

Marcus Vinícius Nora de Souza

Bentham Books

Exercises in Organic Synthesis Based on Synthetic Drugs

Authored by

Marcus Vinícius Nora de Souza

FioCruz-Fundação Oswaldo Cruz Rio de Janeiro - RJ, 21040-900 Brazil

Exercises in Organic Synthesis Based on Synthetic Drugs

Author: Marcus Vinícius Nora de Souza

ISBN (Online): 978-981-14-8756-9

ISBN (Print): 978-981-14-8754-5

ISBN (Paperback): 978-981-14-8755-2

© 2020, Bentham Books imprint.

Published by Bentham Science Publishers Pte. Ltd. Singapore. All Rights Reserved.

BENTHAM SCIENCE PUBLISHERS LTD.

End User License Agreement (for non-institutional, personal use)

This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the ebook/echapter/ejournal ("Work"). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: permission@benthamscience.net.

Usage Rules:

- 1. All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit the Work or make the Work available for others to do any of the same, in any form or by any means, in whole or in part, in each case without the prior written permission of Bentham Science Publishers, unless stated otherwise in this License Agreement.
- 2. You may download a copy of the Work on one occasion to one personal computer (including tablet, laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it.
- 3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights.

Disclaimer:

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the Work.

Limitation of Liability:

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

General:

- 1. Any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims) will be governed by and construed in accordance with the laws of Singapore. Each party agrees that the courts of the state of Singapore shall have exclusive jurisdiction to settle any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims).
- 2. Your rights under this License Agreement will automatically terminate without notice and without the

- need for a court order if at any point you breach any terms of this License Agreement. In no event will any delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement constitute a waiver of any of its rights.
- 3. You acknowledge that you have read this License Agreement, and agree to be bound by its terms and conditions. To the extent that any other terms and conditions presented on any website of Bentham Science Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail.

Bentham Science Publishers Pte. Ltd.

80 Robinson Road #02-00 Singapore 068898 Singapore Email: subscriptions@benthamscience.net

CONTENTS

PREFACE	i
CONSENT FOR PUBLICATION	i
CONFLICT OF INTEREST	ii
ACKNOWLEDGEMENTS	ii
CHAPTER 1 HOW TO BUILD A DRUG: EXERCISES BASED ON THE CONCEPT OF	
	1
RETROSYNTHETIC ANALYSIS	
INTRODUCTION	
PROTECTIVE GROUPS	
EXERCISES 1 TO 4 - RETROSYNTHETIC ANALYSIS	
EXERCISE 1 - TWO SYNTHONS = DRUG	
Example	7
Answer	7
EXERCISES	7
Answers	10
EXERCISE 2 – EPOXIDES	16
Example	16
Answer	
EXERCISES	
Answers	
EXERCISE 3 – PIPERAZINE AND RELATED SUBSTANCES	
Examples	
Answers	
EXERCISES	
Answers	
EXERCISE 4 – ALDEHYDES	
Examples	
Answers	
EXERCISES	
Answers	
CONCLUSION OF THE EXERCISES 1 TO 4 (RETROSYNTHETIC ANALYSIS)	
REFERENCES	46
CHAPTER 2 ORGANIZING SYNTHETIC ROUTES AND IDENTIFYING REAGENTS	47
EXERCISES 5 TO 8	
INTRODUCTION	
EXERCISE 5 - ORGANIZING SYNTHETIC ROUTES	
Example	
Answer	
EXERCISES	
RUTHENIUM AND ITS COMPLEXES AS OXIDANTS	
MECHANISM OF WITTIG-HORNER REACTION	60
EXERCISE 6 - IDENTIFYING REAGENTS	61
Example	61
Answer	61
EXERCISES	62
Answers	67
CONCLUSION OF THE EXERCISES 5 AND 6 (ORGANIZING SYNTHETIC ROUTES	
AND IDENTIFYING REAGENTS)	69

CHAPTER 3 IDENTIFYING DRUG STRUCTURE AND COMPLETING THE GAPS	70
EXERCISE 7 - IDENTIFYING DRUG STRUCTURE	70
Examples	70
Answers	71
EXERCISES	72
Answers	
EXERCISE 8 - COMPLETING THE GAPS	91
Example	
Answer	92
EXERCISES	94
Answers	104
CONCLUSION OF EXERCISES 7 AND 8 (IDENTIFYING DRUG STRUCTURE AND	
COMPLETING THE GAPS)	
BIBLIOGRAPHIC DATA OF EXERCISES 1 TO 9	112
CHAPTER 4 HETEROAROMATIC SUBSTANCES	114
FIVE-MEMBERED RINGS	114
SIX-MEMBERED RINGS	
FUSED SYSTEMS	115
Example	116
Answer	116
MECHANISM OF REACTION	116
EXERCISES	
Answers	
CONCLUSION	132
CHAPTER 5 HYDRAZINE AND ITS DERIVATIVES	133
INTRODUCTION	133
Example	. 134
Answer	134
EXERCISES	135
Answers	141
CONCLUSION	149
CHAPTER 6 NITRILES	. 150
INTRODUCTION	
Example	
Answer	152
EXERCISES	152
Answers	157
CONCLUSION	164
CHAPTER 7 COMBINATORIAL CHEMISTRY	165
	165
Example	
Answer	
MECHANISM OF REACTION	
EXERCISES	
Answers	
CONCLUSION	
REFERENCE	

CHAPTER 8 MULTICOMPONENT REACTION (MCR)	176
INTRODUCTION	176
Example	180
Answer	181
Important Note	181
EXERCISES	182
Answers	189
CONCLUSION	196
CHAPTER 9 CLICK CHEMISTRY	197
INTRODUCTION	197
Example	199
Answer	200
EXERCISES	200
Answers	204
CONCLUSION	208
SUGGESTIONS FOR READING	208
CHAPTER 10 FLUORINE IN DRUG DISCOVERY	209
INTRODUCTION	209
FLUORINATION REAGENTS	211
Nucleophilic Fluorination for the Introduction of Fluorine Atom NaF, KF, HF, and Bu4NF	211
Diethylaminosulfur Trifluoride (DAST)	212
Nucleophilic Fluorination for the Introduction of the Trifluoromethyl Group	213
Eletrophilic Fluorination for the Introduction of Fluorine Atoms	
Electrophilic Fluorination for the Introduction of the Trifluoromethyl Group	214
Radical Fluorination	
CLASSICAL EXAMPLES OF THE IMPORTANCE OF FLUORINE IN DRUG	
DEVELOPMENT	216
Fluoroquinolone	216
Sitagliptin	217
Odanacatib	218
Celecoxib	219
Example	219
Answer	220
EXERCISES	220
Answers	
CONCLUSION	226
REFERENCES	
LIST OF JOURNALS USED AND THEIR RESPECTIVE ABBREVIATIONS	228
LIST OF ABBREVIATIONS	230
SUBJECT INDEX	235

PREFACE

Chemistry is a science based on compositions, properties, reactions and transformations of substances. In 1777, it was divided into two main fields by the Swedish chemist Torbern Olof Bergman: organic and inorganic chemistry. However, due to the vast amount of information obtained over the centuries, modern chemistry has been divided into five main branches: organic, inorganic, analytical and physical chemistry, and biochemistry. Nowadays, despite this division, these main branches are subdivided into several sub-branches demonstrating the tremendous scientific and technological development of chemistry. In the case of organic chemistry, it presented a large number of sub-branches, such as organic synthesis, medicinal chemistry, asymmetric synthesis, natural products, green chemistry, organometallic chemistry, physical organic chemistry, polymer chemistry, forensic chemistry, among others. Due to the importance of chemistry as the physical sciences in our world, many researchers considered it as a central science closely linked with applied and life sciences.

Chemistry plays a critical role in drug discovery against the most different types of diseases. The development of a new drug is an extremely complex process involving different areas and, types of knowledge. Considering that, two sub-branches of organic chemistry are fundamental at the beginning of this process: organic synthesis and medicinal chemistry. Organic synthesis is the preparation in the laboratory of simple or complex substances using chemical reactions in a rational and planned way, starting with simpler atoms or elements. Medicinal chemistry is a discipline that is at the interface of several areas, such as, chemistry, medical, biological, and pharmaceutical sciences. Its objective is the design, discovery, identification, and preparation of bioactive compounds as well as the study of other aspects such as their mechanisms of action, metabolism, and a structure-activity relationship.

Due to the crucial importance of organic synthesis and medicinal chemistry in the development of new drugs, the objective of this book is to present different exercises aiming at the search for biologically active compounds against the most diverse types of diseases in both humans and animals. The development of a new drug begins with the search, planning, design, and evaluation being necessary for its preparation in the laboratory. This initial step is a long and complicated process for a biologically active compound to become a drug. For this to happen, organic synthesis is of fundamental importance since, through it, we can obtain the most varied types of simple or complex substances for biological evaluation. Thus, the present book will address different techniques and strategies for the synthesis of biologically active compounds and drugs. Through the exercises presented, the reader will be able to propose, obtain, and evaluate in a logical way compounds to be studied. Considering that, this book is useful for students of graduation and post-graduation in **chemistry**.

It is worth mentioning that the present book has a wide range of bibliographical references, extracted from different scientific journals and books. The exercises presented are based on this material. In case the reader wants to delve into specific content, drug, or illness, it is advisable to consult such references. This book will be studied only for the drugs and biologically active compounds developed in the laboratory.

CONSENT FOR PUBLICATION

Not applicable

CONFLICT OF INTEREST

The author confirms that there is no conflict of interest.

ACKNOWLEDGEMENTS

Declared none.

Marcus Vinícius Nora de Souza FioCruz-Fundação Oswaldo Cruz Rio de Janeiro - RJ, 21040-900 Brazil

E-mail: mvndesouza@gmail.com

CHAPTER 1

How to Build a Drug: Exercises Based on the Concept of Retrosynthetic Analysis

Abstract: Concepts involving retrosynthesis were and are essential to the development of organic synthesis as science and art. Therefore, the first four exercises are based on this concept. These exercises were subdivided into themes and degrees of increasing difficulty so that the reader could gradually progress and become familiar with their concepts. Thus, the first exercise begins with the retrosynthetic analysis of drugs based on the identification of only two synthons and their respective synthetic equivalents (reagents and substances) necessary for their synthesis. Exercises **2**, **3**, and **4** are thematic and based on the identification of epoxides, piperazines, and aldehydes, used in the synthesis of drugs and bioactive substances as well as other synthons and their respective synthetic equivalents present in the exercises.

Keywords: Aldehydes, Drugs, Epoxides, Exercises, Medicinal chemistry, Organic synthesis, Piperazines, Reagentes, Retrosynthetic analysis, Substances, Synthons.

INTRODUCTION

For a new drug to reach the pharmacy shelf, a long and complicated process is necessary also involving large sums of money. This process requires multiple steps with a large number of specificities and areas such as chemists, physicians, pharmacologists, biochemists, economists, lawyers, among others. In this context, one of the first steps in this process is to obtain biologically active compounds in laboratories for evaluation, and for this, the use of organic synthesis is critical.

It is no exaggeration to mention that at present modern organic synthesis can synthesize in logic and planned manner any substance of natural or synthetic origin thanks to the contribution of several scientists in various periods of human history. In modern organic chemistry, professor Robert Bruns Woodward (1917-1979) (Nobel Prize in 1965) is considered by many as the father of modern organic synthesis for his outstanding contributions in the synthesis of natural products with extremely complex chemical structures (Fig. 1). Another important scientist is professor Elias James Corey (1928-) (Nobel Prize in 1990), who introduced and successfully applied in the synthesis of natural products the

concept of retrosynthetic analysis. This concept can efficiently and rationally simplify the synthesis of the target molecule with simple or complex chemical structures by retroactive analysis of the substance in question up to the starting materials. The target molecule is logically disconnected in parts until it reaches the starting materials and these disconnections, named by Corey as synthons, which are fragments with nucleophilic and electrophilic centers being synthetic equivalents (reagents or building blocks). In 1989, the book, *The Logic of Chemical Synthesis* brilliantly demonstrated the application of his concepts (Fig. 2).

$$H_2NOC$$
 H_3C
 H_3C

Fig. (1). Professor Robert Burns Woodward (1917-1979) and the chemical structure of vitamin B12, which to date has been the first and only synthesis to be performed in the laboratory of this complex natural product. This synthesis, which has more than one hundred steps, was carried out in collaboration with the Swiss Albert Eschenmoser (1925-) in the early 1960s with a team of approximately one hundred people and was published in 1973.

Source of the picture: The Nobel prize website.

https://www.nobelprize.org/prizes/chemistry/1965/woodward/facts/

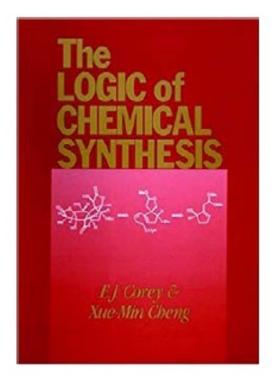


Fig. (2). Professor Elias James Corey (1928-) and his famous book. Source of the picture: The Nobel prize website. https://www.nobelprize.org/prizes/chemistry/1990/corey/biographical/

As an example of the application of the concepts developed by Professor Corey, we will propose the synthesis of the drug nevirapine (Fig. 3). This drug is an anti-HIV drug approved in 1996 by the FDA (Food and Drug Administration), being a non-nucleoside reverse transcriptase inhibitor (NNRTI). At first glance, analyzing its chemical structure seems to be a very complicated task to propose its synthesis. However, when we use the retrosynthetic analysis, disconnecting our target molecule (nevirapine), we created logically nucleophilic and electrophilic centers (synthons). As we know, amines are nucleophilic and carbonyl groups reacting with nucleophiles due to their electrophilic character indicating which reagents will be used in this synthesis. It is essential to highlight how the retrosynthetic analysis was able to simplify the synthesis of the anti-HIV nevirapine. This concept is highly recommended in future synthetic analyzes.

CHAPTER 2

Organizing Synthetic Routes and Identifying Reagents

Abstract: In this chapter, the exercises below are based on two themes. First, exercises based on the synthesis of several drugs and bioactive compounds used to treat various diseases. Therefore, several reaction conditions are presented. However, these conditions are disordered, and it is up to the reader to order them. The other theme is to identify reagents used for the preparation of a specific target molecule. This type of training is essential because it allows the reader to contact different types of reagents and chemical transformations and use them in a sequentially correct way.

Keywords: Bioactive compounds, Chemical transformations, Drugs, Exercises, Medicinal chemistry, Molecules, Reaction conditions, Reagents, Synthesis.

EXERCISES 5 TO 8

INTRODUCTION

After the exercises on retrosynthetic analysis, the reader is now invited to practice other essential aspects of a particular synthetic route. It is worth mentioning that the retrosynthetic analysis has to be allied to solid chemical knowledge. In this context, the identification of reactions, reagents, intermediates, and chemical transformations are essential. Considering that, different exercises in this book are intended to make the reader familiar with these themes.

Exercises 5 to 8 present some of these objectives, Exercise 5, for example, proposes different syntheses with the reagents arranged incorrectly, and it is up to the reader to order them. Exercise 6 aims at identifying the reagents used and their correct order of use in the preparation of a given drug (target molecule). Exercise 7 has the objective of identifying the structure of the drugs, having information of the starting materials and reagents used. Exercise 8 presents a series of gaps in the synthesis of different drugs, and it is up to the reader to complete them. It is worth mentioning that it is highly recommended that the reader continues using the concept of retrosynthesis in the resolution of the exercises.

Marcus Vinícius Nora de Souza All rights reserved-© 2020 Bentham Science Publishers

EXERCISE 5 - ORGANIZING SYNTHETIC ROUTES

In the exercises below, different synthetic bioactive substances are presented, including some drugs used to treat various diseases. However, the reactional conditions for obtaining them are disordered, and it is up to the reader to order them.

Example

(a) 4-chloro-2-chloropyridine acid chloride, (b) (OEt)₃CH, AcOH, EtOH, 70°C, 98%; NEt₃, CH₂Cl₂, rt, 91%; (c) morpholine, 100°C, 57%; (d) (COCl)₂, DMF, CH₂Cl₂, 0°C to rt; (e) 2-methyl-5-nitroaniline, NEt₃, CH₂Cl₂, rt (99% 2 steps); (f) H₂, 10% Pd/C, MeOH, rt, 80%; (g) N-methylpiperazine, 100°C, 83%.

Answer

However, it is worth emphasizing the importance of first doing a retrosynthetic analysis, because it will undoubtedly provide relevant information for solving the problem. In this context, the first question to ask is where the starting material in the target molecule is? It looks like that the fused nuclei $\bf C$ and $\bf B$ are derived from this raw material. The next step is to identify which transformations occur. We can highlight the following: a) conversion of the carboxylic acid into amide *via* formation of an acid chloride; b) coupling with the core $\bf D$; c) synthesis of the nucleus $\bf C$ using a carbon atom and d) introduction of the N-methylpiperazine (nucleus $\bf A$). The disconnections and coupling in the $\bf D$ - $\bf F$ rings are easy to see in conjunction with the reaction conditions shown. Thus, the ordered reaction sequence is as described below.

Bioorg. Med. Chem. Lett. 2012, 22, 3879

(a) (COCl)₂, DMF, CH₂Cl₂, 0°C at rt; (b) 2-methyl-5-nitroaniline, NEt₃, CH₂Cl₂, rt (99%; 2 steps); (c) N-methylpiperazine, 100°C, 83%; (d) H₂, 10% Pd/C, MeOH, rt, 80%; (e) (OEt)₃CH, AcOH, EtOH, 70°C, 98%; (f) 2-chloropyridine-4-carbonyl chloride, NEt₃, CH₂Cl₂, rt, 91%; (g) morpholine, 100°C, 57%.

EXERCISES

1)

(a) nitromethane and base (NH₄OAc), 100°C, 3h.; (b) Heck reaction with styrene; (c) Br₂, AcOH, rt.

2)

(a) 5-bromopyrimidine, *n*-BuLi, THF, -78°C; (b) thionyl chloride; (c) AlCl₃, PhCl.

Identifying Drug Structure and Completing the Gaps

Abstract: In this chapter, the exercises below are also based on two themes. The first has an objective of the identification of the structure of the drugs having information of the starting materials and reagents used. This activity also enables the reader to become familiar with different classical chemical transformations used in medicinal chemistry and with varying types of reagents, reaction conditions, and necessary intermediates. In the second theme, the exercises are based on a series of gaps in the synthesis of different drugs. Therefore, it is up to the reader to complete them. This type of exercise is a combination of the themes previously presented. It is necessary to identify the reagents' use, the reaction conditions employed, and the intermediates formed, besides the use of the concept of retrosynthesis.

Keywords: Bioactive compounds, Chemical transformations, Drugs, Exercises, Medicinal chemistry, Molecules, Reaction conditions, Reagents, Retrosynthetic analysis, Substances, Synthesis, Synthons.

EXERCISE 7 - IDENTIFYING DRUG STRUCTURE

The exercises below have an objective of the identification of the structure of the drugs having information of the starting materials and reagents used.

Examples

a) What is the structure of the drug lubiprostone after heating the intermediate below?

Marcus Vinícius Nora de Souza All rights reserved-© 2020 Bentham Science Publishers

b) What is the structure of the drug below? Can step number two be performed with heating and excess ammonia? Justify.

$$\begin{array}{c|c} \text{CIO}_2\text{S} & & \underline{a) \ SOCl_2} \\ \hline \text{b) 2NH}_3 \ (\text{rt}) & \underline{diuretic} \\ \text{c) HCl} & \\ \end{array}$$

Answers

a) We can observe that an intramolecular cyclization occurs between the hydroxyl and the carbonyl, with the formation of a six-membered ring (hemiacetal tautomerism chain-ring).

b) The first two steps are easy because they are classical and widely used transformations, thionyl chloride followed by ammonia, which is capable of converting the carboxylic acid and sulfonyl chloride into amide and sulfonamide, respectively. The third step requires a little more attention since an intramolecular cyclization occurs in an acid medium, with the formation of the indole nucleus. The reaction using ammonia can not be done with an excess of this reagent and heating, because an aromatic nucleophilic substitution reaction between the chlorine atom and the ammonia could occur.

72 Exercises in Organic Synthesis Based on Synthetic Drugs

Marcus Vinícius Nora de Souza

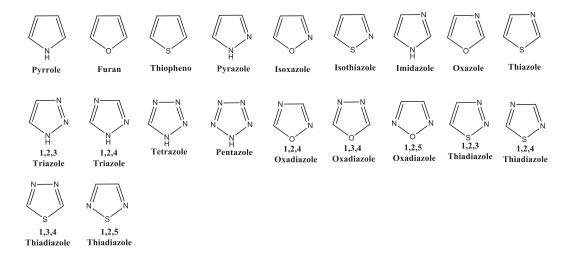
$$\begin{array}{c} \text{CIO}_2\text{S} \\ \text{CI} \\ \text{CIO}_2\text{S} \\ \text{CI} \\ \text{CO}_2\text{H} \end{array} \begin{array}{c} \text{a) SOCl}_2 \\ \text{b) 2NH}_3 \\ \text{CI} \\ \text{CI} \\ \text{CI} \\ \text{CIO}_2\text{S} \\ \text{O} \end{array} \begin{array}{c} \text{C) HCl} \\ \text{Chlorthalidone} \\ \text{O} \\ \text{O} \\ \text{Chlorthalidone} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O}$$

EXERCISES

1)

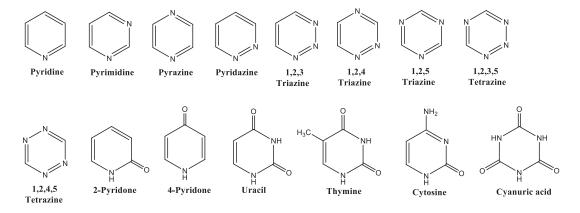
$$CI$$
 CF_3
 H_3C
 CH_3
 CH

2)

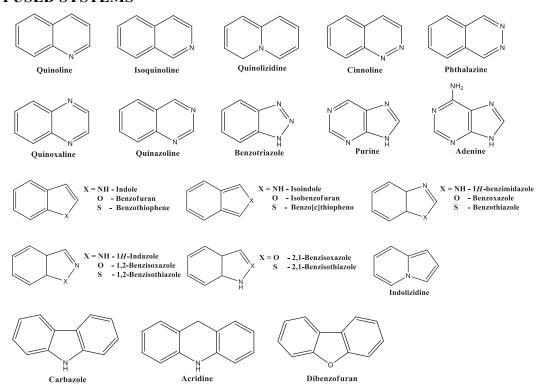

3)

Heteroaromatic Substances

Abstract: Heteroaromatics are substances having one or more atoms in the aromatic ring other than the carbon atom. This class of compounds is fundamental in developing new drugs, being present in a large number of drugs and bioactive compounds. Some of these cores are listed below, and it is worth noting that due to their immense structural variety, we mentioned only the most common ones. The exercises of this item we based on the formation of different heteroaromatic substances, and it is up to the reader to identify the respective nuclei.


Keywords: Bioactive compounds, Chemical transformations, Drugs, Exercises, Heteroaromatic compounds, Medicinal chemistry, Molecules, Reaction conditions, Reagents, Synthesis, Retrosynthetic analysis, Substances, Synthons.

FIVE-MEMBERED RINGS



Marcus Vinícius Nora de Souza All rights reserved-© 2020 Bentham Science Publishers

SIX-MEMBERED RINGS

FUSED SYSTEMS

Example

The exercises below indicate the chemical structures of the nuclei formed.

Answer

An important point concerning heteroaromatics is that despite their diversity, the mechanisms of their formation are somewhat similar, so it is fundamental to understand these mechanisms since the reader can easily propose the formation of a specific heteroaromatic nucleus. For example, in general, the structure of these nuclei is almost always related to an intramolecular cyclization reaction followed by the aromatization of the water loss system or an excellent leaving group. The formation of the thiazole nucleus **A** could have occurred according to the mechanism below.

MECHANISM OF REACTION

$$\begin{array}{c} R \\ A \\ \end{array}$$

$$\begin{array}{c} R \\ \end{array}$$

Quim. Nova 2005, 28, 77

CHAPTER 5

Hydrazine and its Derivatives

Abstract: The chemical hydrazine (NH₂NH₂) and its derivatives have several applications being also responsible for a large number of chemical transformations. This class has applications as rocket fuel and being present in the composition of explosives, in the control of corrosion, and the area of polymers. They also have full use in the development of bioactive substances being of great importance in medicinal chemistry. In the exercises of this chapter, we can synthesize several rings using hydrazine and its derivatives, and it is up to the readers to identify them.

Keywords: Bioactive compounds, Chemical transformations, Drugs, Exercises, Heteroaromatic compounds, Hydrazine, Medicinal chemistry, Molecules, Reaction conditions, Reagents, Retrosynthetic analysis, Substances, Synthesis, Synthons.

INTRODUCTION

The chemical hydrazine (NH₂NH₂) and its derivatives have several applications, being also responsible for a large number of chemical transformations. This class has applications as rocket fuel and being present in the composition of explosives, in the control of corrosion, and the area of polymers. They also have full use in the development of bioactive substances being of great importance in medicinal chemistry. Some examples of hydrazine derivatives such as, methylhydrazine, phenylhydrazine, *N*-acylhydrazide, semicarbazide, and thiosemicarbazide are listed below. It is noteworthy that the condensation of these substances above listed with aldehydes produces the respective hydrazones, methylhydrazones, phenylhydrazones, *N*-acylhydrazones, semicarbazones, and thiosemicarbazones (Scheme 1).

Scheme 1. Hydrazine and its derivatives.

Example

After the reaction with the hydrazine (NH₂NH₂), what will be the target molecule formed?

Answer

The use of hydrazine was responsible for the formation of the indazole nucleus due to the position of the aldehyde chemical function (hydrazone formation) and the fluorine atom acting as a leaving group.

In the exercises below, we can synthesize several rings using hydrazine and its derivatives, and it is up to the reader to identify them.

EXERCISES

1)

2)

Nitriles

Abstract: Nitrile is a chemical function found in several drugs in the market for different kinds of diseases and can be transformed into several other functional groups such as ketones, aldehydes, carboxylic acids, amines, amides, and other functional groups. The use of nitriles is also advantageous in forming heteroaromatic nuclei with important applications in medicinal chemistry. In this chapter, the exercises are based on the use of nitriles to form a different nucleus.

Keywords: Bioactive compounds, Chemical transformations, Drugs, Exercises, Heteroaromatic compounds, Hydrazine, Medicinal chemistry, Molecules, Nitriles, Reaction conditions, Reagents, Retrosynthetic analysis, Substances, Synthesis, Synthons.

INTRODUCTION

Nitrile is a chemical function found in medicinal chemistry being able to be transformed in several other functional groups such as tetrazoles, ketones, aldehydes, carboxylic acids, amines, amides, different nucleus and other functional groups (Scheme 1).

Nitrile is a chemical function found in several drugs in the market for different diseases (Fig. 1).

Saxagliptin, an oral inhibitor class of dipeptidyl peptidase-4 (DPP-4), used against hypoglycemia. Anastrazole used to treat and prevent breast câncer. Escitalopram used against depression is a selective serotonin reuptake inhibitor. Etravirine is an anti-HIV antiviral being the first of a new class of non-nucleoside inhibitors of the reverse transcriptase (NNRTI), an essential enzyme of HIV. Milrinone is used to treat heart failure acting as a phosphodiesterase inhibitor, and Febuxostat is used to treat gout, working against high uric acid levels.

Scheme 1. Chemical transformations of nitrile group.

Fig. (1). Drugs containing a nitrile group into its structure.

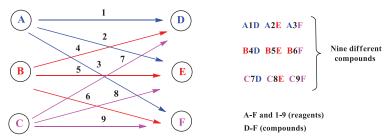
Example

Which heteroaromatic nucleus is formed using malononitrile and an organic azide?

Answer

Based on the use of nitriles, in the reactions below, the heteroaromatic nucleus formed has been identified.

1)

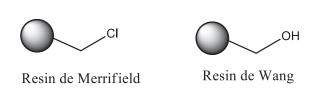

Combinatorial Chemistry

Abstract: Combinatorial chemistry is a methodology developed based on the synthesis of many compounds (hundreds, thousands, or even millions) in a simple chemical process building libraries of these compounds. In medicinal chemistry, an essential factor is the number of different molecules to be produced. For obtaining a leading compound and later a candidate drug, the biological evaluation of thousands of compounds is necessary. Therefore, the exercises below are based on combinatorial chemistry.

Keywords: Bioactive compounds, Combinatorial chemistry, Chemical transformations, Drugs, Exercises, Heteroaromatic compounds, Medicinal chemistry, Molecules, Reaction conditions, Reagents, Retrosynthetic analysis, Substances, Synthesis, Synthons.

INTRODUCTION

In medicinal chemistry, an essential factor is the number of different molecules to be produced. For obtaining a leading compound and later a candidate drug, the biological evaluation of thousands of compounds is necessary, previously provided by using organic syntheses. Combinatorial chemistry is a methodology developed with this purpose and based on the synthesis of a large number of compounds (hundreds, thousands or even millions) in a simple chemical process building libraries of compounds. Scheme 1 shows an example of the concept of combinatorial chemistry by using A-C and 1-9 as reagents using all these reagents together in a single reaction we produced at the same time nine different compounds.



Scheme 1. Example of combinatorial chemistry.

Marcus Vinícius Nora de Souza All rights reserved-© 2020 Bentham Science Publishers Combinatorial chemistry is a methodology developed in the 1960s by Professor Bruce Merrifield (1921-2006) (Scheme 2). He studied solid-phase of peptides, which introduced the use of insoluble and chemically inert polymers (commonly referred to as resins) as carriers, which are covalently bound to the substrate, in this case, the peptides. The great advantage of solid support synthesis is the simplicity of the purification of the products obtained. The use of a simple filtration followed by successive washing of the solid support with different types of solvents is sufficient for the purification of the product obtained. After the discovery of Merrifield, other researchers developed resins to improve the synthesis in solid support, among which Wang resin is one of the most commonly used. Due to his important work, Merrifield was awarded the Nobel Prize in 1984. In the 1990s, combinatorial chemistry had a major impact on the pharmaceutical industry in the development of new drugs. However, combinatorial chemistry has some disadvantages, such as the production of a mixture of compounds, and it is difficult to isolate and identify the biologically active compound.

Robert Bruce Merrifield

Due to the structural complexity this is usually the representation of the resin.

Nobel Prize 1984Source of the picture: The nobel prize website https://www.nobelprize.org/prizes/chemistry/1984/merrifield/biographical/

Scheme 2. Principle of solid support synthesis and resins commonly used in solid support synthesis.

Example

Using 4-fluoro-3-nitrobenzoic acid as start material, the product of this reaction was 4-fluoro-3-nitro-benzoate PEGester. The reagents used by the introduction of this resin were *N*,*N*′-dicyclohexylcarbodiimide (DCC) as the esterification agent and 4-dimethylaminopyridine (DMAP) as a catalyst. The 4-fluoro-3-ni-ro-benzoate PEGester is a key intermediate for the preparation of a library of 1,2,5-trisubstituted benzimidazole derivatives in some steps. What are these steps?

Answer

Multicomponent Reaction (MCR)

Abstract: Multicomponent reaction (MCR) is a type of reaction based on a mixture of three or more compounds or reagents leading only to one or a major molecule being able to form complex molecules with a high degree of control of the stereogenic centers in only one step. This methodology is also a useful tool in medicinal chemistry to produce a diversity of compounds for biological evaluation. Due to its importance, the exercises below focus on this technique.

Keywords: Bioactive compounds, Chemical transformations, Combinatorial chemistry, Drugs, Exercises, Heteroaromatic compounds, Medicinal chemistry, Molecules, Multicomponent reaction (MCR), Reaction conditions, Reagents, Retrosynthetic analysis, Substances, Synthesis, Synthons.

INTRODUCTION

This methodology is a type of reaction based on a mixture of three or more compounds or reagents leading only to one or a major molecule being able to form complex molecules with a high degree of control of the stereogenic centers in only one step. The first reaction described in the literature based on the principles of the MCR was the Streck reaction. This reaction is the synthesis of α -amino acids by using aldehydes, HCN, and NH, as reagents described in 1850 by Adolph Strecker (1822-1871) (Scheme 1). After Strecker's work, other scientists developed other types of reactions, such as two reactions based on the utilization of the functional group isocyanide. The first one is the Passerini reaction (1921) (Scheme 2), which is the synthesis of α -acyloxy carboxamides in a one-pot reaction [1]. The reagents of this reaction are aldehyde or ketone, carboxylic acid, and isocyanides in a 3-component MRC. The second is the Ugi reaction (1959) (Scheme 2), producing α -aminoacyl amides by using primary amines, aldehydes, carboxylic acids, and isocyanides as starting materials in a 4component MCR [2]. It is essential to mention that this synthesis and its variations are the most known and used MCRs. The proposed mechanisms of these reactions are shown in Schemes 3 and 4.

> Marcus Vinícius Nora de Souza All rights reserved-© 2020 Bentham Science Publishers

Scheme 1. Synthesis of α -amino acids by using aldehydes, HCN, and NH₃ as reagents, known as Strecker Source of the picture: Pedersen, B. Physical Science in Oslo, Phys. Perspect., 2011, 13(2), 215-238.

Scheme 2. MCRs developed by Passerini and Ugi.

Passerini reaction

Ionic mechanism base on polar solvents such as water and methanol

Passerini reaction

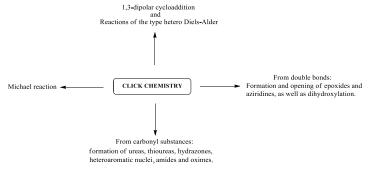
Concerted mechanism base on non-polar solvents and high concentration.

Scheme 3. Mechanism of Passerini reaction.

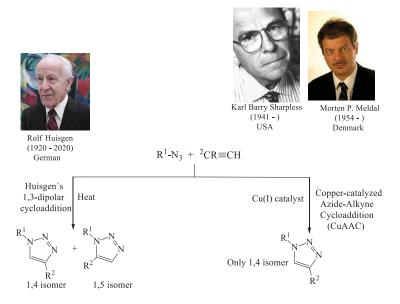
CHAPTER 9

Click Chemistry

Abstract: The most famous reaction, based on the click chemistry concept, is to obtain 1,2,3-triazoles, employing the 1,3-dipolar cycloaddition reaction between azides and alkynes. This reaction raised intense interest in academics and industrialists and was discovered independently by Sharpless and the Danish Morten Meldal in the year 2002. They demonstrated that the addition of copper as a catalyst has several advantages, such as an increase in the speed of the reaction, regioselectivity, high yields, and reactions are easy to elaborate. Due to its importance in drug discovery, the exercises below are based on this concept.


Keywords: 1,2,3-triazoles, Alkynes, Azides, Bioactive compounds, Catalyst, Chemical transformations, Click chemistry, Combinatorial chemistry, Copper, Drugs, Exercises, Heteroaromatic compounds, Medicinal chemistry, Molecules, Reaction conditions, Reagents, Retrosynthetic analysis, Substances, Synthesis, Synthons, 1,3-dipolar cycloaddition.

INTRODUCTION


The "click chemistry" is a concept proposed the same year that researcher Karl Barry Sharpless won the Nobel Prize in chemistry, *i.e.*, in 2001. This concept resembles the way that mother nature synthesizes its substances, bringing together, in a fast and effective way, small molecules. It is also related to the principles of green chemistry and combinatorial chemistry to have libraries of substances using efficient and straightforward procedures. These procedures should have the following characteristics: reduced numbers of steps, simplicity, the non-use of solvents or water, the non-generation of non-toxic waste or residues, and the use of inexpensive and abundant starting materials. Sharpless, which described the principles and concepts of click chemistry for the first time in one of his articles, enumerated several reactions that follow these principles and concepts. These reactions are Diels-Alder, epoxides, and aziridines opening, dihydroxylation, Michael addition, the formation of heteroaromatic nuclei, hydrazones, amides, ethers, oximes, ureas, and thioureas (Fig. 1) [1].

However, the most famous reaction, based on the click chemistry concept, is to obtain 1,2,3-triazoles employing the 1,3-dipolar cycloaddition reaction between

Marcus Vinícius Nora de Souza All rights reserved-© 2020 Bentham Science Publishers azides and alkynes (Scheme 1). This reaction raised intense interest in both academics and industrialists and was discovered independently by Sharpless and the Danish Morten Meldal in 2002. They demonstrated that the addition of copper as a catalyst has several advantages, such as an increase in the speed of the reaction, regioselectivity, high yields, and reactions are easy to elaborate. The catalytic cycle of this reaction is represented in Scheme 2. If the reader is interested in the topic, below are some suggestions for reading [2 - 7].

Fig. (1). Reactions related to the concept of click chemistry.

Scheme 1. 1,2,3-triazole formation by Huisgen's reaction and by regioselective copper-catalyzed azidealkyne cycloadditions (CuAAC).

Source of the picture: Wikipedia

https://en.wikipedia.org/wiki/Rolf_Huisgen Source of the picture: The Nobel Prize website.

https://www.nobelprize.org/prizes/chemistry/2001/sharpless/biographical/

Source of the picture: University of Copenhagen website. https://synbio.ku.dk/about/management/ulrik_gether_copy/

$$R^{1} \cdot N_{3} + R^{2}C = CH \qquad Cu(I) \text{ ou } (II)$$

$$R^{1} \cdot N_{3} + R^{2}C = CH \qquad CuSO_{4}$$

$$Ligante [L]$$

$$R^{1} = CuL_{n-1}$$

$$R^{1} = CuL_{n-2}$$

$$R^{1} = CuL_{n-2}$$

$$R^{1} = CuL_{n-2}$$

$$R^{1} = CuL_{n-2}$$

$$R^{2} = CuL_{n-2}$$

$$R^{2} = CuL_{n-2}$$

$$R^{2} = CuL_{n-2}$$

$$R^{3} = CuL_{n-2}$$

$$R^{4} = CuL_{n-2}$$

$$R^{2} = CuL_{n-2}$$

$$R^{3} = CuL_{n-2}$$

$$R^{4} = CuL_{n-2}$$

$$R^{2} = CuL_{n-2}$$

$$R^{3} = CuL_{n-2}$$

$$R^{4} = CuL_{n-2}$$

Scheme 2. Catalytic cycle of 1,3-dipolar cycloaddition reaction between azides and alkynes to form 1,2,3 triazoles.

Example

a) Based on the two substances below, benzyl 2,6-difluorobromide and propionic acid, how would the reader synthesize the antiepileptic rufinamide using the "click chemistry" reaction?

CHAPTER 10

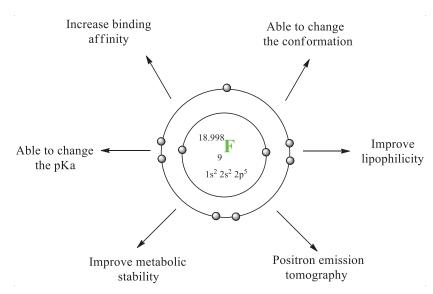
Fluorine in Drug Discovery

Abstract: Fluorine chemistry is an important area that made a significant impact on drug discovery development, which can be seen by a large number of drugs in the market containing this chemical element. The success of drugs containing fluorine atoms in its structures is due to its chemical properties compared to the other elements, providing several advantages in drug discovery. Some of these advantages are better metabolic stability, avoiding undesired metabolizations, and improving the bioavailability of the drugs, among others. Due to its importance in drug discovery, the exercises below are focused on fluorine chemistry.

Keywords: Bioactive compounds, Catalyst, Chemical transformations, Combinatorial chemistry, Drugs, Exercises, Fluorine, Heteroaromatic compounds, Medicinal chemistry, Molecules, Reaction conditions, Reagents, Retrosynthetic analysis, Substances, Synthesis, Synthons.

INTRODUCTION

Fluorine chemistry is an important area that made a significant impact on drug discovery development, which can be seen by a large number of drugs in the market containing this chemical element (Fig. 1) [1, 2].


The success of drugs that contain fluorine atoms in its structures and also in other areas, such as materials, agrochemicals, and radiotracers for positron emission tomography (PET), is due to its chemical proprieties compared to the other elements (Table 1) [3]. The C-F bond (105 Kcal/mol) is stronger than the C-H bond (98 Kcal/mol), providing several advantages on drug discovery. Some of these advantages are better metabolic stability, avoiding undesired metabolizations, and improving the bioavailability of the drugs. The size of the fluorine atom (van der Waals radius 1.47 Å) is close to oxygen (1.52 Å) and hydrogen (1.2 Å) being able to mimic the last one in medicinal chemistry [3]. A fluorine atom is the most electronegative element (4 Pauling units) of the periodic table. Its presence in a molecule provides the ability to modify a series of parameters. Some of these parameters are conformational changes, variations of pKa, formation of hydrogen bonds, and the increase and decrease in lipophilicity.

Marcus Vinícius Nora de Souza All rights reserved-© 2020 Bentham Science Publishers These characteristics can change both the pharmacodynamics and pharmacokinetic parameters of a bioactive compound (Scheme 1) [4].

Fig. (1). Drugs that contain fluorine atoms in its structures.

	Н	С	N	О	F	Cl
Bond strength to C (Kcal/mol)	98	83	70	84	105	77
Bond length to C (Å)	1.09	1.53	1.47	1.43	1.39	1.76
Van der Waals radius (Å)	1.2	1.7	1.55	1.52	1.47	1.75
Electronegativity (Pauling units)	2.1	2.5	3	3.5	4	3

Table 1. Comparison of the fluorine atom with other atoms.

Scheme 1. The versatility of the fluorine atom in medicinal chemistry.

FLUORINATION REAGENTS

Due to the importance of fluorine atoms in organic molecules, different reagents have been developed. The classification of these reagents is based on nucleophilic and electrophilic fluorination, which are for the introduction of fluorine atom (-F), difluoromethyl (-CF₂H), and trifluoromethyl (-CF₃) group. Below are the most commonly used reagents for fluorination.

Nucleophilic Fluorination for the Introduction of Fluorine Atom NaF, KF, HF, and Bu₄NF

For fluorination, using fluoride ion (F-) as a nucleophile, the commonly used reagents are sodium fluoride (NaF), potassium fluoride (KF), hydrogen fluoride

LIST OF JOURNALS USED AND THEIR RESPECTIVE ABBREVIATIONS

Acta Chemica Scandinavica (Acta Chem. Scand.)

Angewandte Chemie, International Edition in English (Angew. Chem. Int. Ed.)

Archiv der Pharmazie (Arch. Pharm.)

Arkivoc (Arkivoc)

Beilstein Journal of Organic Chemistry (Beilstein J. Org. Chem.)

Bioorganic & Medicinal Chemistry (Bioorg. Med. Chem.)

Bioorganic & Medicinal Chemistry Letters (Bioorg. Med. Chem. Lett.)

Bioscience, Biotechnology, and Biochemistry (Biosci. Biotechnol. Biochem.)

Biotechnology and Food Science (Biotechnol. Food. Sci.)

British Journal of Pharmacology (Br. J. Pharmacol.)

Bulletin of the Chemical Society of Japan (Bull. Chem. Soc. Jpn.)

Bulletin of the Korean Chemical Society (Bull. Korean Chem. Soc.)

Catalysis Letters (Catal. Lett.)

Chemical Biology & Drug Design (Chem. Biol. Drug Des.)

Chemical and Pharmaceutical Bulletin (Chem. Pharm. Bull.)

Chemical Communications (Chem. Commun.)

Chemical Research in Toxicology (Chem. Res. Toxicol.)

Chemical Society Reviews (Chem. Soc. Rev.)

Chemistry: A European Journal (Chem. Eur. J.)

Chemistry Letters (Chem. Lett.)

Chinese Chemical Letters (Chin. Chem. Lett.)

Current Topics in Medicinal Chemistry (Curr. Top. Med. Chem.)

Drug Metabolism and Disposition (Drug Metab. Dispos.)

European Journal of Chemistry (Eur. J. Chem.)

European Journal of Medicinal Chemistry (Eur. J. Med. Chem.)

European Journal of Organic Chemistry (Eur. J. Org. Chem.)

Green Chemistry Letters and Reviews (Green Chem. Lett. Rev.)

Helvetica Chimica Acta (Helv. Chim. Acta.)

Heterocycle Communications (Heterocycl. Commun.)

Journal of Agricultural and Food Chemistry (J. Agric. Food Chem.)

Journal of American Chemical Society (J. Am. Chem. Soc.)

The Journal of Antibiotics (J. Antibiot.)

Journal of Antimicrobial and Chemotherapy (J. Antimicrob. Chemother.)

Journal of Carbohydrate Chemistry (J. Carbohydr. Chem.)

Journal of Cell Biology (J. Cell. Biol.)

Journal of Chemical Society, Chemical Communication (J. Chem. Soc., Chem.

Commun.)

Journal of Enzyme Inhibition and Medicinal Chemistry (J. Enzyme Inhib. Med. Chem.)

Journal of Heterocyclic Chemistry (J. Heterocycl. Chem.)

Journal of Medicinal Chemistry (J. Med. Chem.)

Journal of Nuclear Medicine (J. Nucl. Med.)

Journal of Organic Chemistry (J. Org. Chem.)

Molecular Pharmacology (Mol. Pharmacol.)

Molecules (não possui abreviação)

Organic & Biomolecular Chemistry (Org. Biol. Chem.)

Organic Communications (Org. Commun.)

Organic Letters (Org. Lett.)

Organic Process Research & Developmen (Org. Process Res. Dev.)

Pharmaceutical Research (Pharmaceut. Res.)

Química Nova (Quim. Nova)

RSC Advances (RSC Adv.)

Russian Chemical Reviews (Russ. Chem. Rev.)

Synlett (não possui abreviação)

Synthesis (não possui abreviação)

Synthetic Communications (Synth. Commun.)

Tetrahedron (não possui abreviação)

Tetrahedron: Asymmetry (Tetrahedron: Asymm.)

Tetrahedron Letters (Tetrahedron Lett.)

LIST OF ABBREVIATIONS

Ac Acetyl

AD-mix-α It is a commercially available mixture of the reagents used in the asymmetric

dihydroxylation of Sharpless = $K_2OsO_2(OH)_4$ (cat.); K_2CO_3 ; $K_3Fe(CN)_6$ and (DHQ) 2-PHAL (cat.) = Substance containing two moles of hydroquinine and one mole of

phthalazine

AD-mix-β It is a commercially available mixture of the reagents used in the asymmetric

dihydroxylation of Sharpless = $K_2OsO_2(OH)_4$ (cat.); K_2CO_3 ; $K_3Fe(CN)_6$ and (DHQ) 2-PHAL (cat.) = Substance containing two moles of hydroquinine and one mole of

phthalazine

AIBN Azobisisobutyronitrile
DNA Deoxyribonucleic acid

LA Lewis acid

PTSA Para-toluenesulfonic acid

aq. Aqueousheat. Heating

Ar Aromatic substance
RNA Ribonucleic acid
TFA Trifluoroacetic acid

AZT 3'-azido-2', 3'-dideoxythymidine

BAIB Bis(acetoxy)iodobenzene

Bn Benzyl

Boc, O Tert-butoxycarbonyl

Boc, O Di-tert-butyl dicarbonate

Bu Butyl
Bz Benzoyl
C Catalyst
Cap. Chapter
cat. Catalytic

Cbz Benzyloxycarbonyl

CDI 1,1'-carbonyldiimidazole

MIC Minimal Inhibitory Concentration

1,5-COD 1,5-cyclooctadiene

conc. Concentrate

CSA Camphorsulfonic acid

Cy Cicloexyl d Day or days

DABCO 1,4-diazabicyclo [2.2.2] octane

Dibenzylideneacetone dba

DBU 1,8-diazabicyclo [5.4.0] undec-7-ene

DCC Dicyclohexylcarbodiimide

DCM Dichloromethane

DCU N, N'-dicyclohexylurea

DDQ Dicyodichloro-p-benzoquinone

DEAD Diethyl azodicarboxylate

DET Diethyl tartrate

DMG Direct metalation group

DHP Dihydropyran

(DHQ), and Substance containing two moles of hydroquinine and one mole of phthalazine.

(DHQD)₂PHAL

DIAD Diisopropyl azodicarboxylate DIBAL-H Diisobutylaluminium hydride

DiPAMP (1S, 2S)-(+)-Bisethane [(2-methoxyphenyl) phenylphosphine]

DIPEA, DIEA or

Hunig's Base

N, N-diisopropylethylamine

DIPT Diisopropyl tartrate

DMA-DMF N,N-dimethylformamide dimethylacetal

DMAP ou 4-DMAP 4-(dimethylamino)pyridine **DMF** N,N-dimethylformamide **DMP** Dess-Martin Periodinane 2,2-DMP 2,2-dimethoxypropane **DMSO** Dimethyl sulfoxide

1,1'-bis(diphenylphosphino)ferrocene dppf

 \mathbf{E}^{+} Electrophile

EDC 1-ethyl-3-(3-dimethylaminopropylcarbodiimide)

 $\mathbf{E}\mathbf{E}$ Ethoxyethyl Equivalent eq. Et Ethyl

FDA Food and Drug Administration

232 Exercises in Organic Synthesis Based on Synthetic Drugs

Marcus Vinícius Nora de Souza

Fmoc 9-Fluorenylmethoxycarbonyl

PG Protective group

h Hour ou hours

HATU 2-(1-*H*-7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate

HMDS HexamethyldisilazaneHMPA Hexamethylphosphoramide

hv Light

HOBt Hydroxybenzotriazole

HIV Human immunodeficiency virus

i-Pr Isopropyl

IBX 2-iodoxybenzoic acid

L Ligant

LDA N, N-diisopropylamide
LDL Low-density lipoprotein

L-DOPA
L-3,4-dihydroxyphenylalanine
LHA
Lithium aluminum hydride
LHMDS
Lithium hexamethyldisilylamide
m-CPBA
Meta-chloroperbenzoic acid
MCR
Multicomponente reaction
MEM
2-Methoxyethoxymethyl ether

MO Microwave

MOM Methoxymethyl ether
MTM Methylthiomethyl ether
Ms Methanesulfonyl (mesylate)

NBS N-bromosuccinimide
NCS N-chlorosuccinimide
NIS N-iodosuccinimide

nm nanometer

NMP *N*-methylpyrrolidone

NMO *N*-methylmorpholine-*N*-oxide

NNRTI Non-Nucleoside Reverse Transcriptase Inhibitor

Nu Nucleophile (O); [O] ou Oxi. Oxidation

PMB Para-methoxybenzyl

PCC Pyridinium Chlorochromate

PCy Cyclohexylphosphine **PDC** Pyridinium dichromate

Page pg. Ph Phenyl Pyridine Py Piv Pivaloyl

PMHS Polymethylhydrosiloxane **PPA** Polyphosphoric acid

Pr Propyl

 R^n (n = 0, 1, 2, 3...) Different substituents

Red-Al Bis(2-methoxyethoxy)aluminum **RSA** Relationship Structure Activity

rt Room temperature

NMR Nuclear magnetic resonance

SEM β-(trimethylsilyl)ethoxymethyl ether $S_N 2$ Bimolecular nucleophilic substitution $S_N i$ Substitution Nucleophilic internal

SPhos 2-dicyclohexylphosphino-2,6-dimethoxybiphenyl

TBAI Tetrabutylammonium iodide **TBDPS** Terc-butyldiphenylsilyl

TBAF Tetrabutylammonium fluoride **TBHP** *Tert*-butyl hydroperoxide TBS ou TBDMS Tert-butyldimethylsilyl

TEA Triethylamine

TEMPO 2,2,6,6-tetramethyl-piperidin-1-yl

TES Triethylsilyl

Tf Trifluoromethanesulfonate, triflate

THF Tetrahydrofuran THP Tetrahydropyran TIPS Triisopropylsilyl

TMEDA *N,N,N',N'*-tetramethylethylenediamine

TMS Trimethylsilyl

TPAP Tetrapropylammonium perruthenate

Tr Trityl Ts Tosyl

234 Exercises in Organic Synthesis Based on Synthetic Drugs Marcus Vinícius Nora de Souza

US ou))) Ultrasound

X Halogen or a good leaving group

Xantphos Bis (diphenylphosphino) -9,9-dimethylxanthene

XPhos 2-dicyclohexylphosphino-2',4',6'-triisopropylbipheny

SUBJECT INDEX

A	Ankylosing spondylitis 219
	Antidepressant 23
Acid chloride 11, 48, 61, 88, 89, 90, 91	Antiepileptic rufinamide 199
Acidic condition 89	Anti-HIV drug 3
Acid medium HCl 68, 69	Anti-inflammatory pifoxime 23
strong 69	Aromatic 10, 15, 91, 110, 114, 219
Agrochemicals 209	symmetrical 15
Alcohol function 87	Aromatic nucleophilic substitution reaction
Alcohols 10, 17, 31, 33, 58, 81, 91, 104, 105,	71, 91
212	Aromatic systems 82
benzyl 10, 81	Aromatization 116
formed 104, 105	Ascorbate sodium 205
transform 212	Asymmetric epoxidation 69
Aldehyde(s) 1, 4, 6, 31, 32, 33, 133, 134, 150,	Atomic fluorine, source of 215
176, 177, 181	
carbons 32	В
function 32, 33	
Aliphatic carboxylic acids 215	Bacterial DNA 216
Alkylation reaction 91	Barbituric acid 7
Alkyl 92, 212, 215	anxiolytic 7
fluorides 212	Benzodiazepines 169
halides 92	Benzophenone 30
radicals 215	Benzyl 2,6-difluorobromide 199
Allyl 105	Benzylamine 45
bromide 105	Benzyl 10, 89
magnesium bromide 105	bromide 10
Amide 88, 89, 90	carbons 89
concomitant 88	Benzylic carbon 89
formation 89, 90	Bicyclic system 73
Amine function 88, 90	Bioactive substances 1, 6, 48, 133, 149
chemical 90	synthetic 48
Amines 90, 91, 176	Biological activity 216
formed 91	Bone metastasis 218
obtaining 90	Breast cancer 150
primary 176	
Amino group regenerates 5	C
Ammonia 33, 68, 71	
excess 71	Carbon-carbon bond formation 31, 61
Analysis 2, 6, 17	Carbonyl 30, 68, 71, 89
rational retrosynthetic 17	addition reaction 88
retroactive 2	Carboxylic acid 31, 48, 61, 71, 85, 88 89, 90,
retrossynthetic 6	150, 164, 176, 181

Marcus Vinícius Nora de Souza All rights reserved-© 2020 Bentham Science Publishers

Dicyclohexyl carbodiimide 168

, , , , , , , , , , , , , , , , , , ,	
Catalytic cycle 198, 199	Diethylaminosulfur trifluoride (DAST) 212,
Cell penetration 216	213
Chemical 2, 4, 47, 61, 69, 70, 91, 112, 114,	Difunctionalized molecule 5
133, 149, 150, 151, 164, 209, 226	Dihydroxylation 197
amide function 91	
	Diisopropyl tartrate 69
element 209, 226	DMF, anhydrous 59
hydrazine 133, 149	Drug celecoxib 219
reactions 164, 226	Drug discovery 196, 197, 208, 209, 211, 213,
synthesis 2	215, 217, 219, 221, 223, 225
transformations 4, 47, 61, 69, 70, 112, 114,	Drug nevirapine 3, 4
133, 149, 150, 151	anti-HIV 4
Chemistry 1, 6, 13, 16, 168, 197, 208	Drugs, ciprofloxacin 216
green 16, 197, 208	Drug 5, 218
modern organic 1	sitagliptin 218
	sulfanilamide 5
peptide 168	surfammanique 3
Chlorides 23, 28, 62, 69	_
benzoyl 28	${f E}$
butylmagnesium 62	
chloroacetyl 23, 69	Electronegative element 209
Chlorine 59, 69, 71, 82, 85, 104, 110	Electronegativity 211
atoms 71, 85, 110	
exchange 59	Electrophilic fluorination reagents 214
Chloroacetic acid 67	Enzyme 150, 216, 218
Chlorosulfonic acid 85	essential 150
Chronic fatigue 61	essential cysteine protease 218
<u> </u>	Enzyme dipeptidyl peptidase 217
Claisen-Schmidt reaction 32	Epoxides 1, 6, 16, 17, 67, 197
Click chemistry reaction 199, 204	identification of 1, 6
Compounds 22, 114, 155, 165, 166, 171, 175,	Ester formation 88
176, 196, 204, 220	Ethanol, anhydrous 58
chemical process building libraries of 165,	Editation, aimy droug 50
175	E
Copper-catalyzed azidealkyne cycloadditions	\mathbf{F}
198	
Corrosion 133	Fluoride ion 211
Coupling reaction 88	Fluorination 211, 212, 213, 214, 215
Cyclic 14, 92	electrophilic 211, 213, 214, 215
	eletrophilic 213, 214
anhydride 14	reagents 211
systems 92	Fluorine 209, 214, 215, 216, 219
D	generating 215
	Fluorine atoms 134, 209, 210, 211, 213, 216,
Decarboxylation 88, 91, 105	217, 218, 219
•	containing 209
Decarboxylative fluorination 215, 216	introduction of 211, 213
developed silver-catalyzed 215	Fluorobenzene 104, 105
Deprotection reaction 89	Fluoroquinolone 216, 217
Diabetes mellitus type 217	Food and drug administration 3
Diastereoisomers 68, 81, 91	Formic acid 88
Dibromination 89	Fuming sulfuric acid 80
Dicyclohexyl carbodiimide 168	i diffing suffuric acid oo

Nucleophilic substitution reaction, second-

order 10

cyclization reaction 116

Friedel-Crafts reaction 86

Isocyanides 176, 181

G	L
Gabriel synthesis 90 Grignard 61, 62, 87 reaction 87 reagent 61, 62	Lipophilicity 209, 226 Lithium aluminum hydride 69 Logic of chemical synthesis 2
reagent 01, 02	M
Н	
Halogenolysis 68, 110, 112 Halogenolysis reaction 59, 69 Heteroaromatic 109, 114, 116, 133, 150, 152, 156, 164, 165, 169, 176, 197, 209 compounds 114, 133, 150, 165, 176, 197, 209 nuclei 116, 150, 152, 156, 164, 169, 197 system 109	Malononitrile 152, 181 Mannich 84, 180, 189 reaction 84, 180 type reaction 189 Metachloroperbenzoic acid 68 Methylation reaction 79 Mitsunobu reaction 103, 112 MsCl regioselective transformation 69
Heteroatom-stabilized radicals 215	N
Homogenization 109 Huisgen's reaction 198 Hydantoins 170 Hydrazine derivatives 133 Hydrazone formation 134 Hydrazones 133, 197 respective 133 Hydrochloride 90, 168 carbodiimide 168 Hydrogen 86, 104, 209 Hydrogenation 68, 76 Hydrogen 67, 105, 209, 211, 212, 226 bonds 209, 226 fluoride 211, 212 peroxide 67, 105 Hydroxylation 218 Hypoglycemia 150	Nalidixic acid 216 Nitrile function 89, 91, 107, 110 chemical 91, 110 Nitriles, transforming 89 Non-nucleoside reverse transcriptase inhibitor (NNRTI) 3, 150 Non-steroidal anti-inflammatory drug (NSAID) 219 Non-toxic waste 197 Nuclei 33, 48, 91, 116, 117, 149, 150, 170, 121, 216 fluoroquinolone 216 fused 48 pyridine 91 pyrimidine 170 pyrimidinone 121
I	quinazoline 33 quinolone 216 thiazole 116
Indole nucleus 71 Inhibitor 3, 150, 218 non-nucleoside reverse transcriptase 3 phosphodiesterase 150 selective serotonin reuptake 150 Intramolecular 71, 89, 116 aldol condensation type reaction 89	Nucleophilic 2, 3, 7, 10, 12, 14, 19, 30, 86, 168, 179, 211, 213, 215 addition 30, 86, 179 aromatic substitution reaction 10 attack 12, 91 fluorination 211, 213 trifluoromethylation 213
cyclization 71	Nucleophilicity 13

Reverse transcriptase 150 Rheumatoid arthritis 219

О	Ruppert-Prakash reagent 213
One-pot reaction 176	S
Organic synthesis 1, 4, 6, 16, 31, 45, 46, 164,	
165, 175, 196, 208	Salt 89, 90, 92
development of 1, 6, 45	potassium 90
learning of 6, 46	quaternary amine 89
Ortho metalation reaction 59	Saponification reaction 59, 88, 110
Osteoarthritis 219	Schiff base 179 obtained 179
Osteoporosis 218	Serine protease inhibitors 171
n	SN2 reaction 91
P	Sodium 68, 105, 205, 211
	ascorbate 205
Passerini reaction 176, 178, 181	borohydride 68
Pharmaceutical industry 166	ethoxide 105
Pharmacodynamics 210, 226	fluoride 211
Phenylhydrazine 133	methanolate 105
Phenylhydrazones 133	Solid support synthesis 166, 167
Phthalimide 80, 90, 92, 93	Stability 209, 218
potassium 80, 93 Piperazine 22, 23	better metabolic 209
disubstituted 23	Strecker 176, 177
importance of 22	adolph 176
Positron emission tomography (PET) 209	reaction 177
Products 1, 2, 12, 13, 110, 166, 167, 182	Structure 21, 22, 70, 71, 112, 155, 156, 169,
complex natural 2	172, 209, 210, 216, 217, 218, 220
natural 1	activity relationship 216, 217
Propionic acid 199, 200	Substances 1, 2, 6, 7, 9, 11, 12, 13, 14, 15, 16,
Protection, regioselective 205	21, 22, 32, 33, 114, 133, 197
Psychoactive drugs 61, 169	carbonylated 33
Purification 166	cyclic 9 dicarbonyl 14
Pyrrolidine reagent 61	saturated heterocyclic 21
	versatile 16
Q	Substance urea 11
	Substituted amides 92
Quaternary ammonium salts 212	Substitutions, nucleophilic aromatic 85
	Succinic anhydride 14, 81
R	substituted 14
	Succinimide 91
Reaction mechanism 168	Sulfonamide 71, 87, 91, 171
Reduction 68, 80, 85, 88, 91, 104, 105, 107,	derivatives 171
110, 112	Sulfonation reaction 85
carbonyl 91	Suzuki coupling 59
process 112	Synthesis 1, 2, 3, 5, 6, 7, 10, 11, 17, 47, 70,
reaction 104, 110	92, 165, 169, 176, 200
simultaneous 107	combinatorial 169
Retrosynthesis 1, 6, 32, 45, 47, 70, 91, 112	Synthetic route 6, 10, 15, 47, 69

T

```
Tertiary carbocation, stable 106
Thermolysis 215
Thioisocyanates 15
Thiosemicarbazide 133
Thiosemicarbazones 133
Thioureas 15, 197
Togni reagent 214
Transformation(s) 4, 15, 30, 48, 70, 71, 92,
     200, 212
 classical chemical 70
  of alcohols 212
```

\mathbf{U}

Ugi 176, 179, 188 multicomponent reaction 188 reaction 176, 179 Urea 7, 15, 168, 181, 197 obtaining 15 nitrogen 15 water-soluble 168 Uric acid levels, high 150

\mathbf{V}

Vitamin B12 2

\mathbf{W}

Water loss system 116 Wittig 60 Horner reaction 60 reaction 60

Marcus Vinícius Nora de Souza

Dr. Marcus Vinícius Nora de Souza has graduated in chemistry from the Federal University of Juiz de Fora, MG Brazil. He has received his master's degree in chemistry from the Federal University of Minas Gerais (UFMG), MG Brazil and a Ph.D. degree in chemistry from the Universite de Paris XI (Paris-Sud), France, with an internship at the Faculty of Pharmacy, University of Barcelona, Spain. He has also completed three post-doctorates in organic synthesis and medicinal chemistry from the University of Florida, USA, Federal University of Juiz de Fora, MG Brazil, and Multinational Pharmaceutical Industry Genzyme, Boston, USA. He was also a visiting professor at the National Health Institute (NIH), Washington, USA. He is currently working at Fiocruz (Oswaldo Cruz Foundation), Rio de Janeiro, Brazil as a leader of the research group SSCDT (Synthesis of Substances against Tropical Diseases).

ORCID: https://orcid.org/0000-0003-1566-8110

Publons: W-5002-2019