matrix of any system in quantum mechanics is of the form $\varrho_{\alpha \alpha^{\prime}}$, where α and α^{\prime} are quantum numbers that determine the States of one particle. The density matrix corresponds to the statistical operator $\hat{\varrho}^{(1)}$. This correspondence is determined by the following formula:

$$
\begin{equation*}
\varrho_{\alpha \alpha^{\prime}}=\int \varphi_{\alpha}^{*}(q) \hat{\varrho}^{(1)}(q) \varphi_{\alpha^{\prime}}(q) \mathrm{d} q, \tag{5.1.3.1}
\end{equation*}
$$

where $\varphi_{\alpha}(q)$ is some wave function satisfying the ortho-normalization condition:

$$
\begin{equation*}
\int \varphi_{\alpha}^{*}(q) \varphi_{\alpha^{\prime}}(q) \mathrm{d} q=\delta_{\alpha \alpha^{\prime}} . \tag{5.1.3.2}
\end{equation*}
$$

where $\delta_{\alpha \alpha^{\prime}}$ - Kronecker symbol.

The meaning of the density matrix is that the diagonal elements $\varrho_{\alpha \alpha^{\prime}}$ of this matrix are equal to the probability

$$
w_{\alpha}=\varrho_{\alpha \alpha}
$$

detecting the system in the state α. Probability w_{α}, according to (5.1.2.4), satisfies the normalization condition as follows:

$$
\begin{equation*}
\sum_{\alpha} w_{\alpha}=N \tag{5.1.3.3}
\end{equation*}
$$

The two-part operator $\hat{\varrho}^{(2)}$ corresponds to the density matrix $\varrho^{(2)}$:

$$
\begin{equation*}
\varrho^{(2)}=\varrho_{\alpha_{1} \alpha_{2}, \alpha_{1}^{\prime} \alpha_{2}^{\prime}} \tag{5.1.3.4}
\end{equation*}
$$

Density matrix in abbreviated form can be written in any coordinate as follows:

$$
\varrho^{(1)}=\varrho_{11^{\prime}}, \quad \varrho^{(2)}=\varrho_{12,1^{\prime} 2^{\prime}} .
$$

Since electrons are fermions, their two-electron density matrix must be antisymmetric. This means that the ratios are fair:

$$
\begin{equation*}
\varrho_{12,1^{\prime} 2^{\prime}}=-\varrho_{21,1^{\prime} 2^{\prime}}=-\varrho_{12,2^{\prime} 1^{\prime}}=\varrho_{21,2^{\prime} 1^{\prime}} \tag{5.1.3.5}
\end{equation*}
$$

The anti-symmetry ratio can be approximately satisfied if the two-electron density matrix is approximately equal to

$$
\begin{equation*}
\varrho_{12,1^{\prime} 2^{\prime}} \simeq \varrho_{11^{\prime}} \varrho_{22^{\prime}}-\varrho_{12^{\prime}} \varrho_{21^{\prime}} \tag{5.1.3.6}
\end{equation*}
$$

Exactly two-electron density matrix will satisfy the ratio (5.1.3.5), if it has the form

$$
\varrho_{12,1^{\prime} 2^{\prime}}=\varrho_{11^{\prime}} \varrho_{22^{\prime}}-\varrho_{12^{\prime}} \varrho_{21^{\prime}}+\xi_{12,1^{\prime} 2^{\prime}}
$$

Here, the correlation function $\xi_{12,1^{\prime} 2^{\prime}}$ is symmetric:

$$
\xi_{12,1^{\prime} 2^{\prime}}=\xi_{21,1^{\prime} 2^{\prime}}=\xi_{12,2^{\prime} 1^{\prime}}=\xi_{21,2^{\prime} 1^{\prime}} .
$$

One-electron density matrix is related to the two-electron matrix by the ratio

$$
\begin{equation*}
\sum_{\alpha_{2}} \varrho_{12,1^{\prime} 2}=(N-1) \varrho_{11^{\prime}} . \tag{5.1.3.7}
\end{equation*}
$$

New Theory of Laser

6.1. DENSITY MATRIX METHOD IN TWO-LEVEL LASER THEORY

In his earlier work, the author obtained the quantum kinetic equation for the density matrix. The equation contains two summands in the right part. The first one is the same as in Liouville - von Neumann equation. The second one describes the dissipative members. This quantum equation can be written in any representation. We show that in perturbation theory, this equation has the order associated with the order parameter. The order parameter expansion leads to two equations, which determine the zero and the first approximation of the density matrix. Because of the presence of time-dependent perturbations in the Hamiltonian, even the zero representation of the density matrix suggests that the states of quantum systems are mixed, i.e., the density matrix will not be equal to the product of the wave functions.

In this chapter, we use the method of density matrix in the theory of lasers with two energy levels [1]. Written for the atom, the equation of the density matrix of zero approximation is very simple and widely known. In the second approximation, the quantum kinetic equation for the density matrix becomes the classical kinetic equation, if the density matrix has a diagonal form. The resulting Hamiltonian also has a diagonal form. In quantum mechanics, this form can be obtained using a unitary matrix. The elements of the diagonal Hamiltonian in this representation are the eigenvalues of the atom energy. We found the density matrix in this representation. We obtained the dissipative matrices, which characterize the operations of pumping and damping. In the representation where the Hamiltonian is diagonal, we wrote the equations that describe the work of the laser.

6.1.1. Introduction

In 1964, N. G. Basov, A. M. Prokhorov and C. H. Townes won the Nobel Prize. They were awarded this prize for their fundamental research in quantum electronics. These studies have led to the development of masers and lasers [2, 3].

Let us consider the principle of operation of the quantum generator, laser. The basic element of the quantum generator is the active environment, i.e. the substance that creates the inverse population of levels. The active medium typically has the shape of a long cylinder (see Fig. 1). At the ends of this cylinder, there are two plane-
parallel mirrors, one at each end, perpendicular to its axis. The purpose of these mirrors is to increase the length of the path where increased radiation occurs, by means of the multiple passages of the beam through the active medium. The mirrors form a so-called resonator. Between them appears a standing electro-magnetic wave. One of the mirrors is half-translucent. Through this mirror, the electromagnetic radiation comes out of the resonator in the form of a narrow, almost non-divergent beam. The process, in which the energy is transferred in some way to the active medium and the inversion of the population of levels is created, is called pumping (see Fig. 6.1.1).

Fig. (6.1.1). The scheme of the quantum generator: 1 - active substance; 2 - pumping; 3 - mirrors.
The process in which energy is transferred to the active medium in some way creating a population inversion of the levels is called pumping. Pump energy may be in the form of light, electric current, energy, chemical or nuclear reactions, thermal or mechanical energy.

Various methods have been proposed to create a population inversion of energy levels. The method of two levels proposed by Basov and Prokhorov in 1955 is the most convenient and common. The atoms or molecules of the active substance are greatly influenced in some way, so that the electrons in them move from the ground state $\varphi_{1}(\boldsymbol{r})$ with energy ε_{1}, into the excited state $\varphi_{2}(\boldsymbol{r})$ with energy ε_{2} (see Fig. 6.1.2).

Fig. (6.1.2). The two-level scheme of the interaction of atom and radiation.

Due to the intense pumping, the saturation is reached, in which the number of electrons N_{2} in the state $\varphi_{2}(\boldsymbol{r})$ becomes equal to the number N_{1} of electrons in the ground state $\varphi_{1}(\boldsymbol{r})$. At the same time for a pair of levels ε_{1} and ε_{2}, there is population inversion ($N_{2}>N_{1}$). Only a small part of the energy given to the active medium during the pumping is converted into the energy of the generated radiation. Most of this energy is converted into heat. The active medium becomes very hot and sometimes it requires intense cooling.

6.1.2. Kinetics of Quantum Transitions

Consider a system of non-interacting atoms in which valence electron can make the quantum jump from one stationary state to another. The community of atoms in the state φ_{1} with energy ε_{1} can pass into the state φ_{2} with bigger energy ε_{2} during the absorption of photons by atoms. The number $\mathrm{d} N_{12}^{(\text {absor })}$ of transitions made by electrons from the state φ_{1} into the state φ_{2} during the time from t to $t+\mathrm{d} t$ of the absorption of a photon by the atom, is proportional to the number $N_{1}(t)$ of atoms in the state φ_{1}, time dt and the number of photons $W(\omega)$ with frequency ω, flying into atoms:

$$
\begin{equation*}
\mathrm{d} N_{12}^{\text {(absor) }}=B_{12} W(\omega) N_{1}(t) \mathrm{d} t, \tag{6.1.2.1}
\end{equation*}
$$

where B_{12} is the coefficient of proportionality, the frequency ω of these photons is determined by the formula,

$$
\begin{equation*}
\omega=\left(\varepsilon_{2}-\varepsilon_{1}\right) / \hbar, \tag{6.1.2.2}
\end{equation*}
$$

Where the spectral energy density $W(\omega)$ is equal to the energy of electromagnetic radiation, which falls per unit volume $\mathrm{d} V=1$ and the unit of frequency $\mathrm{d} \omega=1$:

$$
\begin{equation*}
W(\omega) \mathrm{d} V \mathrm{~d} \omega . \tag{6.1.2.3}
\end{equation*}
$$

Let at time t this system have the number $N_{2}(t)$ of atoms in which the electron is in the state φ_{2} with energy ε_{2}. The number $\mathrm{d} N_{21}^{\text {(spon) }}$ of spontaneous transitions made by electrons from the state φ_{2} to the state φ_{1} with smaller energy ε_{1} with the emission of a photon during the time from the moment t to the moment $t+\mathrm{d} t$, is proportional to the number $N_{2}(t)$ of atoms and the time interval $\mathrm{d} t$:

$$
\begin{equation*}
\mathrm{d} N_{21}^{\text {(spon) }}=A^{(\text {spon })} N_{2}(t) \mathrm{d} t \tag{6.1.2.4}
\end{equation*}
$$

CHAPTER 7

Dissipative Operator

7.1. LINDBLAD EQUATION FOR HARMONIC OSCILLATOR UNCERTAINTY RELATION DEPENDING ON TEMPERATURE

Specific nonequilibrium states of the quantum harmonic oscillator described by the Lindblad equation have been hereby suggested. This equation makes it possible to determine time-varying effects produced by the statistical operator or statistical matrix. Thus, respective representation-varied equilibrium statistical matrixes and specific mean value equations have been found, and their equilibrium solutions have been obtained.

7.1.1. Lindblad Equation

Statistical operator $\hat{\varrho}$ or density matrix is basically applied as the quantum mechanics; any information of the nonequilibrium process proceeding within the tested system may be gained from the study [1]. When the process concerned proceeds within the system which fails to interact with its environment, statistical operator $\widehat{\varrho}$ will satisfy the Liouville-von Neumann equation as follows:

$$
\begin{equation*}
\mathrm{i} \hbar \dot{\hat{\varrho}}=[\widehat{H} \widehat{\varrho}] \tag{7.1.1.1}
\end{equation*}
$$

With provision for the fact that the system interacts with any environment, a new equation shall be produced [1]. Lindblad is the first one who offered the equation describing the interaction of the system with a thermostat. This work is devoted to the Markovian equation [4], which hereby describes nonequilibrium quantum harmonic oscillator performance.

We will write the kinetic equation for a quantum harmonic oscillator as follows:

$$
\begin{equation*}
\mathrm{i} \hbar \dot{\hat{\varrho}}=[\hat{H} \hat{\varrho}]+\mathrm{i} \hbar A\left(\left[\hat{a} \hat{\varrho}, \hat{a}^{+}\right]+\left[\hat{a}, \widehat{\varrho} \hat{a}^{+}\right]\right)+\mathrm{i} \hbar B\left(\left[\hat{a}^{+} \widehat{\varrho}, \hat{a}\right]+\left[\hat{a}^{+}, \widehat{\varrho} \hat{a}\right]\right), \tag{7.1.1.2}
\end{equation*}
$$

Boris V. Bondarev

where

$$
\widehat{H}=\hbar \omega\left(\hat{a}^{+} \hat{a}+1 / 2\right),
$$

(7.1.1.3)
A and B are constants. Operator \hat{a} is formulated as follows:

$$
\hat{a}=(\mathrm{i} \hat{p} / \sqrt{m}+\sqrt{\kappa} \hat{x}) / \sqrt{2 \hbar \omega},
$$

(7.1.1.4)
where

$$
\omega=\sqrt{\kappa / m}
$$

Equation (7.1.1.2) is very precise to describe the time-varying state of the thermostat-interacted quantum harmonic oscillator and its equilibrium state.

7.1.2. Energy Representation

Now, we will define the wave functions, describing specific energy state $\varphi_{n}(x)$ which will satisfy the equation as follows:

$$
\begin{equation*}
\widehat{H} \varphi_{n}(x)=E_{n} \varphi_{n}(x) \tag{7.1.2.1}
\end{equation*}
$$

where

$$
\begin{gather*}
E_{n}=\hbar \omega(n+1 / 2), \\
n=0,1,2, \ldots \tag{7.1.2.2}
\end{gather*}
$$

As referred to energy representation, the matrix elements of statistical operator $\hat{\varrho}$ will be formulated by the equation as follows:

$$
\varrho_{n n^{\prime}}=\int \varphi_{n}^{*}(x) \hat{\varrho} \varphi_{n^{\prime}}(x) \mathrm{d} x .
$$

(7.1.2.3)

Wave functions satisfy the following equations:

$$
\begin{equation*}
\hat{a} \varphi_{n}=\sqrt{n} \varphi_{n-1}, \quad \hat{a}^{+} \varphi_{n}=\sqrt{n+1} \varphi_{n+1} . \tag{7.1.2.4}
\end{equation*}
$$

With provision for the above formulas, the following matrix-formed Equation (1.2) is derived as:

$$
\begin{align*}
& \dot{\varrho}_{n n^{\prime}}=-\mathrm{i} \omega\left(n-n^{\prime}\right) \varrho_{n n^{\prime}}+A\left[2 \sqrt{(n+1)\left(n^{\prime}+1\right)} \varrho_{\mathrm{n}+1, n^{\prime}+1}-\left(n+n^{\prime}\right) \varrho_{n n^{\prime}}\right] \\
&+B\left[2 \sqrt{n n^{\prime}} \varrho_{n-1, n^{\prime}-1}-\left(n+n^{\prime}+2\right) \varrho_{n n^{\prime}}\right] . \tag{7.1.2.5}
\end{align*}
$$

Now, we will write the equation for diagonal elements of the density matrix $\varrho_{n n}=$ w_{n}, where w_{n} is the probability referred to oscillator state φ_{n}. The equation produced has the form as follows:

$$
\begin{equation*}
\dot{w}_{n}=2 A\left[(n+1) w_{n+1}-n w_{n}\right]+2 B\left[n w_{n-1}-(n+1) w_{n}\right] . \tag{7.1.2.6}
\end{equation*}
$$

This kinetic equation describes particular harmonic oscillator state transitions. In this case, there may be gained coefficients A and B as follows:

$$
\begin{equation*}
A=1 / 2 P \exp (\beta \hbar \omega / 2), \quad B=1 / 2 P \exp (-\beta \hbar \omega / 2), \tag{7.1.2.7}
\end{equation*}
$$

where P is probability of transition per unit time; $\beta=1 /\left(k_{\mathrm{B}} T\right)$ is reciprocal temperature.

Equation (7.1.2.6) has specific oscillator state equilibrium distribution, which satisfies the following equation:

$$
\begin{equation*}
A\left[(n+1) w_{n+1}-n w_{n}\right]+B\left[n w_{n-1}-(n+1) w_{n}\right]=0 . \tag{7.1.2.8}
\end{equation*}
$$

CHAPTER 8

The Beginning of Theoretical Nanophysics

8.1. EQUATION FOR DENSITY MATRIX SYSTEMS OF IDENTICAL PARTICLES

The equations for the statistical operator and the density matrix are considered here for a single particle and a system of identical particles when dissipative forces act on them. From the equation for the density matrix, a kinetic equation can be obtained when the density matrix is diagonal. These equations are the basis for the study of the simplest models of nanophysics [1].

8.1.1. Introduction

In quantum mechanics, the most general description of the system is the statistical operator $\hat{\varrho}$. The statistical operator must be normalized at any time

$$
\begin{equation*}
\operatorname{Tr} \widehat{\varrho}=1, \tag{8.1.1.1}
\end{equation*}
$$

self-adjoint

$$
\begin{equation*}
\hat{\varrho}^{*}=\hat{\varrho} \tag{8.1.1.2}
\end{equation*}
$$

and positively definite. A correct equation describing the evolution of a statistical operator must ensure that these properties are preserved over time.

For the first time the equation for the statistical operator

$$
\begin{equation*}
\widehat{\varrho}=\widehat{\varrho}(t, q), \tag{8.1.1.3}
\end{equation*}
$$

where q is the quantum coordinate of the system, which was obtained by Lindblad [1]. This equation has the form

$$
\begin{equation*}
\mathrm{i} \hbar \dot{\hat{\varrho}}=[\widehat{H} \widehat{\varrho}]+\mathrm{i} \hbar \widehat{D}, \tag{8.1.1.4}
\end{equation*}
$$

where \widehat{H} is the Hamiltonian of the system,

$$
\begin{equation*}
\widehat{D}=\sum_{j k} C_{j k}\left\{\left[\hat{a}_{j} \hat{\varrho}, \hat{a}_{k}^{+}\right]+\left[\hat{a}_{j}, \widehat{\varrho} \hat{a}_{k}^{+}\right]\right\}, \tag{8.1.1.5}
\end{equation*}
$$

$C_{j k}$ are some numbers, and \hat{a}_{j} is an arbitrary operator. The operator \widehat{D} is called the dissipative operator. This statement can be written as

$$
\begin{equation*}
\widehat{D}=\sum_{j k} C_{j k}\left\{2 \hat{a}_{j} \hat{\varrho} \hat{a}_{k}^{+}-\hat{a}_{k}^{+} \hat{a}_{j} \hat{\varrho}-\hat{\varrho} \hat{a}_{k}^{+} \hat{a}_{j}\right\} . \tag{8.1.1.6}
\end{equation*}
$$

8.1.2. Equation for the Density Matrix of One Particle

The density matrix is related to the operator $\widehat{\varrho}(t, q)$ formula

$$
\begin{equation*}
\varrho_{n n^{\prime}}(t)=\int \varphi_{n}^{*}(t, q) \hat{\varrho}(t, q) \varphi_{n^{\prime}}(t, q) \mathrm{d} q . \tag{8.1.2.1}
\end{equation*}
$$

This formula specifies the density matrix $\varrho_{n n^{\prime}}(t)$ in the n-representation. Wave function $\varphi_{n}(t, q)$ can be found from the Schrödinger equation

$$
\begin{equation*}
\mathrm{i} \hbar \dot{\varphi}_{n}=\widehat{H} \varphi_{n} . \tag{8.1.2.2}
\end{equation*}
$$

The equation for the density matrix was derived from the Liouville - von Neumann equation. This equation is analogous to the Lindblad equation and has the form
$\mathrm{i} \hbar \dot{\varrho}_{n n^{\prime}}=\sum_{m}\left(H_{n m} \varrho_{m n^{\prime}}-\varrho_{n m} H_{m n^{\prime}}\right)+\mathrm{i} \hbar\left\{\sum_{m m^{\prime}} \gamma_{n m, m^{\prime} n^{\prime}} \varrho_{m m^{\prime}}-1 / 2\right.$ $\left.\sum_{m}\left(\gamma_{n m} \varrho_{m n^{\prime}}+\varrho_{n m} \gamma_{m n^{\prime}}\right)\right\}$,
where $H_{n m}$ are the matrix elements of the Hamiltonian \widehat{H} system, $\gamma_{n m, m^{\prime} n^{\prime}}$ is some matrix,

$$
\begin{equation*}
\gamma_{n n^{\prime}}=\sum_{m} \gamma_{m n^{\prime} n m} \tag{8.1.2.4}
\end{equation*}
$$

The equation (8.1.2.3) can be written as

$$
\begin{equation*}
\mathrm{i} \hbar \dot{\varrho}_{n n^{\prime}}=\sum_{m}\left(H_{n m} \varrho_{m n^{\prime}}-\varrho_{n m} H_{m n^{\prime}}\right)+\mathrm{i} \hbar D_{n n^{\prime}}, \tag{8.1.2.5}
\end{equation*}
$$

where $D_{n n^{\prime}}$ is a dissipative matrix, which will now be equal to

$$
\begin{equation*}
D_{n n^{\prime}}=\sum_{m m^{\prime}} \gamma_{n m, m^{\prime} n^{\prime}} \varrho_{m m^{\prime}}-1 / 2 \sum_{m}\left(\gamma_{n m} \varrho_{m n^{\prime}}+\varrho_{n m} \gamma_{m n^{\prime}}\right) \tag{8.1.2.6}
\end{equation*}
$$

Compare this formula with the formula (8.1.1.6), we establish that

$$
\begin{equation*}
\gamma_{n m, m^{\prime} n^{\prime}}=2 \sum_{j k} C_{j k} a_{n m, j} a_{m^{\prime} n^{\prime}, k}^{+}, \tag{8.1.2.7}
\end{equation*}
$$

where $a_{n m, j}$ are matrix elements of the operator \hat{a}_{j}.
The diagonal element $\varrho_{n n^{\prime}}$ is the probability w_{n} that the system is in the state n. This value satisfies the normalization condition

$$
\begin{equation*}
\sum_{n} \varrho_{n n}=1 . \tag{8.1.2.8}
\end{equation*}
$$

This formula is similar to formula (8.1.1.1).
In addition, the density matrix $\varrho_{n m}$ satisfies the following condition

$$
\begin{equation*}
\varrho_{n m}^{*}=\varrho_{m n} . \tag{8.1.2.9}
\end{equation*}
$$

The same condition is subject to Hamiltonian:

$$
\begin{equation*}
H_{n m}^{*}=H_{m n} \tag{8.1.2.10}
\end{equation*}
$$

Consider the system where the density matrix $\varrho_{n m}$ at an arbitrary time t is in the diagonal state:

$$
\begin{equation*}
\varrho_{n m}=w_{n} \delta_{n m}, \tag{8.1.2.11}
\end{equation*}
$$

where $\delta_{n m}$ is the Kronecker symbol. Then from equation (3.3), we obtain

$$
\begin{equation*}
\dot{w}_{n}=\sum_{m}\left(p_{n m} w_{m}-p_{m n} w_{n}\right), \tag{8.1.2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{n m}=\gamma_{n m, m n}=2 \pi / \hbar \sum_{N M}\left|v_{n N, m M}\right|^{2} W_{M} \delta\left(\varepsilon_{n}-\varepsilon_{m}+E_{N}-E_{M}\right), \tag{8.1.2.13}
\end{equation*}
$$

there is a probability of transition of the system in a unit of time from the state m to the state n,

$$
W_{N}=v \exp \left(-\beta E_{N}\right)
$$

there is a possibility that the environment is in an equilibrium state with quantum numbers N, and E_{N} is its energy in this state, v is the normalization factor, $\beta=$ $1 /\left(k_{\mathrm{B}} T\right)$ is the inverse temperature; $v_{n N, m M}$ are the matrix elements of the system interaction with its environment. Formula (2.13) is the Golden rule of Fermi.

CHAPTER 9

Perspective of Quantum Physics

9.1. THE LOOK INTO FUTURE OF QUANTUM PHYSICS

Quantum mechanics was based on the Schrödinger equation. Soon a statistical operator and a density matrix were invented, for which the Liouville - von Neumann equations were written. But it was impossible to find a statistical operator from this equation. About fifty years passed when the equation for the statistical operator, in which the dissipative operator was present, was phenomenologically written by Lindblad. Two decades later, the author of this article derived the equation for the density matrix. This equation contains a dissipative matrix, knowledge of which makes it possible to find the density matrix. Subsequently the author found the equation for the density matrix of the particle, which is in the system of identical particles [1].

9.1.1. Introduction

The statistical operator and density matrix in quantum physics are the most informative and most accurate tools. They were named after J. von Neumann shortly after the quantum theory was constructed [1]. But for a relatively long time, there was no equation that allowed us to find these values. Although many attempts have been made to find this equation, this article is devoted to the history and further development of quantum physics.

9.1.2. Schrödinger Equation

The basis of quantum mechanics is considered to be the Schrödinger equation. In this equation, the unknown is the so-called wave function

$$
\begin{equation*}
\psi=\psi(q, t), \tag{9.1.2.1}
\end{equation*}
$$

where t is time and q is a quantum variable that determine the state of the system.
The meaning of the wave function is the product of

$$
\begin{equation*}
\psi^{*}(q, t) \psi(q, t)=w(q, t) \tag{9.1.2.2}
\end{equation*}
$$

it is possible to detect the system in the state q at time t. The probability must satisfy the normalization condition:

$$
\begin{equation*}
\int \psi^{*}(q, t) \psi(q, t) \mathrm{d} q=1 . \tag{9.1.2.3}
\end{equation*}
$$

The Schrödinger equation itself can be written as follows

$$
\begin{equation*}
\mathrm{i} \hbar \partial \psi / \partial t=\widehat{H} \psi \tag{9.1.2.4}
\end{equation*}
$$

where $\widehat{H}=\widehat{H}(q, t)$ is the energy operator of the system. This operator explains what to do with the wave function $\psi(q, t)$ so that it gives us the average energy $E(t)$ of the system at time t :

$$
\begin{equation*}
E(t)=\int \psi^{*}(q, t) \widehat{H}(q, t) \psi(q, t) \mathrm{d} q . \tag{9.1.2.5}
\end{equation*}
$$

9.1.3. Statistical Operator and Density Matrix

But soon J. von Neumann came up with the statistical operator

$$
\begin{equation*}
\hat{\varrho}=\hat{\varrho}(q, t) . \tag{9.1.3.1}
\end{equation*}
$$

The statistical operator is related to the density matrix $\varrho_{n n^{\prime}}(t)$ by the formula

$$
\begin{equation*}
\varrho_{n n^{\prime}}(t)=\int \varphi_{n}^{*}(q, t) \hat{\varrho}(q, t) \varphi_{n^{\prime}}(q, t) \mathrm{d} q . \tag{9.1.3.2}
\end{equation*}
$$

where functions $\varphi_{n}(q, t)$ can be found from the Schrödinger equation. The formula (3.2) specifies the density matrix $\varrho_{n n^{\prime}}(t)$ in the n-representation. The diagonal element $\varrho_{n n}$ of the density matrix is the probability $w_{n}=w_{n}(t)$ that the system is in the state n :

$$
\begin{equation*}
\varrho_{n n}(t)=w_{n}(t) . \tag{9.1.3.3}
\end{equation*}
$$

If the statistical operator is

$$
\begin{equation*}
\hat{\varrho}(q)=\delta\left(q-q_{\mathrm{o}}\right), \tag{9.1.3.4}
\end{equation*}
$$

where $\delta\left(q-q_{\mathrm{o}}\right)$ is Delta function, $q_{\mathrm{o}}-$ constant, then the state of the system is called pure. Formula (9.1.3.2) gives

$$
\begin{equation*}
\varrho_{n n^{\prime}}(t)=\varphi_{n}^{*}\left(q_{\mathrm{o}}, t\right) \varphi_{n^{\prime}}\left(q_{\mathrm{o}}, t\right) \tag{9.1.3.5}
\end{equation*}
$$

Otherwise, the system state is called mixed.
The equation for the statistical operator was derived

$$
\begin{equation*}
\mathrm{i} \hbar \partial \hat{\varrho} / \partial t=[\widehat{H} \widehat{\varrho}], \tag{9.1.3.6}
\end{equation*}
$$

which is called the Liouville - von Neumann equation. This equation was derived from the Schrödinger equation. But it turned out that it was impossible to find a statistical operator from the Liouville - von Neumann equation. Prove it.

9.1.4. Something is Missing from Liouville - von Neumann Equation

For the density matrix, equation (9.1.3.6) will look like this

$$
\begin{equation*}
\mathrm{i} \hbar \partial \varrho_{n n^{\prime}} / \partial t=\sum_{m}\left(H_{n m} \varrho_{m n^{\prime}}-\varrho_{n m} H_{m n^{\prime}}\right), \tag{9.1.4.1}
\end{equation*}
$$

where $H_{n n^{\prime}}$ are the matrix elements of the Hamiltonian \widehat{H} of the system. By analogy with the formula (9.1.3.2), we write

$$
\begin{equation*}
H_{n n^{\prime}}(t)=\int \varphi_{n}^{*}(q, t) \widehat{H}(q, t) \varphi_{n^{\prime}}(q, t) \mathrm{d} q . \tag{9.1.4.2}
\end{equation*}
$$

If it turns out that the matrix elements $H_{n n^{\prime}}$ are diagonal, i.e. have the form

$$
\begin{equation*}
H_{n n^{\prime}}(t)=\varepsilon_{n}(t) \delta_{n n^{\prime}}, \tag{9.1.4.3}
\end{equation*}
$$

where ε_{n} - energy eigenvalues of the system, $\delta_{n n^{\prime}}$ - symbols of Kronecker, then the equation (4.1) takes the form

$$
\begin{equation*}
\mathrm{i} \hbar \partial \varrho_{n n^{\prime}} / \partial t=\left\{\varepsilon_{n}(t)-\varepsilon_{n^{\prime}}(t)\right\} \varrho_{n n^{\prime}} \tag{9.1.4.4}
\end{equation*}
$$

For $n=n^{\prime}$ we obtain

$$
\begin{equation*}
\partial \varrho_{n n} / \partial t=0 \quad \text { or } \quad \partial w_{n} / \partial t=0 . \tag{9.1.4.5}
\end{equation*}
$$

According to this equation, the probability of w_{n} to find a system in the state n is always constant, which was to be proved.

SUBJECT INDEX

A

Absolute 18, 40, 238, 298, 334, 353
accuracy 238
error 18
temperature 40, 298, 334, 353
Absorption bands of stabilized electrons 16
Anisotropic distribution 70, 74, 80, 82, 106, 107, 123
electrons 82, 107
of Electrons 74
pattern 80
stable 123
Anisotropic energy distribution of conduction electrons 77
Anisotropy 69, 70, 93, 101
electron state distribution 101
function 70
Atomic nucleus density matrix 282
Atoms 152, 180, 184, 246
acceptor 246
arbitrary equilibrium 180
helium 152
non-interacting 184
Atom's energy 308

B

Bimolecular reactions $1,4,6,8,16,18,19$, 23, 24
kinetics of 4,16
Boltzmann 284, 300, 307, 342
principle $284,307,342$
rule 300
Bose condensation temperature 158
Bose gas 163, 164, 165, 167
condensation 164
heat capacity 164,165
Bravais lattices 321, 322, 323

C

Carbon atoms 321, 322
isolated 322
neighboring 321, 322
Charge 67, 175, 246, 247, 331
distributed 247
elementary electric 331
fixed 247
negative 247
Coefficients $3,13,15,28,34,184,185,208$, $209,213,222,236,258,283,318,319$
attenuation 258, 283
friction 236
microdiffusion 3
stiffness 15
transitions 34
Coherent radiation 303, 318
Condition 9, 41, 42, 73, 87, 91, 92, 118, 125, $137,138,139,152,159,167,171,187$, 190, 194, 209, 297, 317, 341, 347
anisotropic 73, 87
boundary 209
heating 9
normalizing $118,125,152,159$
ortho-normalization 171
Conduction band 83, 84, 93, 107, 244
bottom of 83
Conduction electrons 68, 75, 77, 84, 85, 86, $88,122,123,128,129$
macro-state 88
wave-vector 122
Conductivity 239, 321
high electrical 321
thermal 321
Conductor 132, 140, 143
border 132
passing 143
surface 140
Constant 3, 8, 17, 24, 229
bimolecular rate 24
power 229
reaction rate $3,8,17$

Correlation factors 55

Coulomb interaction 63, 65, 66
direct 66
energy 63
Crystal lattice 1, 11, 59, 63, 117, 120, 302, 320, 321, 323
flat hexagonal 320
hexagonal 321

D

Density $43,92,93,131,137,146,149,151$, $168,184,186,208,209,304,318,319$, 346
initial 92
liquid 168
spectral 208, 304, 318, 319
spectral energy $184,186,209,318$
superfluid component 168
Density matrices $41,47,120,294,305,310$, $316,317,318,345,346$
equations for 310,317
single-particle 47
two-particle 294
Density matrix $25,27,33,35,40,42,43,48$, $61,62,152,170,171,172,182,186$, 187, 189, 206, 220, 221, 226, 249, 250, 288, 289, 294, 306, 310, 337, 338, 340, 348
antisymmetric 42
equilibrium $33,35,220,226$
method variational principle 40
momentum representation 152
two-electron 62, 172
two-partial 348
two-particle 42, 43, 48, 294
Density vector 130,131
respective electric current 130
Diffusion 3, 4, 15, 222, 236, 239, 246, 253, 256, 258, 283
coefficient 15, 236, 253, 283
describing phase space 222
dissipative 258
operators 256
Dirac function 51, 68, 69, 72, 242
and distribution of electrons 68
values 242
Distribution 51, 54, 55, 68, 70, 72, 76, 78, 84, $86,87,89,101,102,103,105,106,109$, 110, 111, 283
anisotropic electron energy 109,110
anisotropic electron wave vector 78
anisotropic wave vector $72,103,106$
conduction electron energy 86
isotropic electron wave vector 76
isotropic function 101
isotropic wave vectors 72, 102
of atomic nucleus by coordinates 283
pattern, electron state 76
Distribution function 43, 44, 66, 67, 68, 79, $81,84,88,89,96,97,98,99,101,105$, $108,109,110,111,123,124,125,155$, 161, 165, 221, 238, 254
anisotropic 79, 81, 88, 101, 109, 110, 111
classical 221, 238, 254
electron system 97
electron wave-vector 123
equilibrium $88,123,165$
isotropic $88,101,105$
isotropic electron 108
particle pulse 155,161
real 88, 123
real equilibrium 89

E

Eigenvalues 28, 30, 34, 176, 180, 182, 194, 197, 198, 200, 308, 309
atom energy 194
Einstein 185, 300, 353
coefficients 185
functions 300, 353
Electric 247, 308
charge density 247
field intensity 308
Electric field 191, 192, 193, 195, 196, 246, 247, 301, 302, 303, 307, 308
uniform 301
Electric field acts 200, 202
external 202
Electrodes, accelerated 247
Electron concentration 20, 244, 245
Electron distribution 61, 72, 77, 80, 93, 104, $105,107,108,111,120,123,128,130$, 178, 179
anisotropic wave vector $80,105,108$
function $68,72,77,107,120,123,128,179$
isotropic wave vector 105
pattern 130
possible anisotropic 111

Electron energy $63,67,70,72,75,82,84,96$, $99,104,107,108,109,112,117,121$, $124,125,127,129,180$
distribution function 96
interacting 121
isotropic distribution 107
isotropic wave vector distribution 108
kinetic 72, 96, 99
spectrum 99, 180
valence 124
Electron interaction energy 65, 89, 122 values 89
Electrons 16, 17, 23, 79, 83, 88, 97, 101, 109, $115,117,131,132,173,176,177,184$
interaction Hamiltonian 176, 177
itinerant 109
kinetic energy 83, 88, 97, 101, 117
non-interacting 173
nonzero 79
stabilize 16,17
stabilizing 23
superconducting 132
valence 115, 131, 184
Electron wave vector 84, 122
distribution function 122
Elements 63, 153, 154, 174
interaction Hamiltonian matrix 153, 154
single-particle matrix 63
two-electron matrix 174
Energy 3, 11, 15, 16, 22, 40, 49, 53, 63, 66, $70,81,82,85,86,99,107,117,122$, $126,128,155,161,163,164,166,168$, $170,175,179,183,184,215,226,242$, 243, 244, 245, 298, 299, 300, 320, 331, 350, 353
activation $3,15,22$
binding 11, 15
electronical 70
electron medium 99
electron's 175
exceeded 166
exchange 66
internal 40, 49, 53, 155, 161, 163, 164, 168, 298
levels of electrons 170, 179, 243, 245
mean oscillator 215, 226
of interaction of electrons in graphene 331
of system of identical particles 350
pump 183
superconductivity state 126
thermal 16
Energy dependence 127, 165
mean electron 127
Energy operator 153, 216, 291, 338, 347
particle kinetic 153
Energy spectrum 32, 33, 85, 165
of particles 165
Energy values 87, 88, 105, 107, 226
equilibrium mean 226
Equation 68, 69, 71, 122, 159, 182, 187, 207, 211, 215, 224, 228, 229, 231, 233, 235, $236,239,258,279,292,298,311,334$
for electron wave vector distribution function 122
for non-diagonal density matrix 207
for probability and model hamiltonian 69
for statistical operator of atomic nuclei 258
for statistical operators 228, 292
homogeneous 235
integral 68
linear inhomogeneous 279
liouville 187
for distribution functions 334
for holes and electrons 239
quantum 182, 224, 229, 233, 236, 298
transform 159, 311
transforming 71
trivial 231
Equation for average value 266, 270, 273 of operator 273
Equation for density matrix $189,254,294$, 305, 340, 344, 346
of system of identical particles 346
Equilibrium 6, 27, 40, 41, 84, 211, 223, 247, 298
dynamic 247
fermions system 40
function 41, 223, 298
macrostate 84
respective representation-varied 211
statistical 27
thermal 6
Equilibrium distribution 213, 241
of electron energy 241
oscillator state 213
Equilibrium systems 55, 224, 300, 340, 342, 344, 353
boson 152
large 340, 344

Expression 33, 51, 54, 55, 68, 142, 161, 178, 320, 324, 334
approximate $33,54,55,142,178,320,324$, 334
complex 51
exact 68
second 161
External field 38, 79, 101, 136, 137, 138, 140, $141,146,147,148,149$
modulus 138
External magnetic field $38,123,130,133$, $134,135,136,137,138,139,140,141$, $142,143,149,150$
acts 123

F

Fermi 93, 97, 108, 124, 188, 242
energy 93, 97, 108, 124, 242
golden rule 188
Field 38, 66, 134, 136, 140, 146, 237, 302, 303
applied 302
classical 303
complete 134, 136
constant homogeneous force 237
supercurrent-induced 38
Field strength $38,113,131,134,135,136$, $137,139,141,149,190$
complete 136
critical magnetic 113
electric 190
external 131, 135, 136, 139, 141
external magnetic 137, 149
Fock method 170
Force 145, 147, 148, 149, 150, 227, 236, 253, $254,255,256,257,288,302$
dissipative 288
external 236, 253
magnetic 147
repulsive 256
superconductor-acting 145
Formula 6, 23, 27, 34, 151, 153, 161, 197, 210, 214, 326
account 197
applying 153, 161, 214
calculated 23
calculation 23, 27, 34
empirical 151
exact 210
information 326
simplified 6
Free electrons 16, 66, 87, 244, 245, 246, 302, 322
Free valence 11, 12, 13, 14, 15
displacement 14
migration $11,12,15$
Frequency $184,192,200,208,301,302,303$, 304, 308, 309, 315
oscillation 302
Function 4, 5, 59, 68, 71, 72, 105, 115, 116, $118,139,140,149,153,156,175,176$, 177, 226, 241
anisotropic 71, 105
binary 4
combined 72
decay 149
decreasing 226
nonlinear 241
one-variable 156
radial 176
respective equilibrium state 226
spin $59,115,116,118,175,177$
superconductive 139,140
symmetrical 153
thermodynamic 68
three-particle 4, 5

G

Gas 161, 164, 166, 167, 168, 321
convection 168
energy 166
Gas heat capacity 164
dependence 164
Gas internal energy 155,161
dependence on temperature 161
Germanium atoms 243, 245

H

Hamiltonian 27, 28, 30, 62, 115, 117, 228, 291, 300, 345, 347
effective 27
matrix 345
of fermions system 62
operator 228
single-particle 115, 117, 291, 300
two-partial 347
two-particle 291, 295
unperturbed 28, 30
Hamilton operator 291, 346
Harmonic oscillator 212, 215, 286
thermostat-interacted quantum 212

I

Impurity semiconductors 242, 243
Inexplicable natural phenomenon 256
Inhomogeneities 1,16 structural 16
Inotropnoy 93
Intermolecular cavities 16
Internal energy 49, 168
of fermions system 49
temperature dependence 168

K

Kinetic energy $85,88,89,90,99,100,106$, $112,113,127,326,331$
Kinetic equation 2, 5, 34, 35, 185, 187, 211, 213, 288, 296, 301, 303, 311
solving 5
relaxes 35
Kinetics 1, 2, 6, 9, 11, 13, 17, 19, 23, 25, 184, 206, 208, 304, 330
isothermal 17
of laser 206
of quantum transitions 184
of radiation 208
of solid-phase reactions 11,13
Klein parameters 195, 196
Kronecker symbol 28, 46, 67, 171, 187, 290, 306, 325

L

Lagrange method 40, 54, 298
Landau theory 40
Laser 182, 183, 185, 187, 189, 191, 193, 205,
206, 207, 208, 209, 210, 301, 302, 303
inverse population 208
radiation 208, 209
theory of 182, 208, 210, 301
Laws 2, 9, 19, 48, 168, 228, 317, 320
microscopic hydrodynamics 168
Light 183, 209, 240, 301, 302, 303, 304, 319 emit 240, 303
visible 301, 302, 303
Light emission 239
diode 239
Linblad equation 226, 248, 252, 258, 340 coefficients 226
dissipative operator 252
for statistical operator 340
statistical operator 248

M

Magnetic field 36, 37, 38, 114, 115, 118, 123, $126,127,128,129,131,132,133,134$, $136,137,138,140$
-dependent unitary transformation 118
effect 126,132
relatively weak 37
self-generated 38
strength 37, 129
supercurrent-induced 36
Markovian equation 211
Mathematical processing 15
Matrices 16, 27, 154, 170, 178, 182, 205, 313, 327, 329, 343
dissipative 182, 205, 313
independent 27
single-electron 178
solid-phase 16
two-electron 170
Matrix 3, 6, 16, 17, 19, 20, 42, 63, 172, 174, $178,180,202,204,306,311,327,330$, 332
antisymmetric 63, 174
two-electron 172, 178
Maxwell 138, 238
distribution function 238
equation 138
Mean 53, 112
energy dependence of single electron 112
-field approximation for fermions system 53
Metal-silicon carbide 239
Method 303
convenient 303
two-level 303
Migration 11, 208
spontaneous 208
Modulus 70, 79, 139, 140, 142, 257
ordered motion velocity 79

Momentum operators 216, 217, 220, 226, 228, 257

\mathbf{N}

Non-diagonal density matrix 207
Nuclei, arbitrary 175

0

Operators 29, 30, 171, 188, 189, 190, 203, 227, 228, 229, 249, 256, 257, 258, 285, $289,291,292,294,305,306,311,312$, 323, 340, 347, 348
arbitrary $188,227,249,258,289,305,340$
dissipative diffusion and attenuation 258
matrix elements of $29,188,294$
multi-particle 291
obtainthis 256
one-partial 347 , 348
one-particle 292
Order parameter 164, 182
dependence 164
expansion 182
Organic substances 11, 13
Oscillations, collective 302

P

Parameter 9, 10, 12, 21, 22, 23, 38, 73, 75, 91, 92, 146, 147, 186, 317, 346, 347
kinetic 23
pump 317
quantum 186
Particle interaction 153, 154, 159, 161, 164
Bose condensation 161
energy 153
parameter 159
Permanent magnet 145, 146, 147, 149, 150
static 145
Perturbation theory 25, 28, 34, 182
second-order kinetic 25
Photons 184, 185, 208, 247, 304
absorption of 184,185
coherent 304
travelling 208
Physical interpretation 217, 221, 238
direct 238

Planck 186, 208, 209, 222, 237, 238, 239, 254, 318
density 208
equation 222, 237, 238, 239, 254
radiation 318
Plasmons 302, 303
Polymer 16, 17, 23
amorphous 17
Probability 51, 55, 56, 59, 60, 62, 79, 81, 82, 84, 103, 107, 119, 188, 206, 242, 286, $299,300,307,313,330,338,342,351$, 353, 354
binary $62,299,354$
equal 60, 119
occupational 84, 107
single-particle 55
time-independent 342
Probability density 217, 220, 221
obatin equilibrium 220
Probability of transition 33, 188, 290, 297, $299,300,307,341,342,343,350,352$ of particle 299
Process 3, 25, 211, 249, 256, 291, 305, 340, 347
dissipative 249, 256, 291, 340, 347
macrodiffusion 3
nonequilibrium 25, 211, 305
random Markov 25
relaxation 25
Pumping 182, 183, 184, 185, 200, 303, 305
intense 184
intensive 305
process 185

Q

Quantum 11, 25, 26, 34, 145, 150, 152, 182,
183, 184, 186, 187, 211, 221, 222, 226,
237, 238, 239, 254, 257, 303, 305, 306,
311, 337, 341, 350
analog 221, 222
electronics 182, 303
gas 152
generator 182, 183
harmonic oscillator 211, 226
kinetic equation $34,182,306,311,341$, 350
laws 186
oscillator 226
phenomena 257
theory $11,25,187,237,239,303,305,337$
transitions 184
trapping 145
Quantum mechanics 2, 11, 41, 50, 168, 170, $171,182,186,227,228,337$
law 168
Quantum numbers $27,28,30,33,41,59,171$, $175,176,188,190,321$
magnetic 176
Quantum system 182, 248, 320, 323, 340
nonequilibrium 340

R

Rabi frequency 192, 308
Radiation 1, 11, 183, 184, 186, 190, 208, 209, 240, 302, 304, 307, 309, 318, 319
electromagnetic 183, 184, 208
generated 184
increased 183
ionizing 1,11
thermal 318
Radiation energy 208, 304, 318
spectral density of 208,318
Reaction 1, 14, 15, 20, 183
diffusion-controlled 15
isothermal 20
low-temperature 1
nuclear 183
solid-phase isothermal 15
thawing 14
Real distribution of conduction electrons 123, 128, 129
by energy $123,128,129$
Reciprocal transformation 218, 221
Repulsions 66, 94, 154, 331
effective 66
strong 154
Reservoir 25, 26, 27, 30, 32, 33, 34, 306
large equilibrium 306
Resonance 302
plasmon 302
Resonant plasmons 302, 303
applied surface 302
Resonant vibrations 301

S

Schrieffer theory 40

Schrodinger equation $114,115,249,289,337$, 338, 339
Self-magnetic field $133,134,137,141,142$, $143,144,149,150$
Semiconductors 239, 240, 245, 246, 247
donor 245
non-direct-band 240 touch 246
Slater two-particle wave function 170, 174
Solid-phase reactions 1, 2, 3, 11, 13, 19
kinetic theory of 3, 11
Solution 7, 8, 27, 28, 51, 101, 122, 123, 156, $157,159,160,170,216,219,222,226$, 234, 237, 256, 266, 328
exact 28,51
formal 27
numerical 159
stationary 216, 234, 237
Spaser 301, 303, 305, 318
operation 301, 305
radiation 318
theory 303
Stabilization 4, 17, 19
distribution centers 19
Stabilized electrons 16, 17, 18, 19, 20, 21, 22, 23, 24
concentrations of 17,22
death of $16,17,18,21,23$
Stained-glass windows 301
States 38, 39, 79, 80, 87, 113, 119, 125, 145, 186, 213, 321
electron 119
gaseous 321
initial electron gas 80
itinerant electron system 79
oscillator 213
quantum 186
quantum levitation 145
steady anisotropic 113
superconducting $38,39,87,125$
Stationary 131, 170, 175, 179, 180
Maxwell equations 131
Schrödinger equation 170, 175, 179, 180
Statistical operator 26, 27, 170, 171, 189, 211, $226,227,248,256,259,288,291,292$, 323, 337, 338, 339, 340, 346
arbitrary 27
Stimulated emission of radiation 302
Structures 16, 17, 65, 123, 240, 301, 321
disordered crystal 16
unique atomic 321
utilizemanufacture multilayer
semiconductor 240
Subset 86, 87
arbitrary 86
Substance 11, 15, 16, 37, 133, 182, 183, 303, 320, 321
active 183,303
crystalline 320
Substitute 47, 177, 281, 294, 296
coefficients 281
diagonal matrix 296
expression 47, 294
matrix 177
Superconductivity energy of states 107
Superconductor 36, 90, 91, 92, 127, 137, 138, 145, 147, 149
circuit 36
gravity 147
magnetic 145
resistance 36
self-magnetic field vector 137
surface $127,138,149$
Supercurrent 137, 140, 141, 144, 148
density $137,140,148$
-induced self-magnetic field 141, 144
Surface plasmons 302, 305
System 7, 13, 23, 26, 27, 28, 30, 34, 41, 87, $170,171,173,175,227,234,240,252$, 280, 288, 290, 291, 294, 299, 305, 306, 307, 338, 339, 346, 348, 351, 353
boson 294, 348
electron conductivity 87
fermion 294, 299, 348, 351
homogeneous 23, 234
inhomogeneous 234
nonequilibrium 305
one-dimensional oscillatory 227
optical 240
orthonormal 175
radical-molecule 13
small non-equilibrium 306

T

Temperature 21, 37, 112, 165
dependencies 21
energy gap 37
function 112, 165

Temperature dependence $12,15,18,37,151$, 164, 168
quantum Bose gas thermal capacity 168
Theory 2, 11, 16, 19, 23, 25, 40, 94, 256, 285, 303
contemporary 94
correlation 16, 23
kinetic 2, 11, 19, 25
of ball lightning 256
of tunnel transitions 285
second quantization 40
semi-classical 303
Thermodynamic 40, 52, 54, 57, 60, 68, 69, $119,122,168,178,298,299,300,313$, 334, 352
equilibrium 60, 119, 298, 300, 352
properties, quantum Bose gas 168
transitions 313
Transition 11, 26, 160, 184, 185, 201, 213, $239,245,246,247,248,286,297,299$, 300, 303, 304, 341, 342, 350, 351
density matrix 201
forced 185
harmonic oscillator state 213
macroscopic number 160
semiconductor 239
thermodynamic limit 26
tunneling 11, 286
Two-electron Hamiltonian 170
anti-symmetric 170

V

Vector interaction energy 154
Vectors 59, 70, 71, 79, 80, 86, 87, 88, 99, 100, $132,145,146,152,176,257,321,322$, 331
arbitrary 71
radius $152,176,257,331$
Velocity $1,79,80,81,114,129,130,166$, 167, 168
average electron 81
average itinerant electron 79
critical 168
mean electron 79, 80, 129, 130
ordered electron motion 114
ordered motion 80
Voltage, high electric 256

W

Wave functions $59,61,62,81,114,115,170$,
$171,175,179,189,210,212,213,337$, 338
orthonormal 59, 62
single-electron 170
Waves 61, 79, 81, 99, 154, 183, 301, 302
electromagnetic 302
standing electro-magnetic 183
Wigner 226
equilibrium function 226
function equation 226
Wigner's equation 254

Boris V. Bondarev

After graduation from Moscow Institute of Physics and Technology in 1965, he worked at Lebedev Institute of Physics. In 1968, he started his work in Moscow Aviation Institute. Since then, his scientific and teaching activities are connected to MAI. His PhD thesis (1974) was dedicated to general relativity theory. Soon after that, he developed the theory of capillary discharge in plasma. He also developed the theory of step kinetics of solid-phase reactions based on correlation function of reagents. He showed that the Arrhenius Law works at low temperatures. He constructed the statistics theory of solid-phase biomolecular reactions, and developed the probability theory of biomolecular reactions. He also built the statistics theory of kinetics of ordered binary alloys. From Liouville-von Neumann equation, he derived the quantum kinetic equation for density matrix, taking into account the behaviour of quantum system of interaction with a thermostat. He received the equation for a many-particle system that was true for one-particle density matrix and described the behaviour of quantum system with thermostat. He developed the variational method for one- and twoparticle density matrices. He wrote the Lindblad equation for quantum harmonic oscillator and derived the relation of indefiniteness in dependence on temperature.

