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I congratulate Carlos Polanco for his experienced and insightful book Exterior

Calculus – Theory and Cases. This work covers profoundly advanced Calculus

for a readership that has acquired the necessary mathematical comprehension to

direct to geometric algebra. It will guide higher level students as well as their

teachers straightforwardly through this topic from Heaviside-Gibbs algebra over

Grassmann algebra to differentiation, integration and fundamental theorems of

Calculus. Despite the complexity of the subject, this book is written in a highly

didactic style, which is reflecting the expertise and the long-term teaching experi-

ence of the author at the Universidad Nacional Autónoma de México.

The presentation of many examples and case studies as well the solution guide

to the chapter exercises at the end of this book will help the readers to deepen

and to inspect their acquired knowledge and to relate the theory to practice. I wish

that Carlos Polanco’s book will become part of many bookshelves and highly

recommend it as a solid and distinctive textbook for advanced courses in Calculus.
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This Exterior Calculus ebook has been designed for third-year students of Sci-

ences, as it contains the fundamentals related to Geometric algebra or Grassmann

algebra oriented to Calculus. Without any doubt, this algebra has important impli-

cations in Science and Engineering. Here, the reader will find a clear presentation

of the Geometric algebra on a plane and in space, as well as the extension of all

its operators in R
n. In order to make the comprehension of this important algebra

easier, some examples and completely solved exercises are included.

The ebook thoroughly examines the elements of Geometric algebra G over the

Real field and these operators: inner product, outer product, and geometric prod-

uct, their components, and their geometric representation, as well as their prop-

erties and the rigid transformations on the plane and in space. It also reviews the

differentiation and the integration over Geometric algebra, including the line in-

tegral and surface integral. The Green, Stokes and Gauss theorems are also studied

in detail and the Theorem of Fundamental Calculus is generalized.

The author hopes the reader interested in the study of the fundamentals of Exte-

rior calculus, finds useful the material presented here and that the students that

start studying this field find this information motivating. The author would like

to acknowledge the Faculty of Sciences at Universidad Nacional Autónoma de

México for support.
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3

2 Case 9.3 altered and reproduced with permission from: Carlos

Polanco, [Advanced Calculus: Fundamentals of Mathematics] Depart-

ment of Mathematics Universidad Nacional Autónoma de México,
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Part I

Heaviside-Gibbs Algebra



The operators of the ’bf Heaviside-Gibbs algebra’ have a major role in Vector Cal-

culus. The next chapter focuses on the definition of the main operators, showing

its usefulness in solving problems in 2-dimensional and 3-dimensional space, and

it also discusses the robustness and limitations of this algebra in n-dimensional

space.



Vector Algebra on R
2 and R

3

Abstract In this chapter, we introduce the main operators of Heaviside-Gibbs al-

gebra: addition, subtraction, norm of vectors, as well as inner and cross product.

From the point of view of Vector Calculus, we introduce the line and surface inte-

grals, and the Green’s, Stokes’, and Gauss’ Theorems. The last section discusses

the extension of this algebra in n-dimensional space. The examples are in plane

and space.

Keywords: cross product: v × w, divergence of vector function, Gauss’ Theo-

rem, Green’s Theorem, inner product: v ·w, limitations, line integral, norm: ||v||,
normed vector space, rotational of vector function, scalar multiplication: αv,

Stokes’ Theorem, surface integral, vector addition: v + w, vector Subtraction:

v−w

1.1. Normed Vector Space: V (F)

The term normed vector space [5, 6, 7] is used to name a mathematical struc-

ture where a norm [7] is defined as the rules in a non-empty set V that meet the

addition operation, vector addition, and the multiplication operation, scalar mul-

tiplication, between the elements of the set V and the elements of a field F. This

normed vector space has two important operations inner product [8] and cross

product [8].

Definition 1.1. A normed vector space V over a field F ∈ R
n is an algebraic

structure where a set of elements called vectors v,u,w ∈ V and a set of elements

called scalars α,β ∈ F, together with two operations, vector addition and scalar

multiplication, satisfy the next eight axioms [1, 4]:

Property 1. u+(v+w) = (u+ v)+w

Property 2. u+ v = v+u

 Exterior Calculus: Theory and Cases, 2021, 1-13 1 
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Property 3. ∃0 ∈V i called the zero vector, such that ∀v ∈V,v+0 = v

Property 4. ∀v ∈V , ∃ − v ∈V , such that v+(−v) = 0

Property 5. α,β ∈ F,α(βv) = (αβ )v
Property 6. 1v = v

Property 7. α(u+ v) = αu+αv

Property 8. (α +β )v = αv+βv

Remark 1.1. As it will be explained later in the chapter (Sect. 1.5), although the

representation of the vectors can be in n-dimensional space, not all the operators

act in this space [9, 10].

1.2. Basic operators

1.2.1. Vector Addition: v+w

There are two types of vectors, those that start anchored at the origin of the refer-

ence system fixed vectors, i.e. to a plane R2 or space R3, and those whose start is

not anchored at the origin of the system non-fixed vectors.

Definition 1.2. The vector addition operation
⊕

: V ×V → V takes two vectors

v ∈ R
n and w ∈ R

n, and assigns a third vector expressed as v+w ∈ R
n.

Example 1.1. Let two vectors v and w ∈ R
2 be over the field R, v = (1,2) and

w = (3,−1). What is v+w?

Solution 1.1. If v = (v1,v2) and w = (w1,w2)⇒ v+w = (v1 +w1,v2 +w2), then

v+w = (4,1).

Remark 1.2. The addition of two fixed vectors yields a fixed vector.

1.2.2. Vector Substraction: v−w

Definition 1.3. The vector substraction operation
⊕

: V ×V → V takes two vec-

tors v ∈R
n and w ∈R

n, and assigns a third vector expressed as v−w ∈R
n where

v−w 6= w− v.

Example 1.2. Let two vectors v and w ∈R
3 be over the field R, v = (1,2,−1) and

w = (3,−1,0). (i) What is v−w? (ii) What is w− v? (iii) Explain why v−w 6=
w− v.

Solution 1.2. (i) If v = (v1,v2,v3) and w = (w1,w2,w3)⇒ v−w = (v1 −w1,v2 −
w2,v3 − w3), then v − w = (1,2,−1)− (3,−1,0) = (−2,3,−1). (ii) w − v =
(3,−1,0)− (1,2,−1) = (2,−3,1). (iii) In general v−w 6= w− v since v1 −w1 6=
w1 − v1, where v1,w1 are elements of the field F.

Remark 1.3. Any non-fixed vector can be expressed as the subtraction of two

fixed vectors.

The addition of the vectors v+(−w) is equivalent to v−w, so this vector addi-

tion is known as vector subtraction.

Two vectors are equal if there is a translation between them. In this sense, a fixed

vector and a non-fixed vector can be the same vector.

6

6

6 6
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1.2.3. Scalar Multiplication: αv

Definition 1.4. The scalar multiplication operation
⊗

: F×V → V takes any

vector v ∈ R
n and a scalar α ∈ R, and assigns a third vector αv ∈ R

n, i.e.

αv = α(v1,v2, · · · ,vn) = (αv1,αv2, · · · ,αvn). When the scalar α multiplies vector

v, the length of vector αv will increase or decrease; however, if α =−1 the vector

αv keeps its length but not its orientation, which will be opposite.

Example 1.3. Given vector v = (−3,4,5) ∈ R
3 and scalar α = −3 ∈ R, what is

vector αv?

Solution 1.3. αv = (−3)(−3,4,5) = (9,−12,−15).

This operation αv makes possible to increase the length of a vector (if α > 1),

decrease it (if 0 < α < 1), or change its orientation (if α < 0).

1.2.4. Norm: ||v||

Definition 1.5. The norm (Eq. 1.1) of a fixed vector a ∈R
n represents the length

or distance with respect to point 0.

||a||=
√

n

∑
i=1

a2
i , where a ∈ R

n. (1.1)

The norm (Eq. 1.1) of a non-fixed vector c∈R
n represents the length or distance

(Eq. 1.2) between the fixed vectors a,b ∈ R
n.

||c||= ||a−b||=
√

n

∑
i=1

(ai −bi)2, where c = a−b. (1.2)

Example 1.4. There are two fixed vectors in a space v = (3,1,−2) and w =
(1,−1,1). (i) What is the norm (or length) of vector v? (ii) What is the distance

between the fixed vectors v and w?

Solution 1.4. (i) The norm of vector v is ||v||=
√

32 +12 +(−2)2 =
√

14. (ii) The

distance is ||v−w||=
√
(3−1)2 +(1− (−1))2 +((−2)−1)2 =

√
17

It is important to differentiate the norm of a vector ||a|| from the absolute value

of a scalar |x|. The first one is a vector, the second one is a real number.

1.2.5. Inner product: v ·w

Definition 1.6. The inner product is an algebraic operator that involves two vec-

tors a,b ∈ R
n (Eq. 1.3) and the angle θ between them (Eq. 1.4).

a ·b = a1b1 +a2b2 + · · ·+anbn (1.3)

Vector Algebra on R2 and R3 Exterior Calculus: Theory and Cases    3 



Part II

Grassmann Algebra



Geometric algebra or Grassmann algebra is the central subject of this book.

It has nine chapters: chapters 2 and 3 define this algebra in 2 and 3 dimensions;

chapter 4 studies the extension to n dimensions; in chapters 5 and 6 we refor-

mulate the derivative and integral operators; from chapter 7 to 9 we focus on the

Geometric algebra applications to introduce the Green’s, Stokes’, and Gauss’

theorems in Differential forms; finally, in chapter 10 we see the Fundamental

Calculus Theorem in terms of Geometric algebra and Differential forms.



Geometric Algebra on G2

Abstract This chapter is a review of Geometric algebra or Grassmann alge-

bra on G2. This algebra is attributed to Hermann Grassmann [Die lineare Aus-

dehnungslehre, ein neuer Zweig der Mathematik 1842]. It has two main operators:

outer product and inner product. Here, we will also study dot product, and ge-

ometric product, as well as their properties. We will start with the definition of

Geometric algebra, its properties and most useful tools. With this background, we

will define the differential forms in Chap. 5.

Keywords: Associativity: a(bc) = (ab)c, bivector, blades < a >i, distributivity:

a(b+c), distributivity: a∧ (b+c), dual Iar = bn−r, equation of a line, outer prod-

uct, geometric algebra, geometric product, inner product, lines, multiplicative in-

verse: a−1, norm ||a||, reflections, reversion: a†, rotations

2.1. Geometric Algebra on G2

Definition 2.1. The Geometric algebra or Grassmann algebra [1, 9, 20] is a

unitary associative algebra, in symbols G2 = G2(R
2). It is formed by three ele-

ments: α,scalars, σ1,σ2vectors, and the elements σ1 ∧σ2 named bivectors, or

equivalently σ1σ2, where α ∈R. These elements will be expressed in orthonor-

mal basis for convenience and they meet Eq. 2.1 for i

6

= j.

(2.1)

An arbitrary element will be Eq. 2.2.

6
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σiσi = 1

σiσ j =−σ jσi



v = v0︸︷︷︸
basisscalar

+v1σ1 + v2σ2︸ ︷︷ ︸
basisvector

+v12σ1 ∧σ2︸ ︷︷ ︸
basisbivector

in G2.
(2.2)

Remark 2.1. An equivalent would be σi ∧σ j, σiσ j, and σi j.

Example 2.1. Provide some examples of elements on G2.

Solution 2.1. v = 4σ2+5σ1∧σ2, v = 4+σ2+−4σ12, v =−1+σ1−3σ2+7σ12.

2.1.1. Outer Product: a∧b

Definition 2.2. For two vectors a= a0+a1σ1+a2σ2+a3σ12 and b= b0+b1σ1+
b2σ2 +b3σ12 ∈G2 [1, 4, 8], we define

a∧b =
1

2
(ab−ba)

Example 2.2. Let two elements a = (1,−1) and b = (3,2) ∈ G2. (i) Obtain the

outer product a∧b=
1

2
(ab−ba). (ii) Obtain the geometric product using Def. 2.3.

Solution 2.2. (i) From Ex. 2.8 a∧b=
1

2
(ab−ba)= 5σ1σ2. (ii) ab= a ·b+a∧b =

1+5σ12. So a∧b = 5σ12.

The collinearity of two vectors implies that its outer product is zero, i.e. a∧b =
0 ⇔ a ‖ b.

Example 2.3. Let two collinear vectors a=σ1+σ2 and b= 2σ1+2σ2. Determine

the outer product.

Solution 2.3. ab = 8 and ba = 8, a∧b =
1

2
(ab−ba) = 0, so a ‖ b.

Example 2.4. Let the vectors a = σ1 +σ12 and b =−2σ1 +−3σ2. Determine the

outer product.

Solution 2.4. ab = −2 − 3σ12 + 2σ2 − 3σ1 and ba = −2 + 3σ1 − 2σ2 + 3σ12,

a∧b =
1

2
(ab−ba) =−2σ2 +3σ1 +3σ12.

2.1.2. Inner Product: a ·b

Definition 2.3. For two elements a = a0 + a1σ1 + a2σ2 + a3σ12 and b = b0 +
b1σ1 +b2σ2 +b3σ12 ∈G2 [1, 4, 8, 15], we define

a ·b =
1

2
(ab+ba)

Example 2.5. Consider elements a = σ1 + σ2,b = σ1 − σ2 ∈ G2 [1, 4, 15]. (i)

Obtain the geometric products ab and ba. (ii) Determine a · b. (iii) Determine

a∧b.
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Solution 2.5. (i) ab =−2,ba = 2σ12. (ii) a ·b = 0. (iii) a∧b = 0.

The perpendicularity of two vectors in R
2 implies that the inner product is zero,

i.e. a ·b = 0 ⇔ a ⊥ b.

Example 2.6. Let two perpendicular vectors [1, 21] a = σ1 +σ2 and b = σ1 −
σ2 in R

2. (i) Determine the inner product. (ii) Interpret geometrically the inner

product.

Solution 2.6. (i) ab=−2σ12 and ba= 2σ12, a ·b =
1

2
(ab+ba) = 0, so a⊥ b. (ii)

See (Fig. 2.1).

Figure 2.1 Geometrical representation of a ·b

Example 2.7. Let the vectors a = σ1 +σ12 and b =−2σ1 +−3σ2. Determine the

inner product.

Solution 2.7. ab = −2 − 3σ12 + 2σ2 − 3σ1 and ba = −2 + 3σ1 − 2σ2 + 3σ12,

a ·b =
1

2
(ab+ba) =−2.

2.1.3. Geometric Product: ab

From these two elements a = a0 + a1σ1 + a2σ2 + a3σ12 and b = b0 + b1σ1 +
b2σ2 +b3σ12 ∈ G2 [1, 2, 9, 10, 16, 17, 22, 23], the geometric product (Eq. 2.3)

is defined as

ab = (a0 +a1σ1 +a2σ2 +a12σ1σ2)(b0 +b1σ1 +b2σ2 +b12σ1σ2)

= a ·b+a∧b
(2.3)

The geometric interpretation of the bivector σ1∧σ2 is the oriented area with two

sides A and B spanned by the vectors σ1 and σ2, whose value is 1 (Fig. 2.2). Sim-

ilarly, σ1 ∧−σ2 (Fig. 2.3) represents the area of side B and −σ1 ∧−σ2 represents

the area of side A.
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Geometric Algebra on G3

Abstract This chapter reviews and elaborates on the operators from Geometric

algebra on G2 to G3. This algebra is attributed to Hermann Grassmann [Die lin-

eare Ausdehnungslehre, ein neuer Zweig der Mathematik 1842]. It is formed by

two main operators, the outer product and the inner product, it also includes the

element called bivector. Here, we review their properties and their application in

space.

Keywords: Associativity: a(bc) = (ab)c, bivector: a∧ b, blades < a >, compo-

nent: v‖, component: v⊥, distributivity: a(b+ c), distributivity: a∧ (b+ c), dual

Iar = bn−r, equation of a line, outer product, geometric algebra, geometric prod-

uct, inner product, lines, multiplicative inverse: a−1, norm ||a||, reflections, rever-

sion: a†, rotations

3.1. Geometric Algebra on G3

Definition 3.1. The Geometric algebra or Grassmann algebra [1, 9] is a unitary

associative algebra, in symbols G3 = G3(R
3). It is formed by eight 23 elements:

α, scalars, σ1,σ2,σ3vectors, σ1 ∧σ2, σ1 ∧σ3, σ2 ∧σ3 bivectors, and σ1 ∧σ2 ∧
σ3 trivectors (or equivalently σ1σ2σ3), where α ∈ R. For convenience these

elements are expressed in orthonormal basis and they meet Eqs. 3.1 for i

6

= j.

σiσi = 1

σiσ j =−σ jσi

(3.1)

An arbitrary element is Eq. 3.2.

6
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v = v0︸︷︷︸
basisscalars

+ v1σ1 + v2σ2︸ ︷︷ ︸
basisvectors

+ v12σ1 ∧σ2 + v23σ2 ∧σ3 + v31σ3 ∧σ1︸ ︷︷ ︸
basisbivectors

+ v123σ1 ∧σ2 ∧σ3︸ ︷︷ ︸
basistrivector

in G3.

(3.2)

Remark 3.1. The equivalent would be σi ∧σ j, σiσ j, and σi j.

Example 3.1. Provide some examples of elements on G2.

Solution 3.1. v = 4σ2+5σ1∧σ2, v = 4+σ2+−4σ12, v =−1+σ1−3σ2+7σ12.

3.1.1. Outer Product: a∧b

Definition 3.2. For two elements a = a0 + a1σ1 + a2σ2 + a12σ1 ∧σ2 + a13σ1 ∧
σ3 +a23σ2 ∧σ3 +σ1 ∧σ2 ∧σ3 and b = b0 +b1σ1 +b2σ2 +b12σ1 ∧σ2 +b13σ1 ∧
σ3 +b23σ2 ∧σ3 +b123σ1 ∧σ2 ∧σ3 ∈G3 [1], we define

a∧b =
1

2
(ab−ba)

Remark 3.2. If a∧b = 0 ⇒ a ‖ b.

Example 3.2. Consider two elements a= σ21+σ123 and b= 2+σ12 ∈G3. Obtain

the outer product a∧b.

Solution 3.2. Since ab=−1−σ3−2σ12+2σ123 and ba= 1−σ3−2σ12+2σ123,

a∧b = 0.

Example 3.3. Are vectores a = σ1 +σ2 +σ3 and b = 2σ1 +2σ2 +2σ3 colinear?.

(i) Determine the outer product. (ii) What about Eq. 3.2.

Solution 3.3. (i) ab = 6 and ba = 6, a∧b =
1

2
(ab−ba) = 0, so a ‖ b. (ii) Yes,

both elements are parallel.

3.1.2. Inner Product: a ·b

Definition 3.3. For two elements a = a0 + a1σ1 + a2σ2 + a12σ1 ∧σ2 + a13σ1 ∧
σ3 +a23σ2 ∧σ3 +σ1 ∧σ2 ∧σ3 and b = b0 +b1σ1 +b2σ2 +b12σ1 ∧σ2 +b13σ1 ∧
σ3 +b23σ2 ∧σ3 +b123σ1 ∧σ2 ∧σ3 ∈G3 [1], we define

a ·b =
1

2
(ab+ba).
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Remark 3.3. If a ·b = 0 ⇔ a ⊥ b.

Example 3.4. Let two elements a= σ1σ2σ3,b= σ1−σ2σ1σ3 ∈G3. (i) Obtain the

geometric products ab and ba. (ii) Determine a ·b. (iii) Determine a∧b.

Solution 3.4. (i) ab = (σ1σ2σ3)(σ1 −σ2σ1σ3) = σ2σ3 − 1, ba = σ2σ3 − 1. (ii)

a ·b = σ2σ3 −1. (iii) a∧b = 0.

Example 3.5. Let two elements a = σ1σ2 and b = σ3 ∈ G3. (i) Obtain the geo-

metric products ab and ba. (ii) From Def. 3.3 determine a ·b. (iii) From Def. 3.2

determine a∧b.

Solution 3.5. (i) ab = σ1σ2σ3. ba = σ1σ2σ3. (ii) a ·b = σ1σ2σ3. (iii) a∧b = 0.

Example 3.6. Let two elements a = 1+σ1 +σ2 −σ2σ3 and b = σ1σ2 ∈ G3. (i)

Obtain the geometric products ab and ba. (ii) From Def. 3.3 determine a · b. (iii)

From Def. 3.2 determine a∧b.

Solution 3.6. (i) ab=(1+σ1+σ2−σ2σ3)(σ1σ2)=σ1−σ2+σ1σ2−σ1σ3. ba=
(σ1σ2)(1+σ1+σ2−σ2σ3) =−σ1+σ2+σ1σ2 −σ1σ3. (ii) a ·b = σ1σ2−σ1σ3.

(iii) a∧b = σ1 −σ2.

Example 3.7. Let two elements a and b on G3 [1] a = σ1 + σ2 + σ3 and b =
σ1 + σ2 − 2σ3 in R

3. (i) Determine the inner product. (ii) Give a geometrical

interpretation of the inner product.

Solution 3.7. (i) ab= 3σ13+3σ23 and ba=−3σ13−3σ23, a ·b =
1

2
(ab+ba) = 0,

so a ⊥ b. (ii) See Fig. 3.1.

Figure 3.1 Geometrical representation of a ·b.

3.1.3. Geometric Product: ab

For two elements a = a0 +a1σ1 +a2σ2 +a12σ1 ∧σ2 +a13σ1 ∧σ3 +a23σ2 ∧σ3 +
σ1 ∧σ2 ∧σ3 and b = b0 +b1σ1 +b2σ2 +b12σ1 ∧σ2 +b13σ1 ∧σ3 +b23σ2 ∧σ3 +
b123σ1 ∧σ2 ∧σ3 ∈G3 [1], the geometric product (Eq. 3.3) is defined as
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Geometric Algebra on Gn

Abstract This chapter reviews and elaborates on the operators of Geometric alge-

bra from G3 to Gn. This algebra is attributed to Hermann Grassmann [Die lineare

Ausdehnungslehre, ein neuer Zweig der Mathematik 1842]. It is formed by two

main operators, the outer product and inner product. Here, a new element is

introduced the multivector, we review these operators, their properties, and their

application in the representation of curves, planes, and objects on space Gn.

Keywords: Associativity: a(bc) = (ab)c, bivector: a∧ b, blades < a >, compo-

nent: v‖, component: v⊥, distributivity: a(b+ c), distributivity: a∧ (b+ c), dual

Iar = bn−r, equation of a line, outer product, geometric algebra, geometric prod-

uct, inner product, lines, multiplicative inverse: a−1, multivector a∧b∧c∧·· ·∧z,

norm ||a||, reflections, reversion: a†, rotations, trivector: a∧b∧ c

4.1. Preliminaries

This chapter explores the main operators in space Gn, since this space corresponds

to Gn =Gn(R
n), we will not provide illustrative graphs, but we will focus on the

analytical solutions oriented to the elements in that space using the outer product

a∧b.

Note 4.1. It is important to note that although the elementsGn have σ1···n (Def. 4.1),

to simplify, we have replaced them with examples on G4.

4.2. Geometric Algebra on Gn

Definition 4.1. The Geometric algebra or Grassmann algebra [1, 9] is a uni-

tary associative algebra, in symbols Gn = Gn(R
n). It is formed by 2n elements:

Exterior Calculus: Theory and Cases, 2021, 48-5948  

Carlos Polanco 

All rights reserved-© 2021 Bentham Science Publishers 

 

 

 

CHAPTER 4 



scalars αi, vectors αiσi,bivectors αi jσi j, trivectors αi jkσi jk, and multivec-

tors αi···nσi···n. For convenience, these elements are expressed in orthonormal

basis that meet Eqs. 4.1 for i 6= j.

σiσi = 1

σiσ j =−σ jσi

(4.1)

An arbitrary element is (Eq. 4.2).

v =
n

∑
i=1

vi

︸︷︷︸
basis scalars

+
n

∑
i=1

viσi

︸ ︷︷ ︸
basis vectors

+
n

∑
i, j=1

vi jσi j

︸ ︷︷ ︸
basis bivectors

+
n

∑
i, j,k=1

vi jkσi jk

︸ ︷︷ ︸
basis trivectors

+
n

∑
i,···,z=1

vi···zσi···z

︸ ︷︷ ︸
basis multivector

in Gn.

(4.2)

Remark 4.1. The equivalent is σi ∧σ j, σiσ j and σi j.

Example 4.1. Provide some examples of elements on Gn.

Solution 4.1. v = 5σ1···n,

4.2.1. Outer Product: a∧b

Definition 4.2. For two elements a and b ∈Gn [1], we define

a∧b =
1

2
(ab−ba)

Remark 4.2. If a∧b = 0 ⇒ a ‖ b.

Example 4.2. Consider two elements a = σ1234 and b = 2+σ12 ∈Gn. Obtain the

outer product a∧b.

Solution 4.2. ab = 2σ1234 + σ123412 = 2σ1234 − σ34 and ba = 2σ1234 − σ34, so

a∧b = 2σ34.

Example 4.3. Let two elements a and b on Gn a = σ5 +σ1, where b = ασ5 +
βσ1. Determine what values comply with the scalars α and β so both vectors are

collinear.

Solution 4.3. If a∧b =
1

2
(ab−ba) = 0, then a ‖ b. Since ab = 2α , ba = 2β

a∧b =
1

2
(ab−ba) = 0 ⇔ 2α −2β = 0 ⇔ α = β .

6
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4.2.2. Inner Product: a ·b

Definition 4.3. For two elements a and b ∈Gn [1], we define

a ·b =
1

2
(ab+ba).

Remark 4.3. If a ·b = 0 ⇔ a ⊥ b.

Example 4.4. Let two elements a = σ567,b = σ12345 ∈Gn. (i) Obtain the geomet-

ric products ab and ba. (ii) Determine a ·b. (iii) Determine a∧b.

Solution 4.4. (i) ab =−σ123467, ba = σ123467. (ii) a ·b = 0. (iii) a∧b =−σ123467.

Example 4.5. Let two elements a = σ1σ2 and b = σ3 ∈ Gn. (i) Obtain the geo-

metric products ab and ba. (ii) From Def. 4.3, determine a ·b. (iii) From Def. 4.2,

determine a∧b.

Solution 4.5. (i) ab = σ1σ2σ3. ba = σ1σ2σ3. (ii) a ·b = σ1σ2σ3. (iii) a∧b = 0.

Example 4.6. Let two elements a = 1 + σ1 + σ2 − σ24 and b = σ1234 ∈ Gn. (i)

Obtain the geometric products ab and ba. (ii) From Def. 4.3, determine a ·b. (iii)

From Def. 4.2, determine a∧b.

Solution 4.6. (i) ab = (σ1234)(σ1 +σ2 −σ24) = σ234 −σ134−σ13. ba =−σ234+
σ134 −σ13 (ii) a ·b =−σ13. (iii) a∧b = σ234 −σ134.

Example 4.7. Let two elements a and b on Gn [1] a = σ1 + σ2 + σ3 + σ4 and

b = σ1+σ2−2σ3+σ4 on Gn. (i) Determine the inner product. (ii) Geometrically

interpret the inner product.

Solution 4.7. (i) ab = 1− 2σ13 +σ23 + 3σ34 and ba = 1+ 3σ13 + 2σ23 − 3σ34,

a ·b =
1

2
(ab+ba) = 1. (ii) It is a point in the G4 space.

4.2.3. Geometric Product: ab

From two elements a and b ∈ Gn, the geometric product (Eq. 4.3) is defined

as [1]

ab = a ·b+a∧b (4.3)

where the term a · b is the inner product (Def. 4.2.2) and the term a ∧ b is the

outer product (Def. 4.2.1) [1].

Remark 4.4. If the elements on Gn are of the form a = a1σ1 +a2σ2 + · · ·+anσ3

and b = b1σ1 + b2σ2 + · · ·+ bnσn, then the inner product will only have the

scalar part and the outer product the vectorial part.
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Differentiation

Keywords: 0−Forms, 1−Forms, 2−Forms, 3.Forms, k−Forms, dη , d f , dxi,

dxi ∧ dx j, dxi ∧ dx j ∧ dxk, dxi ∧ dx j ∧ dxk ∧ dxl , dxi ∧ dx j ∧ ·· · ∧ dxn, dw, dη ,

d(w ∧ η), derivative of 0−form, derivative of 1−form, derivative of 2−form,

derivative of 3−form, derivative of k−form, differential forms, divergence, ex-

terior derivative, function w, function η , geometric product, geometric product,

gradient, inner product, outer product, rotational, tangent line, tangent plane

5.1. Differential of a Function

Informally, an approximation to the definition of a differential of the function

f : R→R is dy = f ′(x)dx. If dy < 0, then (dy)2 is negligible, i.e. (dy)2 ≈ 0 [11].

This assumption is useful to obtain the derivative, or exterior derivative, of an

outer product.

If we substitute the elements σi in orthonormal basis of the geometric product

by the differentials dxi and consider (dy)2 ≈ 0 (Prop. 5.1), then we can define the

families (of both real-valued functions and vector-valued functions), whose basis

are formed by dxi that act on a tangent plane.

This type of function families are known as Differential forms.

Remark 5.1. The equivalent is dxi ∧dx j, dxidx j, and dxi j.
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5.2. Differential Forms

5.2.1. 0−Forms

A 0−form is any differentiable real-valued function f (x) defined to assign a

unique real number to a point, i.e. a 0-form is the measure of a flux over a point

in an infinitesimal 0−region [27].

Definition 5.1. A 0-form in R
n is a differentiable real-valued function w0

(Eq. 5.1) [4].

w0 = f : Rn → R (5.1)

Example 5.1. Determine the product and sum of the functions w01(x,y) = ex +3y

and w02(x,y) = x− y.

Solution 5.1. (i) w0(x,y) = w01(x,y)+w02(x,y) = ex + 3y+ x− y = ex + 2y+ x.

(ii) w0(x,y) = w01(x,y)w02(x,y) = (ex +3y)(x− y) = xex − yex +3yx−3y2.

Example 5.2. Determine the product and sum of the functions w01(x) = sinx and

w02(x) = cosx.

Solution 5.2. (i) w0(x)=w01(x)+w02(x)= sinx+cosx. (ii) w0(x)=w01w02(x)=
sinxcosx.

5.2.2. 1−Forms

A 1−form is any differentiable vector-valued function f (x) defined to assign a

unique real number to an oriented curve, i.e. a 1-form is the measure of a flux

over an oriented curve in an infinitesimal 1−region [27].

Definition 5.2. A 1−Form in R
n is a vector-valued function formed by a linear

combination of the real-valued functions fi : Rn →R over an orthonormal basis,

formed by the differentials dxi (Eq. 5.2) [4].

w1 = f1(x1, · · · ,xn)dx1 + · · ·+ fn(x1, · · · ,xn)dxn (5.2)

Example 5.3. Determine the product and the sum of the functions w11(x,y) =
ex dx+3ydy, w12(x,y) = xdx− ydy, and w0(x,y) = xy.

Solution 5.3. (i) w11(x,y)+w12(x,y) = (ex + x)dx+(3y− y)dy. (ii) w0(x,y)w11

(x,y) = (xy)ex dx +(xy)3ydy = xyex dx+3xy2 dy.

Example 5.4. Determine the product and the sum of the functions w11(x) =
sinxdx and w12(x) = cosxdx.

Solution 5.4. (i) w1(x) = w11(x)+w12(x) = (sinx+cosx)dx. (ii) If w0(x) = tanx

then w0(x)w11(x) = tanxsinxdx.
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Example 5.5. Determine the product and the sum of the functions w11(x) =
sinxdx and w12(x) = cosxdy.

Solution 5.5. (i) w1(x) = w11(x)+w12(x) = (sinxdx+ cosx)dy. (ii) If w0(x) =
tanx then w0(x)w11(x) = tanxsinxdx.

5.2.3. 2−Forms

A 2−form is any differentiable vector-valued function f (x) defined to assign a

unique real number to an oriented surface, i.e. a 2-form is the measure of a flux

in an infinitesimal 2−region [27].

Definition 5.3. A 2−Form in R
n, is a vector-valued function formed by a linear

combination of the real-valued functions fi : Rn → R over an orthonormal basis

of the differentials dxi ∧dx j (Eq. 5.3) [4].

w2 = f1(x1, · · · ,xn)dx1 ∧dx2 + · · ·+ fn(x1, · · · ,xn)dxi ∧dx j (5.3)

Example 5.6. Determine the product and the sum of the functions w21(x,y,z) =
ex dx∧ dy+ 3zydx∧ dz+ cosxdy∧ dz, w22(x,y,z) = xzdx∧ dy− ydx∧ dz, and

w0(x,y,z) = xy.

Solution 5.6. (i) w21(x,y,z)+w22(x,y,z) = (ex +xz)dx∧dy+(3yz−y)dx∧dz+
cosxdy∧dz. (ii) w0(x,y,z)w21(x,y,z) = (xy)ex dx∧dy+3xy2zdx∧dz+xycosxdy

∧dz.

Example 5.7. Determine the product and the sum of the functions w21(x,y) =
sinxdx∧dy and w22(x,y) = cosxdx∧dy.

Solution 5.7. (i) w1(x,y) = w21(x,y) +w22(x,y) = (sinx+ cosx)dx∧ dy. (ii) If

w0(x,y) = tanx then w0(x,y)w21(x,y) = tanxsinxdx∧dy.

5.2.4. 3−Forms

A 3−form is any differentiable vector-valued function f (x) defined to assigne

a unique real number to an oriented volume, i.e. a 3-form is the measure of a

flux over an oriented volume in an infinitesimal 3−region, it is the measure of a

fluid [27].

Definition 5.4. A 3−Form in R
n is a vector-valued function formed by a linear

combination of the real-valued functions fi : Rn → R over an orthonormal basis

of the differentials dxi ∧dx j ∧dxk (Eq. 5.4).

w3 = f1(x1, · · · ,xn)dx1 ∧dx2 ∧dx3 + · · ·+ fn(x1, · · · ,xn)dxi ∧dx j ∧dxk (5.4)

Example 5.8. Determine the product and the sum of the functions w31(x,y,z) =
ex dx∧ dy∧ dz+ 3zydx∧ dz∧ dy+ cosxdy∧ dz∧ dx, w32(x,y,z) = xzdx∧ dy∧
dz− ydx∧dz∧dy, and w0(x,y,z) = xy.
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Fundamental Theorem of Calculus

Abstract This chapter reviews The Green’s, Stokes’, and Gauss’ Theorems as a

direct result of the differentiation and integration operations set out in previous

chapters. All the exercises are solved using the Grassmann algebra. The Funda-

mental theorem of calculus is introduced at the end of this chapter, as an extension

of the theorems studied here.

Keywords: dw1 form, dw2 form, w1 form, w2 form, divergence, Field associated,

Fundamental Theorem of Calculus, Gauss’ theorem, Grassmann algebra, Green’s

theorem, Heaviside-Gibbs algebra, rotational, Stokes’ theorem

7.1. Preliminaries

In the following sections, we will introduce the operators and properties of the

Grassmann algebra (Chaps. 2-6) with some examples. These operators and their

properties are required to introduce the Green’s, Stokes’, and Gauss’ theorems.

If the reader is interested in knowing these theorems under the Heaviside Gibbs

algebra, he/she can review (Chap. 1).

These theorems derive directly from the integration and differentiation operators

of Grassmann algebra and their generalization is provided in the last section of

this chapter.

7.2. Green Theorem

Definition 7.1. Let w1 be a 1−form on an open over a region D ⊂R
2 bounded by

∂D in the positive perimeter, then
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ˆ

∂D

w1 =

ˆ

D

dw1 (7.1)

Green’s theorem states that the effect of the vector-valued function F over the ori-

ented closed curve ∂D, counter-clockwise orientation (represented by w1−form

over R2), is equivalent to the rotational effect over the area bounded by the region

D, i.e. dw1.

Proof. The definition of field associated (Sect. 5.3.2) is verified.

Example 7.1. Let w1 = −ydx + xdy. Verify Green’s theorem over the region

c(t) = (cos t,sin t), t ∈ [02π].

Solution 7.1.

ˆ

∂D

w1 =

ˆ 2π

0

−ydx+ xdy dt =

ˆ 2π

0

−sin t(cos t)
′
t + cos t(sin t)

′
t dt

=

ˆ 2π

0

sin2 t + cos2 t dt = 2π.

dw1 = d(−y∧dx)+d(x∧dy))

=−
(

∂y

∂x
dx+

∂y

∂y
dy

)
∧dx+

(
∂x

∂x
dx+

∂x

∂y
dy

)
∧dy

=−
(

∂y

∂x

)
dx∧dx−

(
∂y

∂y

)
dy∧dx

+

(
∂x

∂x

)
dx∧dy+

(
∂x

∂y

)
dy∧dy

= 2dxdy

(7.2)

now, we parameterize c(r,θ) = (r cosθ ,r sinθ ,1)
ˆ

D

dw1 =

ˆ 1

0

ˆ 2π

0

[2dxdy]dθdr =

ˆ 1

0

ˆ 2π

0

[
2

∂ (x,y)

∂ (r,θ)

]
dθdr =

ˆ 1

0

ˆ 2π

0

2r dθdr

= 2π.

Note 7.1.
∂ (x,y)

∂ (r,θ)
= r.

The Green’s theorem is verified.

7.3. Stokes’ Theorem

Definition 7.2. Let w1 be a 1−form on an open over a region S ⊂ R
3 bounded by

∂S in the positive perimeter, then

ˆ

∂S

w1 =

ˆ

S

dw1 (7.3)

Stokes’s theorem states that the effect of the vector-valued function F over the ori-

ented closed curve ∂D, counter-clockwise orientation (represented by w1−form

over R3), is equivalent to the rotational effect over the area bounded by the region

D, i.e. dw1.
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Proof. The definition of field associated (Sect. 5.3.2) is verified.

Example 7.2. Let w1 = xydx+ez dy+xdz. Verify Stokes’ theorem over the region

c(t) = (cos t,sin t,1).

Solution 7.2.

ˆ

∂D

w1 =

ˆ 2π

0

xydx+ ez dy+ xdz dt =

ˆ 2π

0

cos t sin t(cos t)
′
t + e1

(sin t)
′
t + cos t(1)

′
t dt =

ˆ 2π

0

−cos t sin2 t + et cos t dt = 0.

dw1 = d(xy∧dx)+d(ez ∧dy)+d(x∧dz)

=

(
∂xy

∂x
dx+

∂xy

∂y
dy+

∂xy

∂ z
dz

)
∧dx

+

(
∂ez

∂x
dx+

∂ez

∂y
dy+

∂ez

∂ z
dz

)
∧dy

+

(
∂x

∂x
dx+

∂x

∂y
dy+

∂x

∂ z
dz

)
∧dz

=

(
∂xy

∂x

)
dx∧dx+

(
∂xy

∂y

)
dy∧dx+

(
∂xy

∂ z

)
dz∧dx

+

(
∂ez

∂x

)
dx∧dy+

(
∂ez

∂y

)
dy∧dy+

(
∂ez

∂ z

)
dz∧dy

=

(
∂x

∂x

)
dx∧dz+

(
∂x

∂y

)
dy∧dz+

(
∂x

∂ z

)
dz∧dz

=−xdxdy+dzdx+ ezdzdy

(7.4)

now, we parameterize c(r,θ) = (r cosθ ,r sinθ ,1)
ˆ

D

dw1 =

ˆ 1

0

ˆ 2π

0

[− xdxdy+dzdx+ ezdzdy]dθdr =

ˆ 1

0

ˆ 2π

0

[
− r cosθ

∂ (x,y)

∂ (r,θ)

+
∂ (z,x)

∂ (r,θ)
+ e1 ∂ (z,y)

∂ (r,θ)

]
dθdr =

ˆ 1

0

ˆ 2π

0

−r2 cosθ dθdr = 0.

Note 7.2.
∂ (x,y)

∂ (r,θ)
= r,

∂ (z,x)

∂ (r,θ)
= 0, and

∂ (z,y)

∂ (r,θ)
= 0.

The Stokes’ theorem is verified.

7.4. Gauss’ Theorem

Definition 7.3. Let w2 be a 2−form on an open over a region ω ⊂R
3 bounded by

∂ω , in the positive perimeter, then

¨

∂ω
w2 =

˚

ω
dw2 (7.5)
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III

APPLICATIONS



The second part of the book starts with the characterization of the real-valued

functions with a review of the concepts of continuity, differentiation, and integra-

tion. Integration is presented with mappings on a plane and space. We define the

vector-valued functions, their geometric representation and the two vector oper-

ators: rotational and divergence. Each section is self-contained so the unfamiliar

reader can follow up the subject.



Applications

Abstract This chapter gives an alternative solution to the spread of an epidemic

outbreak of k dimension, using a k−Form. The k−region, derivative, and integral

of this k−Form are interpreted. An extension of the k dimension is proposed using

a k−Form equivalent to the electric current and the magnetic field, known as Am-

pere’s law. An algorithm to determine the main function of a protein is introduced

using a k−Form. Finally, the k−region, derivative, and integral of this k−Form

are interpreted.

Keywords: Ampere’s law, clinical variables, mathematical epidemiology, non-

clinical variables, structural proteomics

8.1. Mathematical Epidemiology

8.1.1. Preliminaries

In recent years, after the emblematic analysis of 335 infectious emerging dis-

eases from 1940 to 2004, in which it was reported that 60% were zoonosis and

25% were mosquito-borne viruses [30], and after the A-H1N1 flu outbreak of

1989 [31], there has been substantial progress in the development of surveillance

systems of serious diseases with epidemic potential to support public health, clin-

ical infrastructure, and the limited responsiveness of Emergency Services.

At present, it is still uncertain if a sporadic zoonosis restricted to a certain area

will become a global pandemic or something in between. Therefore, surveillance

systems of severe infectious diseases with epidemic potential should not only be

based on the number of notified cases and their space-time distribution in a deter-

mined geographical area, to issue an early warning.

Exterior Calculus: Theory and Cases, 2021, 90-96                                         90 

Carlos Polanco 

All rights reserved-© 2021 Bentham Science Publishers 

 

 

 

CHAPTER 8 



The best would be to also consider non-clinical variables, such as socio-demographic

factors, public transport, livestock production, and vaccinated population, as it is

known [31] that these factors are the epidemiological foundation for the spread of

a potential pandemic outbreak. Today, a person can be infected on one continent

and be on another 10 hours later.

This, combined with the virulence of the pathogenic agents and some socio-

demographic factors, determine their spreading capability. A surveillance system

of severe infection diseases with epidemic potential, will give health authorities

valuable time to promote suitable measures and minimize the spread of the dis-

ease.

For this reason, it is expected that a surveillance system of severe infectious dis-

eases with epidemic potential identifies, as soon as possible, specific symptomatic

cases of an infectious process; this requires a predictive element that foresees, with

a certain degree of accuracy, a possible event in the time/space of this infectious

process so the authorities take preventive measures in the affected region.

In our opinion, two of the main factors undermining the effectiveness of the warn-

ings are, on the one hand, the increasingly efficient means of transport and on the

other, the numerous mild diseases e.g. colds that present fever.

Nowadays, the surveillance systems of serious infectious diseases with epidemic

potential are mainly based on the number of microbiologically [32] verified cases;

the warnings, although real, are also late as monitoring is based on the assumption

that symptomatic subjects will go to a clinic.

However, if the transmissibility and/or lethality of the virus is very high, or if the

number of medical facilities in the area is very limited, the index patient and some

of his/her contacts will probably die before receiving medical attention, which

will make even harder to trace back the contacts net that will continue growing.

Additionally, the number of doctors and clinics available is frequently less than

optimal, as in the case of developing countries, where the population does not

usually seek medical advice for many different reasons.

In this circumstance, it is necessary to have a predictive model of serious infec-

tious diseases with pandemic potential that considers and weights clinical and

non-clinical variables, instead of depending only on the number of microbiolog-

ically confirmed cases, and that forecasts the emergence and progress of the out-

break in a region.

8.1.2. Model

The model proposed, defines a k−form function (Eq. 5.20), whose dxk is a mea-

sure of the net flux through the boundary of an infinitesimal (k+ 1)−region, en-

closed in an oriented k−geographical region that represents the effect of the total

flux on a particular area of that k−geographical region,

where

Definition 8.1. The derivative [3] of a 3−form function wk (Eq. 8.1) is a k +
1−form function of C1 class wk+1 = dwk (Eq. 8.2).
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wk = f (x1, · · · ,xn)dx j ∧·· ·∧dxk (8.1)

dwk =

(
n

∑
i=1

∂ f (x1, · · · ,xn)

∂xi

dxi

)
∧dx j ∧·· ·∧dxk (8.2)

and,

Definition 8.2. The integral of a differential form wk in R
n over a region D ∈ R

n,

is represented by (Eq. 8.3).

ˆ

D

wk =

ˆ ak

a1

· · ·
ˆ an

ak+m

f1(x1, · · · ,xn)dx1 · · ·dx2 + · · ·+

fn(x1, · · · ,xn)dxn · · ·dx1 dD (8.3)

The previous definitions are in (Chaps. 5, and 6) if the reader wants to deepen in

these concepts, it is advisable to review these chapters.

8.1.2.1 Clinical Variables

Clinical variables [31] are parameters strongly associated with an epidemic pro-

cess and they are related to the seriousness of the patients’ condition, or the med-

ical supplies necessary for their attention, i.e. hemodynamic monitors and me-

chanical ventilators.

8.1.2.2 Non-Clinical Variables

Non-clinical variables associated with an epidemic process are those variables that

are not associated with the medical aspect and may well be associated with trans-

port phenomena, education, population growth, or accessibility to drinking water,

e.g. passengers traveling, illiterate indigenous population, immigrant population,

and dwellings without piped water.

8.1.3. Algorithm

The function is a vector-valued function f : Rk → R
k, where k is the number of

clinical and non-clinical variables.

The integral 6.6 of a k−form represents the total effect or flux that a vector-

valued function f (x) has over the oriented k−volume, on an interval of the do-

main of the function; and the derivative (Def. 5.3.5) dxk is a measure of the net

flux through the boundary of an infinitesimal (k+ 1)−region enclosed in an ori-

ented k−volume.
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SOLUTIONS

Solutions Chapter 1

Solution 1.1. (i) The map is T : R ⇒ R
2,(acosθ ,bsinθ), θ ∈ [0,4π]. (ii) See

(Fig. 1.2).

Figure 1.2 Map of the ellipse where b < a. Figure adapted from [1].

(iii) The mapping runs twice the perimeter of the ellipse.

Solution 1.2. The map is T :R⇒R
3,(cosθ ,sinθ ,1−cosθ −sin3 θ), θ ∈ [0,3π].

Solution 1.3. (i) The paraboloid is the graph of the function f (x,y) = 1− x2 −
y2, the map T : R2 ⇒ R

2,(r cosθ ,r sinθ), r ∈ [0,1],θ ∈ [0,2π] transforms the

rectangle into the unit circle and f ◦T is the third component of the map T : R2 ⇒
R

3. Then, T (r,θ)= (r cosθ ,r sinθ ,1−r2 cos2 θ −r2 sin2 θ) = (r cosθ ,r sinθ ,1−
r2).

Solution 1.4. (i)
¸

C
F ◦ c(t) · c′(t)dt =

´ 2π
0

(−sin2 t,cos t) · (−sin t,cos t)dt = π .
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Solution 1.5. (i)
¸

C
F ◦ c(t) · c′(t)dt =

´ 2π
0

(−sin2 t,cos t,1) · (−sin t,cos t,0)dt =
π .

Solution 1.6. (i) T (r,θ) = (r cosθ ,r sinθ ,
√

1− r2).
‚

S
F ◦T (u,v) ·η(u,v)dS =

´ 2π
0

´ 1

0
(r sinθ ,r cosθ ,

√
1− r2) ·(−r2 cosθ√

1−r2
, r2 sinθ√

1−r2
,r)dr dθ = 2

3
π. (ii) T (t)= (cos t,

sin t,0)
¸

D
F ◦T (t) ·T ′(t)dt =

´ 2π
0

(sin t,cos t,0) · (−sint,cos t,0)dt = 0.

Solution 1.7.
´ 1

0

´ 2π
0

√
(cosθ ,sinθ ,0)× (−r sinθ ,r cosθ ,0)dθ dr = π .

Solution 1.8. From Green’ theorem
˛

∂C

F ◦ c(t) · c′(t) dt =

¨

C

(∇×F) ·k dydx.

Then F(x,y)= (2xy−x2,x+y2) and the first mapping is T1(t)= (t, t2), t ∈ [0,1] so
´ 1

0
(2t3−t2, t+t4) ·(1,2t) dt = 7

6
. The second mapping is T2(t) = (t,

√
t), t ∈ [1,0],

then
´ 0

1
(2t

3
2 − t2,2t) · (1, 1

2
√

t
) dt = − 17

15
. So the line integral is 1

30
. The double

integral is
˜

C
(∇×F) ·k dydx =

´ 1

0

´

√
x

x2 (0,0,1− 2x) ·k dydx = 1
30

. The double

integral is equal to the line integral, the Green’ theorem is verified.

Solution 1.9. From Stokes’ theorem
˛

∂D

F ◦ c(t) · c′(t) ds =

¨

S

(∇×F)(Tβ ) ·Tv ×Tu dvdu.

Since x2

2
+ y2

2
= 2 ⇔ x2 + y2 = 4, the mapping is T (t) = (2cos t,2sin t,2), t ∈

[2π,0]. Then −
´ 2π

0
(6sin t,−4cos t,8sin t) ·(−2sin t,2cos t,0) dt =

´ 2π
0

−12sin2 t−
8cos2 t dt = 20π . With the mapping Tβ (r,θ) = (r cosθ ,r sinθ , r2

2
), the double in-

tegral is
˜

C
(∇×F)(Tβ ) ·Tβ r ×Tβ θ dr dθ =

´ 2

0

´ 2π
0

(2r sinθ +r cosθ ,0,− r2

2
−3) ·

(r2 cosθ ,r2 sinθ ,−r) dθdr = 2π . The double integral is equal to the line integral,

the Stokes’ theorem is verified.

Solution 1.10. From Gauss’ theorem
‹

∂W

F ◦T (u,v) ·Tv ×Tu dv du =

˚

W

(∇ ·F) dzdy dx.

First we compute ∇ ·F = 2xz3 +2xz3 +4xz3 = 8xz3, then

‹

s

F ds =

˚

B

(∇ ·F)dV (1.1)

=

ˆ 3

−3

ˆ 2

−2

ˆ 1

−1

8xz3dxdydz

= 0.
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Solutions for Chapter 2

Solution 2.1. v =−σ2 +σ1 ∧σ2, v = σ2 +2σ21, v = 1+σ1 +2σ2 −σ12.

Solution 2.2. a =−σ1 +σ2, and b = 2σ1 +3σ2.

Solution 2.3. ab =−σ2 +σ1 = σ1 −σ2. So a∧b = σ1 −σ2.

Solution 2.4. ab = 1−3σ12, and ba = 1+3σ12, a∧b =
1

2
(ab−ba) =−3σ12.

Solution 2.5. (i) ab = σ2,ba =−σ2. (ii) a ·b = 0. (iii) a∧b = σ2.

Solution 2.6. (i) a(b+c) = 2. (ii) ab= 1−σ12 and ac= 1+σ12, then ab+ac= 2.

(iii) From (i) and (ii) yes, it is.

Solution 2.7. (i) a(b+c) = 1−σ1+σ2+3σ12. (b+c)a= 1+σ1+σ2+3σ12. (ii)

a∧(b+c) = σ1−σ2. (iii) a∧b =−σ2 and a∧c = 0, then a∧b+a∧c = σ1−σ2.

(iv) Yes, it is.

Solution 2.8. a−1 =
a

a ·a =
2−σ1 +σ1σ2

2−4σ1 +4σ12
.

Solution 2.9. (i) From the definition, the reversion of a is a† = σ2σ1.

Solution 2.10. Its blades are < a >0= 1 and < a >1= 0 < a >2= 2σ12.

Solution 2.11. a∧b =−2σ12+σ1 then I(a∧b) = σ12(−2σ2+σ1) =−2σ1−σ2.

Solution 2.12.

||a||=
√

⌊aa†⌋

=
√
⌊(1+2σ1 +3σ2 +3σ21)(1+2σ1 +3σ2 −3σ21)⌋

=
√

⌊5+✭✭✭✭✭❤❤❤❤❤22σ1 −6σ2⌋
=
√

5.

(2.2)

Solution 2.13. (i) a(bc) = −ασ2 − σ1. (ii) (ab)c = −ασ2 − σ1. (iii) From the

results (i) and (ii) yes, it is.

Solution 2.14. (i) Ia = σ1σ2a = σ2 +σ1. (ii) aI = aσ1σ2 =−σ2 −σ1. (iii) From

these results, (i) is a rotation of π
2

in the clockwise direction and (ii) is a rotation

of π
2

in the counter-clockwise direction.

Solution 2.15. (i) IIa = σ1σ2σ1σ2a = −2σ1 − 3σ2. (ii) aII = aσ1σ2σ1σ2 =
−2σ1 − 3σ2. (iii) From these results, (i) is a reflection of π in the clockwise

direction and (ii) is a reflection of π in the counter-clockwise direction.

Solution 2.16. u =
u

||u|| =
σ1 −2σ2

3
. Then y =−uxu =

10

9
σ1 +

5

9
σ2.
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Solution 2.17. The line Lx0
(v) is given by

Lx0=(1,1)(v) := {x | (x− x0)∧ v = 0}

[(x1σ1 + x2σ2)− (σ1 +σ2)]∧σ1 = 0

[(x1 −1)σ1 +(x2 −1)σ2]∧σ1 = 0

The exterior product (x− x0)∧ v = 1
2
[(x− x0)v− v(x− x0)],

[(x1 −1)σ1 +(x2 −1)σ2]∧σ1 = (x2 −1)σ1σ2 = 0
(2.3)

From (Eq. 2.3), x1 = R and x2 = 1, so the points with the form (R,1) are the

solution. Note that the point (1,1) meets the line Lx0
(v).

Solution 2.18. The plane Px0
(u,v) is given by

Px0=(2,1)(u∧ v) := {x | (x− x0)∧ (u∧ v) = 0} (2.4)

[(x1σ1 + x2σ2)− (σ1 +2σ2)]∧ (σ1σ2) = 0

[(x1 −1)σ1 +(x2 −2)σ2]∧ (σ1σ2) = 0
(2.5)

From the equation [(x1 − 1)σ1 + (x2 − 2)σ2][σ1σ2]− [σ1σ2][(x1 − 1)σ1 + (x2 −
2)σ2] = 0. So, the points (x2−2,x1−1) are the solution. Note that the point (2,1)
meets the plane Px0=(2,1)(u∧ v).
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Solutions for Chapter 3

Solution 3.1. v = 2σ123, v = 1+3σ321, v = 1+σ1 +2σ2 −σ12 +σ123.

Solution 3.2. a =−σ1 +σ2 +σ3, and b = 2σ1 +3σ2 −3σ3.

Solution 3.3. ab = σ23 −σ13 ba = σ23 −σ23. So a∧b = 0.

Solution 3.4. ab =−σ3213 =−σ21 = σ12, and ba =−σ12, a∧b =
1

2
(ab−ba) =

−σ12.

Solution 3.5. (i) ab = σ21,ba =−σ21. (ii) a ·b = 0. (iii) a∧b = σ21 =−σ12.

Solution 3.6. (i) a(b+ c) = 2σ31 −σ32 +σ12. (ii) ab = σ31 −σ32 and ac = σ31 +
σ12, then ab+ac = 2σ31 −σ32 +σ12. (iii) From (i) and (ii) yes, it is.

Solution 3.7. (i) a(b+c) = 1−σ1+σ2+3σ12. (b+c)a= 1+σ1+σ2+3σ12. (ii)

a∧(b+c) = σ1−σ2. (iii) a∧b =−σ2 and a∧c = 0, then a∧b+a∧c = σ1−σ2.

(iv) Yes, it is.

Solution 3.8. a−1 =
a

a ·a =
1−σ1 +2σ1σ3

−2+4σ12 −4σ3
.

Solution 3.9. (i) From the definition, the reversion of a is a† =−σ1σ3.

Solution 3.10. Its blades are < a >0= 1 and < a >2= 2σ12 < a >3=−σ123.

Solution 3.11. a∧b =−2σ3 then I(a∧b) = σ123(−2σ3) =−2σ12.

Solution 3.12. The norm of a is.

||a||=
√
⌊aa†⌋

=
√

⌊(1+σ1 +σ2 −σ21)(1+σ1 +σ2 +σ21)⌋
=
√
⌊4+✟

✟❍
❍4σ2⌋

=
√

2.

(3.6)

Solution 3.13. (i) a(bc) =−ασ32−σ31. (ii) (ab)c =−ασ32−σ31. (iii) From the

results (i) and (ii) yes, it is.

Solution 3.14. (i) Ia = σ1σ2σ3a = σ23+σ12. (ii) aI = aσ1σ2σ3 = σ23+σ12. (iii)

From these results, (i) is a rotation of π
2

in the clockwise direction and (ii) is a

rotation of π
2

in the counter-clockwise direction.

Solution 3.15. (i) IIa = σ1231232 + σ1231233 = −σ1 − σ3. (ii) aII = σ2123123 +
σ3123123 =−σ1 −σ3. (iii) From these results, (i) is a reflection of π in the clock-

wise direction and (ii) is a reflection of π in the counter-clockwise direction.

Solution 3.16. u =
u

||u|| =
σ1 −2σ2

3
. Then y =−uxu =

2

3
σ1 +

8

9
σ2 +σ3.
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Solution 3.17. The line Lx0
(v) is given by

Lx0=(0,1,0)(v) := {x | (x− x0)∧ v = 0}

[(x1σ1 + x2σ2 + x3σ3)− (0σ1 +σ2 +0σ3)]∧ (σ1 +σ2 +σ3) = 0

[(x1 −0)σ1 +(x2 +1)σ2 +(x3 −0)σ3]∧ (σ1 +σ2 +σ3) = 0

The outer product (x− x0)∧ v = 1
2
[(x− x0)v− v(x− x0)],

(x2 −1)σ23 + x1σ13 = 0
(3.7)

From (Eq. 4.11), x1 = 0,x2 = 1, and x3 =R. So, the points with the form (0,1,R)
are the solution. Note that the point (0,1,0) meets the line Lx0

(v).

Solution 3.18. The plane Px0
(u,v) is given by

Px0=(2,1,1)(u∧ v) := {x | (x− x0)∧ (u∧ v) = 0} (3.8)

[(x1σ1 + x2σ2)− (σ1 +2σ2)]∧ (σ1σ2) = 0

[(x1 −1)σ1 +(x2 −2)σ2]∧ (σ1σ2) = 0
(3.9)

From (Eq. 4.13), [(x1 − 1)σ1 + (x2 − 2)σ2][σ1σ2]− [σ1σ2][(x1 − 1)σ1 + (x2 −
2)σ2] = 0. So, the points (x2 − 2,x1 − 1) are the solution. Note that the point

(2,1,1) meets the plane Px0=(2,1,1)(u∧ v).
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Solutions for Chapter 4

Solution 4.1. v = 2, v = 1+ 3σ1, v = −σ1 ∧σ2 ∧σ3 ∧σ4 ∧σ5 ∧σ6, v = 2σ21,

v = 1+σ1 +2σ2 −σ12 +σ123456789.

Remark 4.1. All of the above vectors are considered to be multivectors in their

most general sense. So it is avoided to qualify them particularly as bivectors,

trivectors among other adjectives.

Solution 4.2. (i) a =−σ1 +σ2 +σ3 −σ4 +2σ5, and b = 2σ1 +3σ2 −3σ3 +σ4 −
σ5 +3σ6.

(ii) The line generated by Lx0
and the plane generated by Px0

, with the orientation

of the vectors v and u∧ v respectively.

Lx0=(1,2,3,4)(v) = {x | (x− x0)∧ v = (4,3,2,1) = 0},

Px0=(1,2,3,4)(u∧ v) = {x | (x− x0)∧ [u = (1,−1,1,−1)∧ v = (1,2,−2,3)] = 0}.

Solution 4.3. ab = σ2345, and ba = σ2345, a∧b =
1

2
(ab−ba) = 0.

Solution 4.4. ab = σ2345, and ba = σ2345, a ·b =
1

2
(ab+ba) = σ2345.

Solution 4.5. (i) ab=σ12345678,ba=−σ56781234 =σ12345678. (ii) a ·b=σ12345678.

(iii) a∧b = 0.

Solution 4.6. (i) a(b+ c) = σ4 − 2σ234 −σ134. (ii) ab = −σ234 −σ134 and ac =
−σ234 +σ4, then ab+ac = σ4 −2σ234 −σ134. (iii) From (i) and (ii) yes, it is.

Solution 4.7. (i) a(b+c) =−σ234 −σ34. (b+c)a = σ234 −σ34. (ii) a∧ (b+c) =
−σ234. (iii) a∧ b = −σ234 and a∧ c = −σ34, then a∧ b+ a∧ c = −σ234 −σ34.

(iv) Yes, it is.

Solution 4.8. a−1 =
a

a ·a =
1+σ1 +σ1 + · · ·+σn

a+σ1a+σ2a+ · · ·+σna
=

a

a+a(σ1 +σ2 + · · ·+σn

=
a

a+a(a−1)
=

a

a+a2 −a)
=

1

a
.

Solution 4.9. (i) From the definition, the reversion of a is a† = σ654321.

Remark 4.2. Note that in this case a† =−a.

Solution 4.10. Its blades are < a >0= 1 and < a >2= 2σ12 < a >7= σ123456.

Solution 4.11. a∧b =−a then I(a∧b) =−Ia.

Solution 4.12. The norm of a is.

||a||=
√
⌊aa†⌋

=
√

⌊(σ1 +σ2 + · · ·+σn)(σ1 +σ2 + · · ·+σn)⌋

=
√

⌊n+✭✭✭✭✭✭❤❤❤❤❤❤vector-residue⌋
=
√

n.

(4.10)
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Solution 4.13. (i) a(bc) = σ12346. (ii) (ab)c = σ12346. (iii) From the results (i) and

(ii) yes, it is.

Solution 4.14. (i) Ia = σ1234a =. (ii) aI = aσ1234. (iii) From these results, (i) is a

rotation of π
2

in the clockwise direction and (ii) is a rotation of π
2

in the counter-

clockwise direction.

Solution 4.15. (i) IIa = σ1234σ1234a. (ii) aII = aσ1234σ1234. (iii) From these re-

sults, (i) is a reflection of π in the clockwise direction and (ii) is a reflection of π
in the counter-clockwise direction.

Solution 4.16. u =
u

||u|| =
σ1 −2σ2

3
. Then y =−uxu =

2

3
σ1 +

8

9
σ2 +σ3.

Solution 4.17. The line Lx0
(v) is given by

Lx0=(1,1,1,1)(v) := {x | (x− x0)∧ v = 0}

[(x1σ1 + x2σ2 + x3σ3 + x4σ4)− (σ1 +σ2 +σ3 +σ4)]∧ (σ1 +σ4) = 0

[(x1 −1)σ1 +(x2 +1)σ2 +(x3 −1)σ3 +(x4 −1)σ4]∧ (σ1 +σ4) = 0

The exterior product (x− x0)∧ v = 1
2
[(x− x0)v− v(x− x0)],

[(x2 −1)σ12 +(x3 −1)σ13 − (x4 −1)σ14] = 0
(4.11)

From (Eq. 4.11), x1 = R,x2 = 1,x3 = 1, and x4 = 0. So, the points with the form

(R,1,1,1) are the solution. Note that the point (1,1,1,1) meets the line Lx0
(v).

Solution 4.18. The plane Px0
(u,v) is given by

Px0=(2,1,1,1,1)(u∧ v) := {x | (x− x0)∧ (u∧ v) = 0} (4.12)

[(x1σ1 + x2σ2)− (σ1 +2σ2)]∧ (σ1σ2) = 0

[(x1 −1)σ1 +(x2 −2)σ2]∧ (σ1σ2) = 0
(4.13)

From (Eq. 4.13), [(x1 − 1)σ1 + (x2 − 2)σ2][σ1σ2]− [σ1σ2][(x1 − 1)σ1 + (x2 −
2)σ2] = 0. So, the points (x2 − 2,x1 − 1) are the solution. Note that the point

(2,1,1,1,1) meets the plane Px0=(2,1,1,1,1)(u∧ v).
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Solutions for Chapter 5

Solution 5.1. The n degree of a wi form is the term that corresponds to the highest

degree in the form. wo(x,y,z) = 3+2xyz is a 0−form. wi(x,y,z) = 3+2xyz+4dz

is a 1−form. w2(x,y,z) = 3 + 2xyz + 4dz + dydz is a 2−form. Note this in-

cludes terms of a 0−form and a 1−form. w3(x,y,z) = 2 + exyzdx ∧ dy ∧ dz.

w4(x1,x2,x3,x4) = ex1 dx1 ∧d2 ∧d3 ∧d4.

Solution 5.2.

d(ex2yz) = (ex2yz)′x +(ex2yz)′y +(ex2yz)′z

= 2xyzex2yz + x2zex2yz + x2yex2yz
(5.14)

Solution 5.3.

d(ex2yzdx+ sinxyzdy) = d(ex2yzdx)+d(sinxyzdy)

= (ex2yz)′xdx+(ex2yz)′ydx+(ex2yz)′zdx

+(sinxyz)′xdx+(sinxyz)′ydx+(sinxyz)′zdx

= x2zex2yzdydx+ x2yex2yzdzdx

+ xzcosxyzdydx+ xycosxyzdzdx

(5.15)

Solution 5.4.

d(x2y+ y3) = (x2y+ y3)′x +(x2y+ y3)′y +(x2y+ y3)′z

= 2xy+3y2 +0
(5.16)

Solution 5.5.

d(x3y+ y3dydz) = (x3y+ y3dydz)′x +(x3y+ y3dydz)′y +(x3y+ y3dydz)′z

= 3x2ydxdydz
(5.17)

Solution 5.6.

d

( −x

x2y+ y2
dxdy

)
=

( −x

x2y+ y2
dxdy

)′

x

+

( −x

x2y+ y2
dxdy

)′

y

+

( −x

x2y+ y2
dxdy

)′

z

= 0dxdydz

(5.18)

Solution 5.7. (i)
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dw = d(xdx+ yzdy+ x3ydz)

= d(xdx)+d(yzdy)+d(x3ydz)

= d(x)dx+d(yz)dy+d(x3y)dz

= dxdx+ zdydy+ ydzdy+3x2ydxdz+ x3dydz

= ydzdy+3x2ydxdz+ x3dydz

=−ydydz+3x2ydxdz+ x3dydz

= 3x2ydxdz+(x3 − y)dydz

= 3x2ydx∧dz+(x3 − y)dy∧dz

(5.19)

d(xdx) = (x)′xdx+(x)′ydx+(x)′zdx

= dxdx+0+0

= dxdx

(5.20)

d(yzdy) = (yz)′xdy+(yz)′ydy+(yz)′zdy

= 0+ zdydy+ ydzdy
(5.21)

d(x3ydy) = (x3y)′xdz+(x3y)′ydz+(x3y)′zdz

= 3x2ydxdz+ x3dydz+0
(5.22)

(ii)

d(dw) = d[3x2ydxdz+(x3 − y)dydz]

= d(3x2ydxdz)+d[(x3 − y)dydz]

= d(3x2y)dxdz+d(x3 − y)dydz

= 6xydxdxdz+3x2dydxdz+3x2dxdydz−dydydz

= 0

(5.23)

d(3x2y)dxdz = (3x2y)′xdxdz+(3x2y)′ydxdz+(3x2y)′zdxdz

= 6xydxdxdx+3x2dydxdz+0
(5.24)

d(x3 − y)dydz = (x3 − y)′xdydz+(x3 − y)′ydydz+(x3 − y)′zdydz

= 3x2dxdydz−dydydz+0
(5.25)

(iii)

(w∧η) = (xdx+ yzdy+ x3ydz)∧ (xydz)

= x2ydxdz+ y2zxdydz+ x3yx2dzdz

= x2ydxdz+ y2zxdydz

(5.26)

(iv)
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d(w∧η) = d(x2ydxdz+ y2zxdydz)

= d(x2ydxdz)+d(y2zxdydz)

= d(x2y)dxdz+d(y2zx)dydz

=−x2dxdydz+ y2zdxdydz

= (y2z− x2)dxdydz

(5.27)

d(x2y)dxdz = (x2y)′xdxdz+(x2y)′ydxdz+(x2y)′zdxdz

= 2xydxdxdz+ x2dydxdz+0

=−x2dxdydz

(5.28)

d(y2zx)dydz = (y2zx)′xdydz+(y2zx)′ydydz+(y2zx)′zdydz

= y2zdxdydz+2yxzdydydz+ y2xdzdydz

= y2zdxdydz

(5.29)

(v)

From (iv) d(w∧η) = dw∧η +(−1)kw∧dη .

d(ex2yz)dxdy = (ex2yz)′xdxdy+(ex2yz)′ydxdy+(ex2yz)′zdxdy

=−x2yex2yzdxdydz
(5.30)

Solution 5.8. (i)

w11 ∧w12 =
1

2
(w11w12 −w12w11)

= (3dx+dy)(exdx+2dy)

= 3exdx∧dx+6dx∧dy+ exdy∧dx+2dy∧dy

= (6− ex)dx∧dy

= (6− ex)dxdy

(5.31)

(ii)

d(6− ex)∧dx∧dy =−exdx∧dx∧dy

= 0
(5.32)

Solution 5.9.

dx∧dy = (−r sinθdθ + cosθdr)∧ (r cosθdθ + sinθdr)

=−r2 sinθ cosθdθdθ − r sin2 θdθdr+ r cos2 θdrdθ + cosθ sinθdrdr

= (−r sin2 θ − r cos2 θ)dθ ∧dr

= r dr∧dθ

(5.33)
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Solution 5.10. (i)

w4 ∧w4 = dx1dx3 (5.34)

(ii)

dw4 = d(dx1dx3)

= (dx1dx3)
′
x1
+(dx1dx3)

′
x2
+(dx1dx3)

′
x3
+(dx1dx3)

′
x4

=−dx1dx2dx3 +dx1dx3dx4

(5.35)
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Solutions for Chapter 6

Solution 6.1.

ˆ

D

w0 =

ˆ 3

1

3x2 +2x = (17+6)− (13 +2) = 23−3 = 20.

Solution 6.2.

ˆ

D

w0 =

ˆ 2

1

ˆ 2

1

ˆ 2

1

x2 +2xy− z = (22 +8−2)− (13 +4−1) =10

−4 = 6.

Solution 6.3.

ˆ

D

w1 =

ˆ 2

0

x4dx+3xydy− zdz =

ˆ 2

0

t4(t)
′
t +3t3(t2)

′
t − t(t3)

′
t dt =

ˆ 2

0

6t4 + t4 −3t3 dt =

[
7

5
t4 − 3

4
t3

]
=

13

20
.

Solution 6.4.

˛

T

F ◦T (t) ·T ′(t)dt =

ˆ π

−π
(−t5,2sin t) · (1,4t3)dt =

ˆ π

−π
−t5+

8t3 sin t dt = 16π(π2 −6).

Solution 6.5.

ˆ

D

w1 =

ˆ π

−π
−yxdx+ cosxdy =

ˆ π

−π
−t5(t)

′
t + cos t(t4)

′
t dt =

ˆ π

−π

−t5 +4t3 cos t dt = 0.

Solution 6.6.

ˆ

D

w1 =

ˆ π

−π
x4 +2xcosxdx =

2

5
π5.

Solution 6.7.

ˆ

D

w2 =

ˆ 1

0

ˆ π
2

0

−ydxdy+ x2dydzdθdr =

ˆ 1

0

ˆ π
2

0

−r sinθ
∂ (x,y)

∂ (r,θ)

+r cosθ
∂ (y,z)

∂ (r,θ)
dθdr =

ˆ 1

0

ˆ π
2

0

−r2 sinθ + r2 cos2 θ sinθ dθdr =−2

9
.

Note 6.1.
∂ (x,y)

∂ (r,θ)
= r, and

∂ (y,z)

∂ (r,θ)
= sinθ .

Solution 6.8. Using T (r,θ) = (r cosθ ,r sinθ ,3) with θ ∈ [0,2π], r ∈ [0,
√

2].

‹

S

F ◦T (r,θ) ·η(r,θ)dS =

ˆ θ2

θ1

ˆ r2

r1

F(T (r,θ)) · ∂T

∂ r
× ∂T

∂θ
dr dθ

=

ˆ 2π

0

ˆ

√
2

0

F(T (r,θ)) · ∂T

∂ r
× ∂T

∂θ
dr dθ

=

ˆ 2π

0

ˆ

√
2

0

(r cosθ ,r sinθ ,1) · (0,0,r)dr dθ

= 2π.

(6.36)

Solution 6.9.

¨

D

w2 =

ˆ 1

0

ˆ x

0

x3 +2xydydx =

ˆ 1

0

x4 + x3 dx =
9

20
.

Solution 6.10.

ˆ

D

w3 =

ˆ 2

0

ˆ 2π

0

ˆ π

0

[xyzdzdydx]drdθdφ =

ˆ 1

0

ˆ π

0

ˆ π
2

0

rθφ
∂ (z,y,x)

∂ (r,θ ,φ)
=

π4

8
. (6.37)
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Note 6.2.
∂ (z,y,x)

∂ (r,θ ,φ)
= 1

Solution 6.11.

˚

D

w3 =

ˆ 1

0

ˆ 1

0

ˆ 1

0

x4z+2xydxdy =
3

5
.

Solution 6.12.

˘

D

w4 =

ˆ π

0

ˆ 2π

0

ˆ 3π

0

ˆ 4π

0

x1x2x3x2
4dx4 dx3 dx2 dx1 = 24π9.
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Solutions for Chapter 7

Solution 7.1.

˚

D

w0 =

ˆ 1

0

ˆ 2

0

ˆ 3

0

xyzdzdydx =

(
9

2

)(
4

2

)(
1

2

)
=

9

2
. In the Heaviside-

Gibbs algebra, this integral represents a volume in the R
3 space or an area in R

2.

In the Geometric algebra this is a 0−form w0 integral.

Solution 7.2.

ˆ

D

dw1 =

ˆ 2π

0

yxdx+2zydy+dz =

ˆ 2π

0

(cos t sin t(cos t)
′
t +2sin t

(sin t)
′
t)dt =

ˆ 2π

0

(− sin2 t cos t +2sin t cos t)dt. Now if F(x,y) = (yx,2zy,1), ⇒

F ◦C = (cos t sin t,2sin t,1), then

ˆ 2π

0

(cos t sin t,2sin t,1) · (− sin t,cos t,0)dt. So

both integrals are equivalent.

Solution 7.3.

ˆ

D

w2 =

ˆ 1

0

ˆ 2π

0

[2zdxdy+3xdydz+4ydzdx]dθdr =

ˆ 1

0

ˆ 2π

0

[
4

∂ (x,y)

∂ (r,θ)
+r cosx

∂ (y,z)

∂ (r,θ)
+ r sinx

∂ (z,x)

∂ (r,θ)

]
dθdr = 24

ˆ 1

0

ˆ 2π

0

r dθdr = 24π.

Note 7.3.
∂ (x,y)

∂ (r,θ)
= 6r,

∂ (y,z)

∂ (r,θ)
= 0, and

∂ (z,x)

∂ (r,θ)
= 0.

If F(x,y,z) = (2x,3y,4z), T (r,θ) = (r cosθ ,r sin t,1),r ∈ [0,1],θ ∈ [0,2π], its Ja-

cobian is 24, then 24

ˆ 1

0

ˆ 2π

0

rdθ dr = 24π . So both integrals are equivalent.

Solution 7.4.

ˆ

∂D

w1 =

ˆ 2π

0

−4ydx+4xdy dt =

ˆ 2π

0

−4sin t(4cos t)
′
t +4cos t

(4sin t)
′
t dt

=

ˆ 2π

0

16sin2 t +16cos2 t dt = 16π.

dw1 = d(−4y∧dx)+d(4x∧dy))

=−
(

∂4y

∂x
dx+

∂4y

∂y
dy

)
∧dx+

(
∂4x

∂x
dx+

∂4x

∂y
dy

)
∧dy

=−
(

∂4y

∂x

)
dx∧dx−

(
∂4y

∂y

)
dy∧dx

+

(
∂4x

∂x

)
dx∧dy+

(
∂4x

∂y

)
dy∧dy

= 8dxdy

(7.38)

Now, we parameterize c(r,θ) = (r cosθ ,r sinθ ,1)
ˆ

D

dw1 =

ˆ 1

0

ˆ 2π

0

[8dxdy]dθdr =

ˆ 1

0

ˆ 2π

0

[
8

∂ (x,y)

∂ (r,θ)

]
dθdr =

ˆ 1

0

ˆ 2π

0

8r dθdr

= 16π.
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Note 7.4.
∂ (x,y)

∂ (r,θ)
= r.

Green’s theorem is verified.

Solution 7.5.

¨

D

(
∂Q

∂x
− ∂P

∂y
)dydx =

ˆ 2

0

ˆ 2−x

0

2xy2 − xdydx

=− 4

15

ˆ

∂D

P◦ c(t)
x(t)

dt
+Q◦ c(t)

y(t)

dt
=

ˆ

∂D1

P · c1(t)
dx

dt
+Q · c1(t)

dy

dt

+

ˆ

∂D2

P · c2(t)
dx

dt
+Q · c2(t)

dy

dt

+

ˆ

∂D3

P · c3(t)
dx

dt
+Q · c3(t)

dy

dt

= 0− 4

15
+0

=− 4

15

(7.39)

Where c1(t) = (t,0), t ∈ [0,2], c2(t) = (2− t, t), t ∈ [0,2], and c3(t) = (0, t), t ∈
[2,0].

ˆ

∂D1

P · c1(t)
dx

dt
+Q · c1(t)

dy

dt
=

ˆ 2

0

xy(0)+ x2y2(2)dt

=

ˆ 2

0

0(1)+0(0)dt

= 0

ˆ

∂D2

P · c2(t)
dx

dt
+Q · c2(t)

dy

dt
=

ˆ 2

0

xy(−1)+ x2y2(1)dt

=

ˆ 2

0

−t(1− t)+(1− t)2(t2)dt

=− 4

15

ˆ

∂D3

P · c3(t)
dx

dt
+Q · c3(t)

dy

dt
=

ˆ 0

2

xy(1)+ x2y2(0)dt

=

ˆ 0

2

0(0)+0(1)dt

= 0

(7.40)
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Solution 7.6.

ˆ

∂D

w1 =

ˆ 2π

0

ydx+ ez dy+ xdz dt =

ˆ 2π

0

sin t(cos t)
′
t + e1

(sin t)
′
t + cos t(1)

′
t dt =

ˆ 2π

0

−sin2 t + ecos t dt =−π.

dw1 = d(y∧dx)+d(ez ∧dy)+d(x∧dz)

=

(
∂y

∂x
dx+

∂y

∂y
dy+

∂y

∂ z
dz

)
∧dx

+

(
∂ez

∂x
dx+

∂ez

∂y
dy+

∂ez

∂ z
dz

)
∧dy

+

(
∂x

∂x
dx+

∂x

∂y
dy+

∂x

∂ z
dz

)
∧dz

=

(
∂y

∂x

)
dx∧dx+

(
∂y

∂y

)
dy∧dx+

(
∂y

∂ z

)
dz∧dx

+

(
∂ez

∂x

)
dx∧dy+

(
∂ez

∂y

)
dy∧dy+

(
∂ez

∂ z

)
dz∧dy

=

(
∂x

∂x

)
dx∧dz+

(
∂x

∂y

)
dy∧dz+

(
∂x

∂ z

)
dz∧dz

=−dxdy+dzdx+ ezdzdy

(7.41)

Now, we parameterize c(r,θ) = (r cosθ ,r sinθ ,1)
ˆ

D

dw1 =

ˆ 1

0

ˆ 2π

0

[−dxdy+dzdx+ ezdzdy]dθdr =

ˆ 1

0

ˆ 2π

0

[
− ∂ (x,y)

∂ (r,θ)

+
∂ (z,x)

∂ (r,θ)
+ e1 ∂ (z,y)

∂ (r,θ)

]
dθdr =

ˆ 1

0

ˆ 2π

0

−r dθdr =−π.

Note 7.5.
∂ (x,y)

∂ (r,θ)
= r,

∂ (z,x)

∂ (r,θ)
= 0, and

∂ (z,y)

∂ (r,θ)
= 0.

Stokes’s theorem is verified.

Solution 7.7. If T (θ ,r) = (r cos t,r sin t,1− r cos t − r sin t),

∂ (Ty,Tz)

∂ (θ ,r)
=

∣∣∣∣
r cosθ sinθ
r sinθ −r cosθ

∣∣∣∣ (7.42)

∂ (Tz,Tx)

∂ (θ ,r)
=

∣∣∣∣
r sinθ −r cosθ
−r sinθ sinθ

∣∣∣∣ (7.43)

∂ (Tx,Ty)

∂ (θ ,r)
=

∣∣∣∣
−r sinθ sinθ
r cosθ sinθ

∣∣∣∣ (7.44)
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¨

S

dw =

ˆ 1

0

ˆ 2π

0

(
∂R

∂y
− ∂Q

∂ z
)dydz+(

∂P

∂ z
− ∂R

∂x
)dzdx+(

∂Q

∂x
− ∂P

∂y
)dxdy

=

ˆ 1

0

ˆ 2π

0

(
∂R

∂y
− ∂Q

∂ z
)◦T (θ ,r)

∂ (Ty,Tz)

∂ (θ ,r)

+(
∂P

∂ z
− ∂R

∂x
)◦T (θ ,r)

∂ (Tz,Tx)

∂ (θ ,r)

+(
∂Q

∂x
− ∂P

∂y
)◦T (θ ,r)

∂ (Tx,Ty)

∂ (θ ,r)

=

ˆ 1

0

ˆ 2π

0

(0)
∂ (Ty,Tz)

∂ (θ ,r)
+(0)

∂ (Tz,Tx)

∂ (θ ,r)
+(0)

∂ (Tx,Ty)

∂ (θ ,r)
dθdr

= 0

(7.45)

ˆ

∂D

P · c(t)dx

dt
+Q · c(t)dy

dt
+R · c(t)dy

dt
=

ˆ 2π

0

(cos t)(−sin t)

+(sin t)(cos t)

+(1− cos t − sin t)(sin t − cos t)dt

= 0

(7.46)

Solution 7.8.

ˆ

D

w2 =

ˆ π

0

ˆ 2π

0

[xzdxdy− xydxdz−dydz]dθdφ =

ˆ π

0

ˆ 2π

0

[

cosθ sinφ cosφ
∂ (y,x)

∂ (r,θ)
+ cosθ sinφ sinθ sinφ

∂ (z,x)

∂ (r,θ)
+

∂ (z,y)

∂ (r,θ)

]
dθdφ

=

ˆ π

0

ˆ 2π

0

dθdφ =−cosθ sinφ cosφ sinφ cosφ − cosθ sinφ sinθ sinφ sin2 φ sinθ

−sin2 φ cosθ dθ dφ = −
ˆ π

0

ˆ 2π

0

cosθ cos2 φ sin2 φ + cosθ sin3 φ sin2 θ cosθ

+sin2 φ dθ dφ = 0.

Note 7.6.
∂ (x,y)

∂ (θ ,φ)
=−sinφ cosφ ,

∂ (z,x)

∂ (θ ,φ)
=−sin2 φ sinθ , and

∂ (z,y)

∂ (θ ,φ)
= sin2 φ

cosθ .
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dw2 =−d(dydz)+d(xydzdx)+d(xzdxdy)

= (−∂1

∂x
dx− ∂1

∂y
dy− ∂1

∂ z
dz)∧ (dy∧dz)

+(
∂xy

∂x
dx+

∂xy

∂y
dy+

∂xy

∂ z
dz)∧ (dz∧dx)

+(
∂xz

∂x
dx+

∂xz

∂y
dy+

∂xz

∂ z
dz)∧ (dx∧dy)

=−∂1

∂x
dx(dy∧dz)− ∂1

∂y
dy(dy∧dz)− ∂1

∂ z
dz(dy∧dz)

+
∂xy

∂x
dx(dz∧dx)+

∂xy

∂y
dy(dz∧dx)+

∂xy

∂ z
dz(dz∧dx)

+
∂xz

∂x
dx(dx∧dy)+

∂xz

∂y
dy(dx∧dy)+

∂xz

∂ z
dz(dx∧dy)

=−∂1

∂x
dxdydz− ∂1

∂y
dydydz− ∂1

∂ z
dzdydz

+
∂xy

∂x
dxdzdx+

∂xy

∂y
dydzdx+

∂xy

∂ z
dzdzdx

+
∂xz

∂x
dxdxdy+

∂xz

∂y
dydxdy+

∂xz

∂ z
dzdxdy

= 2xdxdydz

(7.47)

Ahora aplicamos la parametrizacion T (ρ ,θ ,φ) = (ρ cosθ sinφ ,ρ sinθ sinφ ,
ρ cosφ), θ ∈ [0,2π], φ ∈ [0,π], and ρ ∈ [0,1].
ˆ

D

dw2 =

ˆ 1

0

ˆ π

0

ˆ 2π

0

2xdxdydzdθ dφ dρ =

ˆ 1

0

ˆ π

0

ˆ 2π

0

2ρ cosθ sinφ

∂ (x,y,z)

∂ (ρ ,θ ,φ)
=

ˆ 1

0

ˆ π

0

ˆ 2π

0

ρ cosφ2ρ cosθ sinφdθ dφ dρ = 2ρ2 cosφ sinφ

dφ dρ = 0.

Note 7.7.
∂ (x,y,z)

∂ (ρ ,θ ,φ)
= ρ cosφ .

Gauss’s theorem is verified.

Solution 7.9.

ˆ

Ω
=

˚

Ω
(

∂P

∂x
+

∂Q

∂y
+

∂R

∂ z
)dzdydx

=

ˆ −1

−1

ˆ

√
1−x2

−
√

1−x2

ˆ

√
1−x2−y2

−
√

1−x2−y2

8xyzdzdydx

= 0

(7.48)
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¨

∂Ω
dΩ =

ˆ π

0

ˆ 2π

0

P◦T
∂ (Ty,Tz)

∂ (θ ,φ)
+Q◦T

∂ (Tz,Tx)

∂ (θ ,φ)
+R◦T

∂ (Tx,Ty)

∂ (θ ,φ)
dθ dφ

=

ˆ π

0

ˆ 2π

0

cos2 θ sin2 φ
∂ (Ty,Tz)

∂ (θ ,φ)
+ sin2 θ sin2 φ

∂ (Tz,Tx)

∂ (θ ,φ)
+ cos2 φ

∂ (Tx,Ty)

∂ (θ ,φ)
dθdφ

=

ˆ π

0

ˆ 2π

0

(cos2 θ sin2 φ)(−cosθ sin2 φ)+(sin2 θ sin2 φ)(−sin2 φ)

+(cos2 φ)(−sin2 θ sinφ cosφ − cos2 θ sinφ cosφ)dθdφ

= 0

(7.49)

Note 7.8. The sign depends on the orientation.

∂ (Ty,Tz)

∂ (θ ,r)
=

∣∣∣∣
cosθ cosφ sinθ cosφ

0 −sinφ

∣∣∣∣

=−cosθ sin2 φ

(7.50)

∂ (Tz,Tx)

∂ (θ ,r)
=

∣∣∣∣
0 −sinφ

−sinθ sinφ cosθ cosφ

∣∣∣∣

=−sin2 φ

(7.51)

∂ (Tx,Ty)

∂ (θ ,r)
=

∣∣∣∣
−sinθ sinφ cosθ cosφ
cosθ sinφ sinθ cosφ

∣∣∣∣

=−sin2 θ sinφ cosφ − cos2 θ sinφ cosφ

(7.52)

Solution 7.10.

ˆ

D

w3 =

ˆ 1

0

ˆ 2

0

ˆ 3

0

[x3x4 dx1 dx2 dx3]du1du2du3

=

ˆ 1

0

ˆ 2

0

ˆ 3

0

[
u1u3

∂ (x1,x2,x3)

∂ (u1,u2,u3)

]
du1du2du3

=

ˆ 1

0

ˆ 2

0

ˆ 3

0

u1u3du1du2du3

=
9

2

(7.53)

Note 7.9.
∂ (x1,x2,x3)

∂ (u1,u2,u3)
= 1.

116    Exterior Calculus: Theory and Cases Carlos Polancoo 



dw3 = d(x1x4 dx1dx2dx3 + x2x3 dx3dx4dx1)

= (
∂x1x4

∂x1
dx1 +

∂x1x4

∂x2
dx2 +

∂x1x4

∂x3
dx3 +

∂x1x4

∂x4
dx4)∧ (dx1 ∧dx2 ∧dx3)

+(
∂x2x3

∂x1
dx1 +

∂x2x3

∂x2
dx2 +

∂x2x3

∂x3
dx3 +

∂x2x3

∂x4
dx4)∧ (dx3 ∧dx4 ∧dx1)

=
∂x1x4

∂x1
dx1(dx1 ∧dx2 ∧dx3)+

∂x1x4

∂x2
dx2(dx1 ∧dx2 ∧dx3)

+
∂x1x4

∂x3
dx3(dx1 ∧dx2 ∧dx3)+

∂x1x4

∂x4
dx4(dx1 ∧dx2 ∧dx3)

=
∂x2x3

∂x1
dx1(dx3 ∧dx4 ∧dx1)+

∂x2x3

∂x2
dx2(dx3 ∧dx4 ∧dx1)

+
∂x2x3

∂x3
dx3(dx3 ∧dx4 ∧dx1)+

∂x2x3

∂x4
dx4(dx3 ∧dx4 ∧dx1)

=
∂x1x4

∂x1
dx1dx1dx2dx3 +

∂x1x4

∂x2
dx2dx1dx2dx3

+
∂x1x4

∂x3
dx3dx1dx2dx3 +

∂x1x4

∂x4
dx4dx1dx2dx3

+
∂x2x3

∂x1
dx1dx3dx4dx1 +

∂x2x3

∂x2
dx2dx3dx4dx1

+
∂x2x3

∂x3
dx3dx3dx4dx1 +

∂x2x3

∂x4
dx4dx3dx4dx1

=−(x1 + x3)dx1dx2dx3dx4

(7.54)

Now, we parameterize T (u1,u2,u3,u4) = (u1,u2,u3,u4),u1 ∈ [0,α1], u2 ∈ [0,α2],
u3 ∈ [0,α3], and u4 ∈ [0,α4].
ˆ

D

dw3 =

ˆ α1

0

ˆ α2

0

ˆ α3

0

ˆ α4

0

(x1 + x3)dx1dx2dx3dx4 =
9

2
. Where α1 = 1,α2 =

2,α3 = 3, and α4 =−1− −
√

7

2
, or α4 =

1

2

(√
7−2

)
.

The Fundamental Theorem of Calculus is verified.
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Grad(dw0), 76

Rot(dw1), 76

k−Forms, 70

k−Riemann integral case, 88
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Associativity in Gn, 59

Associativity on G2, 26

Associativity on G3, 44

Bivector, 21

Blades: < a >, 28, 46, 61

Clifford algebra, 19, 37, 55

Component: v‖, 29, 47, 62

Component: v⊥, 29, 47, 62

Counter-clockwise orientation, 12

Counter-clockwise orientation

boundary, 12

Counter-clockwise orientation

surface, 12, 13

Derivative of 0−Forms, 71

Derivative of 1−Forms, 71

Derivative of 2−Forms, 73

Derivative of 3−Forms, 74
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Differential forms, 67, 68

Differentiation, 67

Differentiation of Forms, 70
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Distributivity a∧ (b+ c) in Gn, 58

Distributivity a∧ (b+ c) on G2, 25

Distributivity a∧ (b+ c) on G3, 43

Divergence, 77

Divergence associated to dw2, 77

Divergence of a function, 10

Double Riemann integral, 88

Double Riemann integral case, 85

Dual: Iar, 27, 45, 60

Early

Warnings, 101

Emerging

Diseases, 101

Epidemic

Potential, 101, 102

Surveillance system, 102

Epidemic surveillance

System, 102

Systems, 101, 102

systems, 101

Exterior derivative, 67

Fever, 102

Fundamental theorem of Calculus,

91

Gauss’ theorem in R
3, 13

Geometric algebra on G2, 19

Geometric algebra on G3, 37

Geometric algebra applications, 101

Geometric algebra on G2, 19

Geometric Algebra on G3, 37
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Geometric product, 21
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Oriented closed curve, 13, 92
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Oriented curve, 12
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Oriented surface, 13

Oriented trajectory, 11
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68
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Outer product on G2, 20
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Outer product on Gn, 56
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Reverse element a†, 27, 45, 60

Reverse element in Gn, 60

Reverse element on G2, 27

Reverse element on G3, 45

Rotational, 76

Rotational Associated to dw1, 76

Rotational of a function, 9

Rotations in G3, 48

Rotations in Gn, 62

Rotations on G2, 29

Scalar multiplication: αv, 5

Simple Riemann integral case, 83

Socio-demographic

Factors, 102

Stokes’ theorem in R
3, 12

Structural Proteomics, 104

Surface integral, 78, 96

Surface integral of F , 11

Tangent plane, 67

Transmissibility, 102

Triple Riemann integral case, 86

Trivector, 40
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55
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Vector algebra, 3
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Vector-valued function, 9, 68

Virus

A-H1N1, 101
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