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PREFACE 

 

The main object of this book is to discuss the generalized comparative growth 

analysis of entire functions of n-complex variables, which covers the important 

branch of complex analysis, especially the theory of analytic functions of several 

variables. Our book contains eight chapters. 

Chapter 1 contains the introductory parts and some preliminary definitions. In 

chapter 2, we have developed some results related to generalized Gol’dberg order 

(α, β) and generalized Gol’dberg type (α, β) of entire functions of several complex 

variables. In chapter 3, we have proved some results about generalized relative 

Gol’dbergorder (α, β) of entire functions of several complex variables. In chapter 

4, some inequalities using generalized relative Gol’dberg order (α, β) and 

generalized relative Gol’dberg lower order (α, β) of entire functions of several 

complex variables are established. In chapter 5, we have improved some relation 

connecting to generalized relative Gol’dberg type (α, β) and generalized relative 

Gol’dberg weak type (α, β) of entire functions of several complex variables. In 

chapter 6, we have derived some inequalities using generalized relative Gol’dberg 

type (α, β) and generalized relative Gol’dberg weak type (α, β) of entire functions 

of several complex variables. In chapter 7, we have discussed generalized relative 

Gol’dberg order (α, β) and generalized relative Gol’dberg type (α, β) based 

growth measure of entire functions of several complex variables. And finally, in 

chapter 8, we mainly focus on sum and product theorems depending on the 

generalized relative Gol’dberg order (α, β) and generalized relative Gol’dberg 

type (α, β). 

To improve our results, we took help from many publications of different authors 

and we are thankful to them and cited their publications in the bibliography. We 

think this book will be very helpful for research scholars and students. We are 

also thankful to the Bentham Science publishers to give us the opportunity to 

publish this monograph. 
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Chapter 1

Introduction, de�nitions and
notations

Abstract: In this chapter, we discussed about the introductory parts connected to the
entire functions of n complex variables. In this connection, we add some preliminary de�n-
itions related to di¤erent Gol�dberg growth indicators such as Gol�dberg order, Gol�dberg
type etc.
Keywords: Entire functions, several complex variables, di¤erent growth indicators.
Mathematics Subject Classi�cation (2010) : 32A15.

1.1 Introduction, de�nitions and notations.

The present chapter consists of some preliminary de�nitions in connection to the entire
function f(z) of n complex variables. Let Cn and Rn respectively denote the complex and
real n-space. Also let us indicate the point (z1; z2; � � �; zn); (m1;m2; � � �;mn) of Cn or In by
their corresponding unsu¢ xed symbols z;m respectively where I denotes the set of non-
negative integers. The modulus of z, denoted by jzj, is de�ned as jzj = (jz1j2+���+jznj2)

1
2 .

If the coordinates of the vectorm are non-negative integers, then zm will denote zm1
1 ���zmn

n

and kmk = m1 + � � �+mn .
If D � Cn (Cn denote the n-dimensional complex space) be an arbitrary bounded

complex n-circular domain with center at the origin of coordinates then for any entire
function f(z) of n complex variables and R > 0; Mf;D (R) may be de�ne as Mf;D(R) =
sup

z 2 DR

jf(z)j where a point z 2 DR if and only if z
R
2 D: If f(z) is non-constant, then

Mf;D(R) is strictly increasing and its inverse M�1
f;D : (jf (0)j ;1) ! (0;1) exists such

that lim
R!1

M�1
f;D(R) =1:

Considering this, the Gol�dberg order and Gol�dberg lower order (cf. [1, 2]) of
an entire function f(z) with respect to any bounded complete n-circular domain D with
center at all the origin Cn are given by

�D(f)
�D(f)

= lim
R!1

sup
inf

log logMf;D(R)

logR
:
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It is well known that �D(f) is independent of the choice of the domain D, and
therefore we write �(f) instead of �D(f) (respectively �(f) instead of �D(f)) (cf. [1, 2]).

For any bounded complete n-circular domain D; an entire function of n complex
variables for which Gol�dberg order and Gol�dberg lower order are the same is said to be
of regular growth. Functions which are not of regular growth are said to be of irregular
growth.

To compare the relative growth of two entire functions of n complex variables
having same non-zero �nite Gol�dberg order, one may introduce the de�nition of Gol�dberg
type and Gol�dberg lower type in the following manner:

De�nition 1.1.1 (cf. [1, 2]) The Gol�dberg type and Gol�dberg lower type respectively
denoted by �D(f) and �D(f) of an entire function f(z) of n complex variables with respect
to any bounded complete n-circular domain D with center at all the origin Cn are de�ned
as follows:

�D(f)
�D(f)

= lim
R!1

sup
inf

logMf;D(R)

(R)�(f)
; 0 < �(f) <1:

Analogously to determine the relative growth of two entire functions of n com-
plex variables having same non-zero �nite Gol�dberg lower order, one may introduce the
de�nition of Gol�dberg weak type in the following way:

De�nition 1.1.2 The Gol�dberg weak type denoted by �D(f) of an entire function f (z)
of n complex variables with respect to any bounded complete n-circular domain D with
center at all the origin Cn is de�ned as follows:

�D(f) = lim inf
R!1

logMf;D(R)

(R)�(f)
; 0 < �(f) <1:

Also one may de�ne the Gol�dberg upper weak type denoted by �D(f) in the following
manner :

�D(f) = lim sup
R!1

logMf;D(R)

(R)�(f)
; 0 < �(f) <1:

Gol�dberg has shown that [2] Gol�dberg type depends on the domain D: Hence
all the growth indicators de�ne in De�nition 1.1.1 and De�nition 1.1.2 are also depend
on D:

In the sequel the following two notations are used:

log[k]R = log(log[k�1]R) for k = 1; 2; 3; � � � ;
log[0]R = R

and

exp[k]R = exp(exp[k�1]R) for k = 1; 2; 3; � � � ;
exp[0]R = R:

Taking this into account the, one can give the de�nitions of generalized Gol�dberg
order �(l)D (f) and generalized Gol�dberg lower order �

(l)
D (f) in the following way:
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De�nition 1.1.3 The generalized Gol�dberg order �(l)D (f) and generalized Gol�dberg lower
order �(l)D (f) of an entire function f(z) of n complex variables with respect to any bounded
complete n-circular domain D with center at all the origin Cn are de�ned as follows:

�
(l)
D (f)

�
(l)
D (f)

= lim
R!1

sup
inf

log[l]Mf;D (R)

logR
;

where l is any positive integer such that l � 2.

In the line of Gol�dberg (cf. [1, 2]), one can easily verify that �(l)D (f) and �
(l)
D (f)

are independent of the choice of the domain D, and therefore we write �(l)(f) instead of
�
(l)
D (f) and �

(l)(f) instead of �(l)D (f).
This de�nition extended the Gol�dberg order �(f) and Gol�dberg lower order �(f)

of an entire function f (z) of n complex variables with respect to any bounded complete
n-circular domain D since this correspond to the particular case �(2)(f) = �(f) and
�(2)(f) = �(f):

However, an entire function f (z) for which �(l) (f) and �(l) (f) are the same is
called a function of regular generalized Gol�dberg growth. Otherwise, f (z) is said to be
irregular generalized Gol�dberg growth.

The following two de�nitions are the natural consequences of the above study:

De�nition 1.1.4 The generalized Gol�dberg type �[l]f and generalized Gol�dberg lower type
�
[l]
f of an entire function f (z) of n complex variables with respect to any bounded complete
n-circular domain D with center at all the origin Cn are de�ned as

�
(l)
D (f)

�
(l)
D (f)

= lim
R!1

sup
inf

log[l�1]Mf;D(R)

R�(l)(f)
; 0 < �(l)(f) <1;

where l is any positive integer such that l � 2. Moreover, when l = 2 then �(2)D (f) and
�
(2)
D (f) are correspondingly denoted as �D(f) and �D(f):

Similarly, extending the notion of Gol�dberg weak type, one can de�ne generalized
Gol�dberg weak type in the following manner:

De�nition 1.1.5 The generalized Gol�dberg weak type � (l)D (f) for any positive integer l �
2 of an entire function f (z) of n complex variables with respect to any bounded complete
n-circular domain D with center at all the origin Cn having �nite positive generalized
Gol�dberg lower order �(l)(f) are de�ned by

�
(l)
D (f) = lim inf

R!1

log[l�1]Mf;D (R)

R�(l)(f)
; 0 < �(l)(f) <1:

Also one may de�ne the generalized Gol�dberg upper weak type denoted by � (l)D (f) in the
following way:

�
(l)
D (f) = lim sup

R!1

log[l�1]Mf;D (R)

R�(l)(f)
; 0 < �(l)(f) <1:
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Chapter 2

Generalized Gol�dberg order (�; �)
and generalized Gol�dberg type (�; �)
of entire functions of several complex
variables

Abstract: In this chapter, �rst we introduce the de�nitions of generalized Gol�dberg
order (�; �), generalized hyper Gol�dberg order (�; �) generalized logarithmic Gol�dberg
order (�; �); generalized Gol�dberg type (�; �) and generalized Gol�dberg weak type (�; �)
of entire functions of several complex variables and then using these growth indicators,
we discuss of some related growth properties of entire functions of n complex variables,
where �; � are continuous non-negative functions de�ned on (�1;+1).
Keywords: Increasing function, generalized Gol�dberg order (�; �), generalized hy-
per Gol�dberg order (�; �), generalized logarithmic Gol�dberg order (�; �), generalized
Gol�dberg type (�; �), generalized Gol�dberg weak type (�; �).
Mathematics Subject Classi�cation (2010) : 32A15.

2.1 Introduction.

The Gol�dberg order and Gol�dberg type of an entire function f (z) with respect to
any bounded complete n-circular domain D with center at all the origin Cn which are
generally used in computational purpose are classical. Datta et al. [1] de�ned the concept
of (p; q)-th Gol�dberg order of an entire function f (z) for any bounded complete n-circular
domain D with center at all the origin Cn where p and q are any positive integers with
p � q � 1. Extending this notion, here in this chapter we wish to introduce the de�nitions
of generalized Gol�dberg order (�; �) and generalized Gol�dberg type (�; �) of an entire
functions of several complex variables and establish some related growth properties of
entire functions of several complex variables.
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2.2 Preliminary remarks and de�nitions.

Throughout the book we assume L be a class of continuous non-negative functions
� de�ned on (�1;+1) such that � (x) = � (x0) � 0 for x � x0 with � (x) " +1 as
x! +1. For any � 2 L, we say that � 2 L0; if � (cx) = (1 + o(1))� (x) as x0 � x! +1
for each c 2 (0;+1). Clearly, L0 � L.

Further we assume that throughout the book, unless speci�ed later, �; �1; �2; 
; �; �1
and �2 always denote the functions belonging to L0. Now considering this, we introduce
the de�nition of the generalized Gol�dberg order (�; �) and generalized Gol�dberg lower
order (�; �) of an entire function f (z) with respect to any bounded complete n-circular
domain D with center at all the origin Cn which are as follows:

De�nition 2.2.1 The generalized Gol�dberg order (�; �) and generalized Gol�dberg lower
order (�; �) of an entire function f (z) with respect to any bounded complete n-circular
domain D with center at all the origin Cn are de�ned as:

�
(�;�)
D [f ]

�
(�;�)
D [f ]

= lim
R!1

sup
inf

�(Mf;D (R))

� (R)
.

De�nition of (p; q)-th Gol�dberg order is a special case of De�nition 2.2.1 for
� (R) = log[p]R and � (R) = log[q]R.

The function f(z) is said to be of regular generalized Gol�dberg (�; �) growth
when generalized Gol�dberg order (�; �) and generalized Gol�dberg lower order (�; �) of
f(z) are the same. Functions which are not of regular generalized Gol�dberg (�; �) growth
are said to be of irregular generalized Gol�dberg (�; �) growth.

Now in order to re�ne the growth scale namely the generalized Gol�dberg or-
der (�; �), we introduce the de�nitions of another growth indicators, called generalized
Gol�dberg type (�; �) and generalized Gol�dberg lower type (�; �) respectively of an en-
tire function f (z) with respect to any bounded complete n-circular domain D with center
at all the origin Cn which are as follows:

De�nition 2.2.2 The generalized Gol�dberg type (�; �) and generalized Gol�dberg lower
type (�; �) of an entire function f (z) with respect to any bounded complete n-circular
domain D with center at all the origin Cn having �nite positive generalized Gol�dberg
order (�; �)

�
0 < �

(�;�)
D [f ] <1

�
are de�ned as :

�
(�;�)
D [f ]

�
(�;�)
D [f ]

= lim
R!+1

sup
inf

exp(�(Mf;D (R)))

(exp (� (r)))�
(�;�)
D [f ]

.

It is obvious that 0 � �(�;�)D [f ] � �(�;�)D [f ] � 1.

Analogously to determine the relative growth of two entire functions of n com-
plex variables having same non-zero �nite generalized Gol�dberg lower order (�; �), one
may introduce the de�nition of generalized Gol�dberg weak type (�; �) and generalized
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Gol�dberg upper weak type (�; �) of an entire function f (z) with respect to any bounded
complete n-circular domain D with center at all the origin Cn having �nite positive gen-
eralized Gol�dberg lower order (�; �) ; �(�;�)D [f ] in the following way:

De�nition 2.2.3 The generalized Gol�dberg upper weak type (�; �) denoted by � (�;�)D [f ]

and generalized Gol�dberg weak type (�; �) denoted by � (�;�)D [f ] of an entire function f (z)
with respect to any bounded complete n-circular domain D with center at all the origin
Cn having �nite positive generalized Gol�dberg lower order (�; �)

�
0 < �

(�;�)
D [f ] <1

�
are

de�ned as :
�
(�;�)
D [f ]

�
(�;�)
D [f ]

= lim
R!+1

sup
inf

exp(�(Mf;D (R)))

(exp (� (r)))�
(�;�)
D [f ]

.

It is obvious that 0 � � (�;�)D [f ] � � (�;�)D [f ] � 1.

Remark 2.2.1 As Gol�dberg has shown that (see [2]) Gol�dberg type depends on the do-
main D, so in general all the growth indicators de�ned in De�nition 2.2.2 and De�nition
2.2.3 also depend on D.

Now one may give the following de�nitions of generalized hyper Gol�dberg order
(�; �) and generalized logarithmic Gol�dberg order (�; �) of an entire function f (z) with
respect to any bounded complete n-circular domain D with center at all the origin Cn in
the following way:

De�nition 2.2.4 The generalized hyper Gol�dberg order (�; �) and generalized hyper
Gol�dberg lower order (�; �) of an entire function f (z) with respect to any bounded com-
plete n-circular domain D with center at all the origin Cn are de�ned as:

�
(�;�)
D [f ]

�
(�;�)

D [f ]
= lim

R!1

sup
inf

�(log(Mf;D (R)))

� (R)
.

De�nition 2.2.5 The generalized logarithmic Gol�dberg order (�; �) and generalized loga-
rithmic Gol�dberg lower order (�; �) of an entire function f (z) with respect to any bounded
complete n-circular domain D with center at all the origin Cn are de�ned as:

�(�;�)
D

[f ]

�
(�;�)
D [f ]

= lim
R!1

sup
inf

�(Mf;D (R))

� (logR)
.

2.3 Main Results.

In this section we state the main results of this chapter.

Theorem 2.3.1 Let f (z) be any entire function of n complex variables. Then generalized
Gol�dberg order (�; �) and generalized Gol�dberg lower order (�; �) of f (z) are independent
of the choice of the domain D.
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Chapter 3

Generalized relative Gol�dberg order
(�; �) of entire functions of several
complex variables

Abstract: The aim of the chapter is to introduce the concepts of generalized relative
Gol�dberg order (�; �); generalized relative hyper Gol�dberg order (�; �), and generalized
relative logarithmic Gol�dberg order (�; �) of an entire function of several complex vari-
ables with respect to another entire function of several complex variables, where �; � are
continuous non-negative functions de�ned on (�1;+1). Then we discuss some growth
analysis of entire functions of several complex variables. Also we established some integral
representations of the above growth indicators.
Keywords: Entire functions of several complex variables, increasing function, Gener-
alized relative Gol�dberg order (�; �); generalized relative hyper Gol�dberg order (�; �),
generalized relative logarithmic Gol�dberg order (�; �), generalized relative logarithmic
Gol�dberg lower order (�; �):
Mathematics Subject Classi�cation (2010) : 32A15.

3.1 Introduction.

The Gol�dberg order and Gol�dberg type of an entire function f (z) with respect
to any bounded complete n-circular domain D with center at all the origin Cn which
are generally used in computational purpose are classical. Mondal et al. [1] de�ned the
concept of relative Gol�dberg order between two entire functions f (z) and g(z) for any
bounded complete n-circular domain D with center at all the origin Cn. Extending this
notion, here in this chapter we wish to introduce the de�nition of generalized relative
Gol�dberg order (�; �) and generalized relative Gol�dberg lower order (�; �) between two
entire functions of several complex variables and establish some related growth properties
with their integral representations.
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3.2 Preliminary remarks and de�nitions.

First we introduce the de�nitions of the generalized relative Gol�dberg order (�; �)
and generalized relative Gol�dberg lower order (�; �) of an entire function in Cn with
respect to another entire function of several variables in the following way:

De�nition 3.2.1 Let f (z) and g (z) be any two entire functions of n complex variables.
The generalized relative Gol�dberg order (�; �) of f (z) with respect to g (z) is de�ned by:

�
(�;�)
D [f ]g = lim sup

R!1

�(M�1
g;D (Mf;D (R)))

� (R)
:

De�nition 3.2.2 Let f (z) and g (z) be any two entire functions of n complex variables.
The growth indicator �(�;�)D [f ]g is alternatively de�ned as : The integral

1Z
R0

exp(�(M�1
g;D (Mf;D (R))))

(exp � (R))k+1
dR (R0 > 0)

converges for k > �(�;�)D [f ]g and diverges for k < �
(�;�)
D [f ]g.

De�nition 3.2.3 Let f (z) and g (z) be any two entire functions of n complex variables.
The generalized relative Gol�dberg lower order (�; �) of f (z) with respect to g (z) is de�ned
as:

�
(�;�)
D [f ]g = lim infR!1

�(M�1
g;D (Mf;D (R)))

� (R)
:

De�nition 3.2.4 Let f (z) and g (z) be any two entire functions of n complex variables.
The growth indicator �(�;�)D [f ]g is alternatively de�ned as : The integral

1Z
R0

exp(�(M�1
g;D (Mf;D (R))))

(exp � (R))k+1
dR (R0 > 0)

converges for k > �(�;�)D [f ]g and diverges for k < �
(�;�)
D [f ]g.

An entire function f (z) of n complex variables for which �(�;�)D [f ]g and �
(�;�)
D [f ]g

are the same is called a function of regular generalized relative Gol�dberg (�; �) growth
with respect to an entire function g (z) of n complex variables. Otherwise, f (z) is said to
be irregular generalized relative Gol�dberg (�; �) growth with respect to g (z).

Now a question may arise about the equivalence of the de�nitions of generalized
relative Gol�dberg order (�; �) and generalized relative Gol�dberg lower order (�; �) with
their integral representations. In the next section we would like to establish such equiv-
alence of De�nition 3.2.1 and De�nition 3.2.3 with De�nition 3.2.2 and De�nition 3.2.4
respectively and also investigate some growth properties related to generalized relative
Gol�dberg order (�; �) and generalized relative Gol�dberg lower order (�; �) of an entire
functions of n complex variables with respect to another entire function of n complex
variables.
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3.3 Lemma.

In this section we present a lemma which will be needed in the sequel.

Lemma 3.3.1 Let the integral
1R
R0

exp(�(M�1
g;D(Mf;D(R))))

(exp�(R))k+1
dR (R0 > 0) converges for 0 < k <

1: Then

lim
R!1

exp(�(M�1
g;D (Mf;D (R))))

(exp � (R))k
= 0:

Proof. Since the integral
1R
R0

exp(�(M�1
g;D(Mf;D(R))))

(exp�(R))k+1
dR is convergent for 0 < k <1; given "

(> 0) there exists a number < = < (") such that

1Z
R0

exp(�(M�1
g;D (Mf;D (R))))

(exp � (R))k+1
dR < " for R0 > <:

i.e., for R0 > <;
R0+RZ
R0

exp(�(M�1
g;D (Mf;D (R))))

(exp � (R))k+1
dR < ":

Since exp(�(M�1
g;D (Mf;D (R)))) is an increasing function of R; so

R0+RZ
R0

exp(�(M�1
g;D (Mf;D (R))))

(exp � (R))k+1
dR �

exp(�(M�1
g;D (Mf;D (R))))

(exp � (R0))k+1
� (exp � (R0)

i.e., for all large values of R,

R0+RZ
R0

exp(�(M�1
g;D (Mf;D (R))))

(exp � (R))k+1
dR �

exp(�(M�1
g;D (Mf;D (R))))

(exp � (R0))k

i:e:;
exp(�(M�1

g;D (Mf;D (R))))

(exp � (R0))k
< " for R0 > <;

from which it follows that

lim
R!1

exp(�(M�1
g;D (Mf;D (R))))

(exp � (R))k
= 0:

This proves the lemma.
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Chapter 4

Some inequalities using generalized
relative Gol�dberg order (�; �) and
generalized relative Gol�dberg lower
order (�; �) of entire functions of
several complex variables

Abstract: In this chapter, Some inequalities using generalized Gol�dberg order (�; �),
generalized Gol�dberg lower order (�; �), generalized relative Gol�dberg order (�; �) and
generalized relative Gol�dberg lower order (�; �) of entire functions of several complex
variables are established, where �; � are continuous non-negative functions de�ned on
(�1;+1).
Keywords: Entire function, several complex variables, generalized Gol�dberg order
(�; �), generalized relative Gol�dberg order (�; �); increasing function:
Mathematics Subject Classi�cation (2010) : 32A15.

4.1 Introduction.

The relative Gol�dberg order of an entire function of n complex variables gives a quanti-
tative assessment of how di¤erent functions scale each other and until what extent they
are self-similar in growth. In Chapter Two and Chapter Three, we give relevant nota-
tions and de�nitions of �(�;�) [f ] ; �(�;�) [f ] ; �(�;�) [f ]g ,�

(�;�) [f ]g etc. In this chapter we
discuss some growth rates of entire functions of n complex variables on the basis of the
generalized Gol�dberg order (�; �), generalized Gol�dberg lower order (�; �), generalized
relative Gol�dberg order (�; �) and generalized relative Gol�dberg lower order (�; �) where
�; � 2 L0: Further we assume that throughout the present chapter �; � and 
 always de-
note the functions belonging to L0.
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4.2 Main Results.

In this section we present the main results of this chapter.

Theorem 4.2.1 Let f (z) and g (z) be two entire functions of n complex variables such
that 0 < �(
;�) [f ] � �(
;�) [f ] <1 and 0 < �(
;�) [g] � �(
;�) [g] <1 . Then

�(
;�) [f ]

�(
;�) [g]
� �(�;�) [f ]g � min

�
�(
;�) [f ]

�(
;�) [g]
;
�(
;�) [f ]

�(
;�) [g]

�
� max

�
�(
;�) [f ]

�(
;�) [g]
;
�(
;�) [f ]

�(
;�) [g]

�
� �(�;�) [f ]g �

�(
;�) [f ]

�(
;�) [g]
.

Proof. From the de�nitions of �(
;�) [f ] and �(
;�) [f ] ; we have for all su¢ ciently large
values of R that

Mf;D (R) � 
�1(
�
�(
;�) [f ] + "

�
�(R)); (49)

Mf;D (R) � 
�1(
�
�(
;�) [f ]� "

�
�(R)) (50)

and also for a sequence of values of R tending to in�nity we get that

Mf;D (R) � 
�1(
�
�(
;�) [f ]� "

�
�(R)); (51)

Mf;D (R) � 
�1(
�
�(
;�) [f ] + "

�
�(R)): (52)

Similarly from the de�nitions of �(
;�) [g] and �(
;�) [g] ; it follows for all su¢ ciently large
values of R that

Mg;D (R) � 
�1(
�
�(
;�) [g] + "

�
�(R))

i:e:; R �M�1
g;D

�

�1(

�
�(
;�) [g] + "

�
�(R))

�
i:e:; M�1

g;D (R) � ��1
�


(R)

(�(
;�) [g] + ")

�
; (53)

Mg;D (R) � 
�1(
�
�(
;�) [g]� "

�
�(R))

i:e:; M�1
g;D (R) � ��1

�

(R)

(�(
;�) [g]� ")

�
(54)

and for a sequence of values of R tending to in�nity we obtain that

Mg;D (R) � 
�1(
�
�(
;�) [g]� "

�
�(R))

i:e: M�1
g;D (R) � ��1

�

(R)

(�(
;�) [g]� ")

�
; (55)

Mg;D (R) � 
�1(
�
�(
;�) [g] + "

�
�(R))

i:e:; M�1
g;D (R) � ��1

�

(R)

(�(
;�) [g] + ")

�
: (56)
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Now from (51) and in view of (53), for a sequence of values of R tending to in�nity we
get that

�(M�1
g;D (Mf;D (R))) � �(M�1

g;D

�

�1(

�
�(
;�) [f ]� "

�
�(R)))

�
i:e:; �(M�1

g;D (Mf;D (R))) � �
�
��1

�

(
�1((�(
;�) [f ]� ")�(R)))

(�(
;�) [g] + ")

��
=

�
�(
;�) [f ]� "

�
(�(
;�) [g] + ")

�(R)

i:e:;
�(M�1

g;D (Mf;D (R)))

�(R)
�
�
�(
;�) [f ]� "

�
(�(
;�) [g] + ")

:

As " (> 0) is arbitrary, it follows that

�(�;�) [f ] �
�(
;�) [f ]

�(
;�) [g]
: (57)

Analogously, from (50) and in view of (56) it follows for a sequence of values of R tending
to in�nity that

�(M�1
g;D (Mf;D (R))) � �(M�1

g;D

�

�1(

�
�(
;�) [g]� "

�
�(R)))

�

i:e:; �(M�1
g;D (Mf;D (R))) � �

�
��1

�

(
�1((�(
;�) [f ]� ")�(R)))

(�(
;�) [g] + ")

��
=

�
�(
;�) [f ]� "

�
(�(
;�) [g] + ")

�(R)

i:e:;
�(M�1

g;D (Mf;D (R)))

�(R)
�
�
�(
;�) [f ]� "

�
(�(
;�) [g] + ")

:

Since " (> 0) is arbitrary, we get from above that

�(�;�) [f ]g �
�(
;�) [f ]

�(
;�) [g]
: (58)

Again in view of (54) ; we have from (49) for all su¢ ciently large values of R that

�(M�1
g;D (Mf;D (R))) � �(M�1

g;D

�

�1(

�
�(
;�) [f ] + "

�
�(R)))

�

i:e:; �(M�1
g;D (Mf;D (R))) � �

�
��1

�

(
�1((�(
;�) [f ] + ")�(R)))

(�(
;�) [g]� ")

��
=

�
�(
;�) [f ] + "

�
(�(
;�) [g]� ") �(R)
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Chapter 5

Generalized relative Gol�dberg type
(�; �) and generalized relative
Gol�dberg weak type (�; �) of entire
functions of several complex
variables

Abstract: In this chapter, we develop some growth properties of entire functions of n
complex variables relating to generalized relative Gol�dberg order (�; �); generalized rel-
ative Gol�dberg type (�; �) and generalized relative Gol�dberg weak type (�; �):We also
establish integral representations of generalized relative Gol�dberg type and weak type
(�; �) of entire function of several complex variables and derive some interesting results,
where �; � are continuous non-negative functions de�ned on (�1;+1).
Keywords: Generalized relative Gol�dberg order (�; �); generalized relative Gol�dberg
lower order (�; �); generalized relative Gol�dberg type (�; �), generalized relative Gol�dberg
weak type (�; �); increasing function:
Mathematics Subject Classi�cation (2010) : 32A15.

5.1 Introduction.

Mondal et al. [1] de�ned the concept of relative Gol�dberg order between two entire
functions f (z) and g(z) for any bounded complete n-circular domain D with center at
all the origin Cn. Extending this notion, we have already introduced the de�nitions
of generalized relative Gol�dberg order (�; �) and generalized relative Gol�dberg lower
order (�; �) between two entire functions of several complex variables Now to compare
the growth of entire functions of several complex variables having the same generalized
relative Gol�dberg order (�; �) or generalized relative Gol�dberg lower order (�; �), we wish
to introduce the de�nition of generalized relative Gol�dberg type (�; �) and generalized
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relative Gol�dberg weak type (�; �) of an entire function of several complex variables with
respect to another entire function of several complex variables and establish their integral
representations. We also investigate their equivalence relations under certain conditions.

5.2 Preliminary remarks and de�nitions.

The de�nitions of generalized relative Gol�dberg order (�; �) and generalized relative
Gol�dberg lower order (�; �) of f (z) with respect to g (z) where f (z) and g (z) be any
two entire functions of n complex variables are as follows:

De�nition 5.2.1 Let f (z) and g (z) be any two entire functions of n complex variables.
The generalized relative Gol�dberg order (�; �) of f (z) with respect to g (z) is de�ned by:

�(�;�) [f ]g = lim sup
R!1

�(M�1
g;D (Mf;D (R)))

� (R)
:

The generalized relative Gol�dberg lower order (�; �) of f (z) with respect to g (z) is de�ned
as:

�(�;�) [f ]g = lim infR!1

�(M�1
g;D (Mf;D (R)))

� (R)
:

In order to de�ne the above growth scale, now we intend to introduce the de�nition
of an another growth indicator, called generalized relative Gol�dberg type (�; �) of an
entire function of n complex variables with respect to another entire function of n complex
variables as follows:

De�nition 5.2.2 Let f (z) and g (z) be any two entire functions of n complex vari-
ables.The generalized relative Gol�dberg type (�; �) of entire function f (z) with respect to
the entire function g (z) having �nite positive generalized relative Gol�dberg order (�; �)

denoted by �(�;�) [f ]g
�
0 < �(�;�) [f ]g <1

�
is de�ned as :

�
(�;�)
D [f ]g = inf

(
� > 0 :Mf;D (R) < Mg;D

h
��1 log

�
� (exp(�(R)))�

(�;�)[f ]g
�i

for all R > R0 (�) > 0

)

= lim sup
R!1

exp(�(M�1
g;D (Mf;D (R))))

(exp(�(R)))�
(�;�)[f ]g

:

The above de�nition can alternatively de�ned in the following manner:

De�nition 5.2.3 Let f (z) and g (z) be any two entire functions of n complex vari-
ables having �nite positive generalized relative Gol�dberg order (�; �) denoted by �(�;�) [f ]g�
0 < �(�;�) [f ]g <1

�
,then the generalized relative Gol�dberg type (�; �) denoted by �(�;�)D [f ]g

of entire function f (z) with respect to the entire function g (z) is de�ne as: The integral
1R
R0

exp[2](�(M�1
g;D(Mf;D(R))))�

exp

�
(exp(�(R)))

�(�;�)[f ]g

��k+1dR (R0 > 0) converges for k > �
(�;�)
D [f ]g and diverges for

k < �
(�;�)
D [f ]g :
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Analogously, one can introduced the de�nition of generalized relative Gol�dberg
weak type (�; �) denoted by � (�;�)D [f ]g of an entire function f (z) with respect to another
entire function g (z) with �nite positive generalized relative Gol�dberg lower order (�; �)
denoted by �(�;�) [f ]g in the following way:

De�nition 5.2.4 Let f (z) and g (z) be any two entire functions of n complex vari-
ables.The generalized relative Gol�dberg weak type (�; �) of entire function f (z) with re-
spect to the entire function g (z) having �nite positive generalized relative Gol�dberg lower

order (�; �)as �(�;�) [f ]g
�
0 < �(�;�) [f ]g <1

�
is de�ned as :

�
(�;�)
D [f ]g = sup

(
� > 0 :Mf;D (R) < Mg;D

h
��1 log

�
� (exp(�(R)))�

(�;�)[f ]g
�i

for all R > R0 (�) > 0

)

= lim inf
R!1

exp(�(M�1
g;D (Mf;D (R))))

(exp(�(R)))�
(�;�)[f ]g

:

The above de�nition can also alternatively de�ned as:

De�nition 5.2.5 Let f (z) and g (z) be any two entire functions of n complex vari-
ables having �nite positive generalized relative Gol�dberg lower order (�; �)as �(�;�) [f ]g�
0 < �(�;�) [f ]g <1

�
, then the generalized relative Gol�dberg weak type (�; �) denoted by

�
(�;�)
D [f ]g of entire function f (z) with respect to the entire function g (z) is de�ned as:

The integral

1Z
R0

exp[2](�(M�1
g;D (Mf;D (R))))h

exp
�
(exp(�(R)))�

(�;�)[f ]g
�ik+1dR (R0 > 0)

converges for k > � (�;�)D [f ]g and diverges for k < �
(�;�)
D [f ]g :

Remark 5.2.1 As Gol�dberg has shown that (see [2]) Gol�dberg type depends on the do-
main D, so in general all the growth indicators de�ned in De�nition 5.2.2 and De�nition
5.2.4 also depend on D.

Now a question may arise about the equivalence of the de�nitions of generalized
relative Gol�dberg type (�; �) and generalized relative Gol�dberg weak type (�; �) with
their integral representations. In the next section we would like to establish such equiv-
alence of De�nition 5.2.2 and De�nition 5.2.3, and De�nition 5.2.4 and De�nition 5.2.5
and also investigate some growth properties related to generalized relative Gol�dberg type
(�; �) and generalized relative Gol�dberg weak type (�; �) of entire function of n complex
variables with respect to another entire function of n complex variables.
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Chapter 6

Derivation of some inequalities using
generalized relative Gol�dberg type
(�; �) and generalized relative
Gol�dberg weak type (�; �) of entire
functions of several complex
variables

Abstract: In this chapter,we establish some important relations relating to generalized
relative Gol�dberg type and weak type (�; �) with generalized Gol�dberg type and weak
type (�; �) of entire functions of n complex variables, where �; � are continuous non-
negative functions de�ned on (�1;+1).
Keywords: Generalized Gol�dberg order (�; �), generalized Gol�dberg lower order (�; �),
generalized Gol�dberg type (�; �), generalized Gol�dberg weak type (�; �); generalized rel-
ative Gol�dberg order (�; �), generalized relative Gol�dberg lower order (�; �), generalized
relative Gol�dberg type (�; �), generalized relative Gol�dberg weak type (�; �); increasing
function:
Mathematics Subject Classi�cation (2010) : 32A15.

6.1 Introduction.

The relative growth indicators gives a quantitative assessment of how di¤erent func-
tions scale each other and until what extent they are self-similar in growth. The concepts
of generalized relative Gol�dberg type (�; �) and generalized relative Gol�dberg weak type
(�; �) of entire functions of n complex variables are not at all known to the researchers of
this area. Therefore the studies of the growths of entire functions of n complex variables
in the light of their generalized relative Gol�dberg type (�; �) and generalized relative
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Gol�dberg weak type (�; �) are the prime concern of this chapter. Actually in this chap-
ter we study some relative growth rates of entire functions of n complex variables with
respect to another entire function of n complex variables on the basis of their generalized
relative Gol�dberg type (�; �) and generalized relative Gol�dberg weak type (�; �). In this
present chapter �; � and 
 always denote the functions belonging to L0.

6.2 Lemmas.

From the conclusion of Theorem 4.2.1, we present the following two lemmas which
will be needed in the sequel.

Lemma 6.2.1 Let f (z) and g (z) be two entire functions of n complex variables such
that 0 < �(
;�) [f ] <1 and 0 < �(
;�) [g] = �(
;�) [g] <1. Then

�(�;�)[f ]g =
�(
;�)[f ]

�(
;�)[g]
and �(�;�)[f ]g =

�(
;�)[f ]

�(
;�)[g]
:

Lemma 6.2.2 Let f (z) and g (z) be two entire functions of n complex variables such
that 0 < �(
;�) [f ] = �(
;�) [f ] <1 and 0 < �(
;�) [g] <1. Then

�(�;�)[f ]g =
�(
;�)[f ]

�(
;�)[g]
and �(�;�)[f ]g =

�(
;�)[f ]

�(
;�)[g]
:

6.3 Main Results.

In this section we state the main results of the chapter.

Theorem 6.3.1 Let f (z) and g (z) be two entire functions of n complex variables such
that 0 < �(
;�) [f ] <1 and 0 < �(
;�) [g] = �(
;�) [g] <1. Then

"
�
(
;�)
D [f ]

�
(
;�)
D [g]

# 1

�(
;�)[g]

� �(�;�)D [f ]g � min

8<:
"
�
(
;�)
D [f ]

�
(
;�)
D [g]

# 1

�(
;�)[g]

;

"
�
(
;�)
D [f ]

�
(
;�)
D [g]

# 1

�(
;�)[g]

9=;
� max

8<:
"
�
(
;�)
D [f ]

�
(
;�)
D [g]

# 1

�(
;�)[g]

;

"
�
(
;�)
D [f ]

�
(
;�)
D [g]

# 1

�(
;�)[g]

9=; � �(�;�)D [f ]g �
"
�
(
;�)
D [f ]

�
(
;�)
D [g]

# 1

�(
;�)[g]

:

Proof. From the de�nitions of �(
;�)D [f ] and �(
;�)D [f ], we have for all su¢ ciently large
values of R that

Mf;D (R) � 
�1
�
log
��
�
(
;�)
D [f ] + "

�
(exp �(R))�

(
;�)[f ]
��
; (90)

Mf;D (R) � 
�1
�
log
��
�
(
;�)
D [f ]� "

�
(exp �(R))�

(
;�)[f ]
��

(91)
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and also for a sequence of values of R tending to in�nity we get that

Mf;D (R) � 
�1
�
log
��
�
(
;�)
D [f ]� "

�
(exp �(R))�

(
;�)[f ]
��
; (92)

Mf;D (R) � 
�1
�
log
��
�
(
;�)
D [f ] + "

�
(exp �(R))�

(
;�)[f ]
��
: (93)

Similarly from the de�nitions of �(
;�)D [g] and �(
;�)D [g] it follows for all su¢ ciently large
values of R that

M�1
g;D (R) � 
�1

�
log
��
�
(
;�)
D [g] + "

�
(exp(�(R)))�

(
;�)[g]
��

i:e:; R �M�1
g;D

�

�1

�
log
��
�
(
;�)
D [g] + "

�
(exp(�(R)))�

(
;�)[g]
���

i:e:; M�1
g;D (R) � ��1

0B@log
0@ exp(
(R))�

�
(
;�)
D [g] + "

�
1A 1

�(
;�)[g]

1CA ; (94)

M�1
g;D (R) � 
�1

�
log
��
�
(
;�)
D [g]� "

�
(exp�(R)))�

(
;�)[g]
��

i:e:; R �M�1
g;D

�

�1

�
log
��
�
(
;�)
D [g]� "

�
(exp�(R)))�

(
;�)[g]
���

i:e:; M�1
g;D (R) � ��1

0B@log
0@ exp(
(R))�

�
(
;�)
D [g]� "

�
1A 1

�(
;�)[g]

1CA (95)

and for a sequence of values of R tending to in�nity we obtain that

M�1
g;D (R) � 
�1

�
log
��
�
(
;�)
D [g]� "

�
(exp�(R))�

(
;�)[g]
��

i:e:; R �M�1
g;D

�

�1

�
log
��
�
(
;�)
D [g]� "

�
(exp�(R))�

(
;�)[g]
���

i:e:; M�1
g;D (R) � ��1

0B@log
0@ exp(
(R))�

�
(
;�)
D [g]� "

�
1A 1

�(
;�)[g]

1CA ; (96)

M�1
g;D (R) � 
�1

�
log
��
�
(
;�)
D [g] + "

�
(exp�(R))�

(
;�)[g]
��

i:e:; R �M�1
g;D

�

�1

�
log
��
�
(
;�)
D [g] + "

�
(exp�(R))�

(
;�)[g]
���

i:e:; M�1
g;D (R) � ��1

0B@log
0B@
0@ exp(
(R))�

�
(
;�)
D [g]� "

�
1A 1

�(
;�)[g]

1CA
1CA : (97)
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Chapter 7

Generalized relative Gol�dberg order
(�; �) and generalized relative
Gol�dberg type (�; �) based growth
measure of entire functions of several
complex variables

Abstract: In this chapter, we intend to �nd out generalized relative Gol�dberg order
(�; �), generalized relative Gol�dberg type (�; �) and generalized relative Gol�dberg weak
type (�; �) of an entire function f of several complex variables with respect to another
entire function g of several complex variables when generalized relative Gol�dberg or-
der (
; �); generalized relative Gol�dberg type (
; �) and generalized relative Gol�dberg
weak type (
; �) of f and generalized relative Gol�dberg order (
; �), generalized relative
Gol�dberg type (
; �) and generalized relative Gol�dberg weak type (
; �) of g with re-
spect another entire function h of several complex variables are given, where �; �; 
 are
continuous non-negative functions de�ned on (�1;+1).
Keywords: Increasing function, generalized relative Gol�dberg order (�; �), generalized
relative Gol�dberg type (�; �), generalized relative Gol�dberg weak type (�; �):
Mathematics Subject Classi�cation (2010) : 32A15.

7.1 Introduction.

In continuation of the discussion of previous chapter, question may arise about the values
of generalized relative Gol�dberg order (�; �), generalized relative Gol�dberg type (�; �)
and generalized relative Gol�dberg weak type (�; �) of an entire function f(z) of n com-
plex variables with respect to another entire function g(z) of n complex variables when
generalized relative Gol�dberg order (
; �), generalized relative Gol�dberg type (
; �) and
generalized relative Gol�dberg weak type (
; �) of f (z) and generalized relative Gol�dberg
order (
; �), generalized relative Gol�dberg type (
; �) and generalized relative Gol�dberg
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weak type (
; �) of g (z) with respect to another entire function h (z) of n complex vari-
ables are given. In this chapter we intend to provide this answer. In this present chapter
�; � and 
 always denote the functions belonging to L0.

7.2 Main Results.

In this section we present the main results of the chapter.

Theorem 7.2.1 Let f (z) ; g(z) and h (z) be three entire functions of n complex variables
such that 0 < �(
;�)[f ]h � �(
;�)[f ]h <1 and 0 < �(
;�)[g]h � �(
;�)[g]h <1 . Then

�(
;�)[f ]h
�(
;�)[g]h

� �(�;�)[f ]g � min
�
�(
;�)[f ]h
�(
;�)[g]h

;
�(
;�)[f ]h
�(
;�)[g]h

�
� max

�
�(
;�)[f ]h
�(
;�)[g]h

;
�(
;�)[f ]h
�(
;�)[g]h

�
� �(�;�)[f ]g �

�(
;�)[f ]h
�(
;�)[g]h

:

Proof. From the de�nitions of �(
;�)[f ]h and �(
;�)[f ]h; we have for all su¢ ciently large
values of R that

M�1
h;D(Mf;D(R)) � 
�1

�
�(
;�)[f ]h + "

�
�(R))

i:e:; Mf;D(R) �Mh;D

�

�1

��
�(
;�)[f ]h + "

�
�(R)

��
; (142)

M�1
h;D(Mf;D(R)) � 
�1

��
�(
;�)[f ]h � "

�
�(R)

�
i:e:; Mf;D(R) �Mh;D

�

�1

��
�(
;�)[f ]h � "

�
�(R)

��
: (143)

Also for a sequence of values of R tending to in�nity, we get that

M�1
h;D(Mf;D(R)) � 
�1

��
�(
;�)[f ]h � "

�
�(R)

�
i:e:; Mf;D(R) �Mh;D

�

�1

��
�(
;�)[f ]h � "

�
�(R)

��
; (144)

M�1
h;D(Mf;D(R)) � 
�1

��
�(
;�)[f ]h + "

�
�(R)

�
i:e:; Mf;D(R) �Mh;D

�

�1

��
�(
;�)[f ]h + "

�
�(R)

��
: (145)

Similarly from the de�nitions of �(
;�)[g]h and �(
;�)[g]h; it follows for all su¢ ciently
large values of R that

M�1
h;D(Mg;D(R)) � 
�1

��
�(
;�)[g]h + "

�
�(R)

�
i:e:; Mg;D(R) �Mh;D

�

�1

��
�(
;�)[g]h + "

�
�(R)

��
i:e:; Mh;D (R) �Mg;D

�
��1

�

(R)

(�(
;�)[g]h + ")

��
; (146)
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M�1
h;D(Mg;D(R)) � 
�1

��
�(
;�)[g]h � "

�
�(R)

�
i:e:; Mg;D(R) �Mh;D

�

�1

��
�(
;�)[g]h � "

�
�(R)

��
i:e:; Mh;D (R) �Mg;D

�
��1

�

(R)

(�(
;�)[g]h � ")

��
(147)

and for a sequence of values of R tending to in�nity, we obtain that

M�1
h;D(Mg;D(R)) � 
�1

��
�(
;�)[g]h � "

�
�(R)

�
i:e:; Mg;D(R) �Mh;D

�

�1

��
�(
;�)[g]h � "

�
�(R)

��
i:e:; Mh;D (R) �Mg;D

�
��1

�

(R)

(�(
;�)[g]h � ")

��
; (148)

M�1
h;D(Mg;D(R)) � 
�1

��
�(
;�)[g]h + "

�
�(R)

�
i:e:; Mg;D(R) �Mh;D

�

�1

��
�(
;�)[g]h + "

�
�(R)

��
i:e:; Mh;D (R) �Mg;D

�
��1

�

(R)

(�(
;�)[g]h + ")

��
: (149)

Now from (144) and in view of (146) ; we get for a sequence of values of R tending to
in�nity that

�(M�1
g;D(Mf;D(R))) � �

�
M�1
g;D

�
Mh;D

�

�1

��
�(
;�)[f ]h � "

�
�(R)

����
i:e:; �(M�1

g;D(Mf;D(R)))

� �
 
M�1
g;D

 
Mg;D

 
��1

 


�

�1

��
�(
;�)[f ]h � "

�
�(R)

��
(�(
;�)[g]h + ")

!!!!

i:e:; �(M�1
g;D(Mf;D(R))) �

�
�(
;�)[f ]h � "

�
(�(
;�)[g]h + ")

�(R)

i:e:;
�(M�1

g;D(Mf;D(R)))

�(R)
�
�
�(
;�)[f ]h � "

�
(�(
;�)[g]h + ")

:

As " (> 0) is arbitrary, it follows that

lim sup
R!1

�(M�1
g;D(Mf;D(R)))

�(R)
� �(
;�)[f ]h
�(
;�)[g]h

i:e:; �(�;�)[f ]g �
�(
;�)[f ]h
�(
;�)[g]h

: (150)

Analogously from (143) and in view of (149) ; it follows for a sequence of values of R
tending to in�nity that

�(M�1
g;D(Mf;D(R))) � �

�
M�1
g;D

�
Mh;D

�

�1

��
�(
;�)[f ]h � "

�
�(R)

����
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Chapter 8

Sum and product theorems
depending on the generalized
relative Gol�dberg order (�; �) and
generalized relative Gol�dberg type
(�; �)

Abstract: In this chapter, we proved some results about sum and product theorems de-
pending on the generalized relative Gol�dberg order (�; �) ;generalized relative Gol�dberg
lower order (�; �), generalized relative Gol�dberg type (�; �) and generalized relative
Gol�dberg weak type (�; �) of entire function of n complex variables with respect to
another entire function of n complex variables, where �; � are continuous non-negative
functions de�ned on (�1;+1).
Keywords: Generalized relative Gol�dberg order (�; �) ;generalized relative Gol�dberg
lower order (�; �), generalized relative Gol�dberg type (�; �), generalized relative Gol�dberg
weak type (�; �) ; increasing function, Property (G), Property (X).
Mathematics Subject Classi�cation (2010) : 32A15.

8.1 Introduction.

First of all, we just recall the following well known inequalities for all su¢ ciently
large R relating to any two entire functions f1 (z) and f2 (z) of n complex variables:

Mf1�f2;D (R) �Mf1;D(R) +Mf2;D(R); (170)

Mf1�f2;D (R) �Mf1;D(R)�Mf2;D(R) (171)

and
Mf1�f2;D (R) �Mf1;D(R) �Mf2;D(R) : (172)
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Now let L be a class of continuous non-negative on (�1;+1) function � such
that � (x) = � (x0) � 0 for x � x0 with � (x) " +1 as x! +1. For any � 2 L, we say
that � 2 L0; if � (cx) = (1 + o(1))� (x) as x0 � x! +1 for each c 2 (0;+1). Clearly,
L0 � L.

Further detailed investigations on the properties of (p; q)-' relative Gol�dberg
order and the (p; q)-' relative Gol�dberg lower order have been made in [1]. In this
connection we just state the following theorems which are introduced by Datta et al. [1] .

Theorem 8.1.1 Let us consider f1 (z), f2 (z) and g1 (z) are any three entire functions of
n complex variables. Also let at least f1 (z) or f2 (z) is of regular (p; q)-' relative Gol�dberg
growth with respect to g1 (z). Then

�(p;q)g1
(f1 � f2; ') � maxf�(p;q)g1

(f1; '); �
(p;q)
g1
(f2; ')g:

The equality holds when any one of �(p;q)g1 (fi; ') > �
(p;q)
g1 (fj; ') hold with at least fj (z)

is of regular (p; q)-' relative Gol�dberg growth with respect to g1 (z) where i; j = 1; 2 and
i 6= j.

Theorem 8.1.2 Let us consider f1 (z), f2 (z) and g1 (z) are any three entire functions of
n complex variables such that �(p;q)g1 (f1; ') and �

(p;q)
g1 (f2; ') exists. Then

�(p;q)g1
(f1 � f2; ') � maxf�(p;q)g1

(f1; '); �
(p;q)
g1
(f2; ')g:

The equality holds when �(p;q)g1 (f1; ') 6= �(p;q)g1 (f2; ').

Theorem 8.1.3 Let f1 (z), g1 (z) and g2 (z) be any three entire functions of n complex
variables such that �(p;q)g1 (f1; ') and �

(p;q)
g2 (f1; ') exists. Then

�
(p;q)
g1�g2(f1; ') � minf�

(p;q)
g1
(f1; '); �

(p;q)
g2
(f1; ')g:

The equality holds when �(p;q)g1 (f1; ') 6= �(p;q)g2 (f1; ').

Theorem 8.1.4 Let f1 (z), g1 (z) and g2 (z) be any three entire functions of n complex
variables. Also let f1 (z) is of regular (p; q)-' relative Gol�dberg growth with respect to at
least any one of g1 (z) or g2 (z). Then

�
(p;q)
g1�g2 (f1; ') � minf�

(p;q)
g1

(f1; ') ; �
(p;q)
g2

(f1; ')g:

The equality holds when any one of �(p;q)gi (f1; ') < �
(p;q)
gj (f1; ') hold with at least f1 (z)

is of regular (p; q)-' relative Gol�dberg growth with respect to gj (z) where i; j = 1; 2 and
i 6= j:

Theorem 8.1.5 Let f1 (z), g1 (z) and g2 (z) be any three entire functions of n complex
variables. Then

�
(p;q)
g1�g2(f1 � f2; ') � max[minf�

(p;q)
g1

(f1; ') ; �
(p;q)
g2

(f1; ')g;minf�(p;q)g1
(f2; ') ; �

(p;q)
g2

(f2; ')g]

6

6

6

6
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when the following two conditions holds:
(i) �

(p;q)
gi (f1; ') < �

(p;q)
gj (f1; ') with at least f1 (z) is of regular (p; q)-' relative Gol�dberg

growth with respect to gj (z) for i = 1; 2, j = 1; 2 and i 6= j; and
(ii) �

(p;q)
gi (f2; ') < �

(p;q)
gj (f2; ') with at least f2 (z) is of regular (p; q)-' relative Gol�dberg

growth with respect to gj (z) for i = 1; 2, j = 1; 2 and i 6= j.
The equality holds when any one of �(p;q)g1 (fi; ') < �

(p;q)
g1 (fj; ') and any one of �

(p;q)
g2 (fi; ') <

�
(p;q)
g2 (fj; ') hold simultaneously for i = 1; 2; j = 1; 2 and i 6= j:

Theorem 8.1.6 Let f1 (z), g1 (z) and g2 (z) be any three entire functions of n complex
variables. Then

�
(p;q)
g1�g2 (f1 � f2; ') � min[maxf�

(p;q)
g1

(f1; ') ; �
(p;q)
g1

(f2; ')g;maxf�(p;q)g2
(f1; ') ; �

(p;q)
g2

(f2; ')g]

when the following two conditions holds:
(i) �

(p;q)
g1 (fi; ') > �

(p;q)
g1 (fj; ') with at least fj (z) is of regular (p; q)-' relative Gol�dberg

growth with respect to g1 (z) for i = 1; 2, j = 1; 2 and i 6= j; and
(ii) �

(p;q)
g2 (fi; ') > �

(p;q)
g2 (fj; ') with at least fj (z) is of regular (p; q)-' relative Gol�dberg

growth with respect to g2 (z) for i = 1; 2, j = 1; 2 and i 6= j.
The equality holds when any one of �(p;q)gi (f1; ') < �

(p;q)
gj (f1; ') and any one of �

(p;q)
gi (f2; ') <

�
(p;q)
gj (f2; ') hold simultaneously for i = 1; 2; j = 1; 2 and i 6= j:

Theorem 8.1.7 Let us consider f1 (z), f2 (z) and g1 (z) are any three entire functions of
n complex variables. Also let at least f1 (z) or f2 (z) is of regular (p; q)-' relative Gol�dberg
growth with respect to g1 (z) and g1 (z) satisfy the Property (G). Then

�(p;q)g1
(f1 � f2; ') � max

�
�(p;q)g1

(f1; ') ; �
(p;q)
g1

(f2; ')
	
:

The equality holds when f1 (z) and f2 (z) satisfy Property (X).

Theorem 8.1.8 Let us consider f1 (z), f2 (z) and g1 (z) are any three entire functions
of n complex variables such that �(p;q)g1 (f1; ') and �

(p;q)
g1 (f2; ') exists and g1 (z) satisfy the

Property (G). Then

�(p;q)g1
(f1 � f2; ') � maxf�(p;q)g1

(f1; ') ; �
(p;q)
g1

(f2; ')g:

The equality holds when f1 and f2 satisfy Property (X).

Theorem 8.1.9 Let f1 (z), g1 (z) and g2 (z) be any three entire functions of n complex
variables such that �(p;q)g1 (f1; ') and �

(p;q)
g2 (f1; ') exists and g1 � g2 (z) satisfy the Property

(G). Then
�(p;q)g1�g2 (f1; ') � minf�

(p;q)
g1

(f1; ') ; �
(p;q)
g2

(f1; ')g:

The equality holds when g1 (z) and g2 (z) satisfy Property (X).

6

6

6

6

6

6
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Conclusion

This book is mainly focused on some growth properties of entire functions of
several complex variables, which covers the important branch of complex analysis spe-
cially the theory of analytic functions of several variables. All the Chapters of this book
deals with some growth properties of entire functions of n complex variables, with the
generalization of Gol�dberg order, relative Gol�dberg order, Gol�dberg type and relative
Gol�dberg type etc. after introducing non-negative continuous functions � and � de�ned
on (�1;+1). This book opens the new era of future research. Also the concept of
generalized Gol�dberg order and generalized Gol�dberg type should have a broad range
of applications in complex dynamics, factorization theory of entire functions of several
complex variables, the solution of complex di¤erential equations etc.

During previous decades, several authors made closed investigations on the growth
properties of entire functions of several complex variables using di¤erent growth indicators
such as Gol�dberg order, (p; q)-th Gol�dberg order, relative Gol�dberg order etc. In this
book we wish to establish some basic growth properties of entire functions of several com-
plex variables on the basis of their generalized Gol�dberg order (�; �); generalized relative
Gol�dberg order (�; �); generalized Gol�dberg type (�; �); generalized relative Gol�dberg
type (�; �) where � and � continuous non-negative functions de�ned on (�1;+1).We
have also discussed about the particular cases when it coincide with present de�nitions.
Integral representations of some de�nitions are given in some Chapters with some com-
parative studies.

So, this book (Monograph) will enrich some parts of Pure Mathematics and will
give some scopes of study for the future researchers in this branch of complex analysis.
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