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PREFACE 

This book summarizes the analysis in whole fields of physics without using the 

special functions, targeting college/bachelor students. Many beginners feel that it 

is difficult to learn each field of physics (classical mechanics, electromagnetism, 

quantum mechanics, relativistic quantum mechanics, statistic mechanics) in detail 

separately. It would be preferable to learn the whole fields as quick as possible 

and have a simple imagination about the relation between different fields. After 

learning the position of each field in the physics, it becomes easier to learn 

detailed parts of each field. In this book, the fundamental of mathematical 

treatments are introduced, which are important for the analysis in physics but not 

familiar to all the readers. The fundamental of the analysis in each field of physics 

are summarized afterwards. The estimation of measurement uncertainty is also 

introduced. The important points of whole physics are summarized within 150 

pages.  

 

It would be my great pleasure, if this book can help college students to understand 

the fundamental of physics. And I believe, it is also useful for researchers to 

develop new research fields. 
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CHAPTER 1 
 

Fundamentals of Mathematical Treatments 

Abstract: Physical phenomena can be understood by solving equations that lead to 

physical laws. The first objective of this chapter is to solve certain equations that are 

required for physical analysis. First, an iterative solution of the equation is introduced. 

Using this approach, the numerical solution of an equation f(x) = 0 can be obtained 

also when the function f(x) is too complicated for the solution to be obtained as an 

explicit formula. 

Many physical equations can be expressed using differential and integral 

mathematical representations, which might not be familiar to all college students. The 

fundamental concepts of the differential and integral were introduced. Several 

fundamental mathematical formulae are reviewed.  

The second objective is to solve the differential equations that are required for the 

physical analysis. First, some solutions of simple differential equations given by 

explicit formulas are introduced, which are important for their physical interpretation. 

However, the equations for technical use are generally too complicated. Several 

methods for obtaining numerical solutions are introduced, which are useful for 

analyzing motion orbits. There is also a phenomenon that cannot be predicted by 

solving equations, which is called “chaos.”  
Finally, the fundamentals of the eigenvalues of matrices are introduced, which are 

important for understanding quantum mechanics. This chapter was prepared for 

undergraduate students who are not familiar with differential and integral calculus and 

matrices. 

Keywords: Iterative solution, Differential, Partial derivative, Integral, Taylor 

expansion, Euler method, Middle point method, Runge-Kutta method, Chaos, 

Lyapunov exponent, matrix, Determinant, Eigen value, Eigen vector. 

1.1. INTRODUCTION 

 

Many physical laws have been established based on equations, and physical 

phenomena are predicted by solving them. It is not always a simple task to solve 

these  equations.  For example, the Newtonian law of universal gravitation is given  
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by the simple formula. However, it is not easy to analyze the motion of astronomical 

bodies when considering the interaction between more than three bodies.  

 

The technical development of any analysis plays an important role in physics. For 

some cases, the simplification of equations makes it possible to obtain a solution 

that is expressed as simple formulas, which can provide new physical insights. 

However, numerical calculations make it possible to obtain the solutions of 

equations which cannot be expressed as a rigorous formula. The technical 

development of numerical calculations is important to minimize the error of 

solutions and the calculation time.  

 

Physicists and engineers have many techniques for obtaining reliable solutions to 

equations. Different kinds of approximations have been developed in the field of 

theoretical physics, which are not acceptable for mathematicians. This chapter 

summarizes the fundamentals of solving the equations analytically and numerically.  

 

Reference [1] seems to be useful to learn the fundamental of mathematics more in 

detailed for students, who are interested with physical analysis. Reference [2] seems 

to be readable also for high school students [2]. 

 

1.2. ITERATIVE SOLUTION OF EQUATIONS 

 

There are many cases for which the solution x0 that satisfies the following equation 

must be obtained: 

 

                   𝑓(𝑥0) = 0                                                   (1.2.1) 

 

Considering the following simple equations, the solutions are given by: 

 

𝑓(𝑥) = 𝑎𝑥 + 𝑏 → 𝑥0 = −
𝑏

𝑎
   (1.2.2) 

𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 → 𝑥0 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
                          (1.2.3) 

 

In many other cases, the solutions cannot be described using simple formulas. 

Therefore, solutions are often obtained using an iterative method. When 𝑓(𝑥𝑎) >
0  𝑓(𝑥𝑏) < 0 with 𝑥𝑎 < 𝑥𝑏, the solution x0 is 𝑥𝑎 < 𝑥0 < 𝑥𝑏. Then we calculate 

𝑓(𝑥𝑐) with 𝑥𝑎 < 𝑥𝑐 < 𝑥𝑏. If 𝑓(𝑥𝑐) > 0, 𝑥𝑐 < 𝑥0 < 𝑥𝑏 is obtained. By repeating 
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this calculation, the possible region of x0 becomes narrower. It seems useful to 

choose xc as follows:  

 

𝑥𝑐 =
|𝑓(𝑥𝑏)|𝑥𝑎+|𝑓(𝑥𝑎)|𝑥𝑏

|𝑓(𝑥𝑏)|+|𝑓(𝑥𝑎)|
                                           (1.2.4) 

 

because xc is expected to be close to x0, assuming that f(x) is approximately linear 

in a limited region of x. For example, we obtain the solution of  𝑓(𝑥) =
cos(𝑥) − 𝑥 = 0  using the following procedure. 

 

𝑓(0) = 1 > 0, 𝑓(1) = −0.46 < 0,                         0 < 𝑥0 < 1    
𝑓(0.685) = 0.089 > 0, 𝑓(1) = −0.46 < 0,         0.685 < 𝑥0 < 1    
𝑓(0.736) = 0.005 > 0, 𝑓(0.75) = −0.018 < 0,          0.736 < 𝑥0 < 0.75    
𝑓(0.738) = 0.00018 > 0, 𝑓(0.74) = −0.0015 < 0,          0738 < 𝑥0 <
0.74    
𝑓(0.739) = 0.00014 > 0, 𝑓(0.7395) = −0.00069 < 0,          0.739 <
𝑥0 < 0.7395    

 

The value of x0 was obtained with an uncertainty below 0.03 %, and this uncertainty 

was further reduced by continuing the calculation with a narrower region of x. 

Biological evolution is the search for a solution for survival for a change of 

circumstances, which is similar to the iterative method. Evolution is possible in 

many different directions. Species with the appropriate adaptions (advantageous 

traits for survival in a new circumstance) can survive, but those with 

disadvantageous traits will not. Therefore, biological species with desirable 

adaptions dominate for a long period after the change in circumstance. 

 

The iterative method cannot be used for discontinuous functions (e.g., 1/x at x = 0). 

Note also that the iterative method cannot be used for cases without solutions. There 

may also be multiple solutions, and the iterative method should be performed with 

a limited region of x. 

 

1.3. DIFFERENTIAL AND INTEGRAL EQUATIONS 

 

Before introducing differential equations, we summarize the characteristics of the 

differential and integral. Considering a function y(x), the differential of y is defined 

by (see Fig. 1.1): 

 

Fundamentals of Analysis in Physics 
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CHAPTER 2 
 

Analysis in the Classical Mechanics 

Abstract: Equations of motion with arbitrary potential fields are described by simple 
formulas based on Newtonian law. However, they are generally complicated to solve. 
This chapter presents several methods for deriving and solving equations of motion with 
different coordinate systems.  
Two-body motion is introduced based on the coordinates of the motion of the center of 
mass and the relative motion. R elative motion perpendicular to a relative position is 
discussed using angular momentum, wherein the temporal change is given by the torque.  
The Lagrange equation is introduced for application to all types of coordinates. The polar 
coordinate system is convenient for deriving an equation of motion with a spherically 
symmetric potential because the angular momentum is constant. The motion in the radial 
direction should be considered taking the centrifugal force potential into account. The 
Lagrangian is also introduced with respect to electromagnetic fields. 
 

Keywords: Angular momentum, Center of mass, Centrifugal force, Energy, 

Gravity, Kepler’s law, Lagrange equation, Momentum. Inertial moment, 
Newtonian mechanics, Relative motion. 

2.1. FUNDAMENTAL OF CLASSICAL MECHANICS 

 

Newton derived three laws of motion in his monumental work Philosophiæ 

Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), 

which was published in 1687 [1]. 
 

1. An object either remains at rest or continues to move in a straight line at a 

constant velocity unless acted on by a net external force. 

 

2. The sum of the forces �⃗� acting on an object is equal to the mass m of that object 

multiplied by the acceleration �⃗� of the object, 

 

3. When a body exerts a force on a second body, the second body simultaneously 

exerts a force equal in magnitude and opposite in direction on the first body. 

 

Using the Cartesian coordinate 𝑟 = (𝑥, 𝑦, 𝑧), the second law is given by the 

equation 
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𝑚
𝑑�⃗⃗�

𝑑𝑡
= 𝑚

𝑑2𝑟

𝑑𝑡2
= �⃗�     �⃗� =

𝑑𝑟

𝑑𝑡
= (

𝑣𝑥
𝑣𝑦
𝑣𝑧
)   �⃗� = (

𝐹𝑥
𝐹𝑦
𝐹𝑧

)                 (2.1.1) 

where m is the mass and t is the time. The first law corresponds to the second law 

with �⃗� = 0, although it was initially given as the definition of the “inertial frame”. 
In classical mechanics, momentum is defined as follows (this definition is not 

correct in the case of relativistic theory and quantum mechanics): 

 

�⃗� = 𝑚�⃗�                                                      (2.1.2) 

 

From the force, the potential energy PE is defined as: 

 

𝑃𝐸 = −∫𝐹𝑥𝑑𝑥 − ∫𝐹𝑦𝑑𝑦 − ∫𝐹𝑧𝑑𝑧                               (2.1.3) 

 

Then eq. (2.1.1) can be rewritten as: 

 

𝑑�⃗�

𝑑𝑡
= −∇𝑃𝐸       ∇=

(

 
 

𝜕

𝜕𝑥
𝜕

𝜕𝑦

𝜕

𝜕𝑧)

 
 

                                       (2.1.4) 

 

The temporal change of |�⃗�|2 by a force is given by: 

 
𝑑|𝑝|2

𝑑𝑡
= 2𝑝𝑥

𝑑𝑝𝑥

𝑑𝑡
+ 2𝑝𝑦

𝑑𝑝𝑦

𝑑𝑡
+ 2𝑝𝑧

𝑑𝑝𝑧

𝑑𝑡
  

using 
ｄ𝑝𝑞

𝑑𝑡
= −

𝜕𝑃𝐸

𝜕𝑞
, 𝑝𝑞 = 𝑚

𝑑𝑞

𝑑𝑡
 

= −2𝑚
𝜕𝑃𝐸

𝜕𝑥

𝑑𝑥

𝑑𝑡
− 2𝑚

𝜕𝑃𝐸

𝜕𝑦

𝑑𝑦

𝑑𝑡
− 2𝑚

𝜕𝑃𝐸

𝜕𝑧

𝑑𝑧

𝑑𝑡
                           (2.1.5) 

 

Defining the kinetic energy as follows: 

 

𝐾𝐸 =
|�⃗�|2

2𝑚
=
𝑚|�⃗⃗�|2

2
                                              (2.1.6) 
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the temporal change of the potential energy and the total energy 𝐸 = 𝐾𝐸 + 𝑃𝐸 are 

given by:  

 
𝑑𝑃𝐸

𝑑𝑡
=
𝜕𝑃𝐸

𝜕𝑡
+ [

𝜕𝑃𝐸

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝑃𝐸

𝜕𝑦

𝑑𝑦

𝑑𝑡
+
𝜕𝑃𝐸

𝜕𝑧

𝑑𝑧

𝑑𝑡
] =

𝜕𝑃𝐸

𝜕𝑡
−
𝑑𝐾𝐸

𝑑𝑡
     (see eq. (1.3.10))   

  
𝑑𝐸

𝑑𝑡
=
𝑑𝐾𝐸

𝑑𝑡
+
𝑑𝑃𝐸

𝑑𝑡
=
𝜕𝑃𝐸

𝜕𝑡
                                          (2.1.7) 

 

The total energy is conserved when the PE has no dependence on time (constant 

potential energy distribution). Considering the interaction between two bodies a 

and b, the sum of their momenta is conserved because the change in momentum is 

given by: 

Δ𝑝𝑎⃗⃗⃗⃗⃗ = ∫𝐹𝑏→𝑎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑑𝑡       Δ𝑝𝑏⃗⃗⃗⃗⃗ = ∫𝐹𝑎→𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑑𝑡  
 

𝐹𝑎→𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = −𝐹𝑏→𝑎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    (from the Newtonian third law)                    (2.1.8) 

 

According to the theory of relativity and quantum mechanics, the correspondence 

between the three-dimensional position vector 𝑟 and the momentum vector  �⃗�  can 

be expanded to the relation between the four-dimensional position vectors 𝑟4⃗⃗⃗⃗⃗ =

(𝑥, 𝑦, 𝑧, 𝑐𝑡) and 𝑝4⃗⃗⃗⃗⃗ = (𝑝𝑥, 𝑝𝑦, 𝑝𝑧, 𝐸/𝑐), where c is the speed of light in a vacuum. 

For two interacting bodies, the sum of the four-dimensional momentum vector must 

be conserved. What is the correspondence between time and energy? Equation 

(2.1.4) shows that the change in �⃗� is given by the dependence of PE on 𝑟. However, 

E changes when there is a temporal change in PE. We can say that the components 

of 𝑝4⃗⃗⃗⃗⃗ change when the potential energy changes due to the corresponding 

components of 𝑟4⃗⃗⃗⃗⃗. 
 

2.2. TWO-BODY MOTION AND TORQUE 

 

Here, we consider two-body motion (masses: m1 and m2) based on the motion of 

the center of mass, binding, and rotation. Bodies 1 and 2 experience the external 

forces   𝐹1⃗⃗ ⃗⃗    (=  𝛿𝐹1⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝐹𝑖𝑛𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )  and  𝐹2⃗⃗ ⃗⃗ ( = 𝛿𝐹2⃗⃗ ⃗⃗ ⃗⃗ ⃗ − 𝐹𝑖𝑛𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ),  respectively,   as   shown  in   

Fig. (2.1). Here, ±𝐹𝑖𝑛𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is the interaction force between the two bodies. 

 

𝑚1
𝑑2𝑟1⃗⃗⃗⃗⃗

𝑑𝑡2
= 𝐹1⃗⃗ ⃗⃗                                                   (2.2.1) 
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CHAPTER 3 
 

Fundamental Meaning and Typical Solutions of 

Maxwell’s Equations 

Abstract: The main objective is to understand the meaning of Maxwell’s equations. It is 
a set of four differential equations that describe several fundamental laws that are already 
known. Why did these equations cause a revolution in physics? One reason is that the 
distribution of the electromagnetic field can be obtained by solving first- or second-order 
differential equations. Several examples have been shown to obtain the distribution of 
the electric field produced by simple electrodes. The three-dimensional trapping of 
charged matter can be achieved via two methods: the combination of a DC electric field 
and a DC magnetic field or using an AC electric field.  
The most important aspect of Maxwell’s equation is that it elucidates the identity of light 
as an electromagnetic wave. Light energy is given as the potential energy of electric and 
magnetic fields. Light has momentum and generates radiation pressure on a reflecting 
mirror. 
The speed of light was determined to be independent of the observer, which was the basis 
for the theory of relativity. A fundamental aspect of the theory of special relativity is also 
introduced. 

 

Keywords: Ampere’s law, Coulomb’s law, Cyclotron radiation, Electromagnetic 
wave, Faraday’s law of induction, Gauss’s theorem,  Maxwell’s equation, Lorenz 

transform, Stokes’s theorem, The speed of light, Theory of relativity, Trap of 

charged matter. 

3.1. WHAT ARE MAXWELL’S EQUATIONS? 

 

The fundamentals of electromagnetism regarding an electric field �⃗�  and magnetic 

field �⃗�  are summarized by Maxwell’s equations as follows (in SI units) [1]: 
∇ ∙ �⃗� =

𝜌
 (r: the electric charge density, e: the permeability) 

 

        
𝜕𝐸𝑥

𝜕𝑥
+
𝜕𝐸𝑦

𝜕𝑦
+
𝜕𝐸𝑧

𝜕𝑧
=
𝜌
                                        (3.1.1) 

∇ × �⃗� = −
𝜕�⃗� 

𝜕𝑡
  

        
𝜕𝐸𝑧

𝜕𝑦
−
𝜕𝐸𝑦

𝜕𝑧
= −

𝜕𝐵𝑥

𝜕𝑡
,
𝜕𝐸𝑥

𝜕𝑧
−
𝜕𝐸𝑧

𝜕𝑥
= −

𝜕𝐵𝑦

𝜕𝑡
,
𝜕𝐸𝑦

𝜕𝑥
−
𝜕𝐸𝑥

𝜕𝑦
= −

𝜕𝐵𝑧

𝜕𝑡
          (3.1.2) 
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∇ ∙ �⃗� = 0  

 

        
𝜕𝐵𝑥

𝜕𝑥
+
𝜕𝐵𝑦

𝜕𝑦
+
𝜕𝐵𝑧

𝜕𝑧
= 0                                        (3.1.3) 

 ∇ × �⃗� = 𝜇 [𝑗 + 휀
𝜕�⃗� 

𝜕𝑡
] (𝑗 : the electric current density, : the permittivity) 

 

   
𝜕𝐵𝑧

𝜕𝑦
−
𝜕𝐵𝑦

𝜕𝑧
= 𝜇 [𝑗𝑥 + 휀

𝜕𝐸𝑥

𝜕𝑡
] ,
𝜕𝐵𝑥

𝜕𝑧
−
𝜕𝐵𝑧

𝜕𝑥
= 𝜇 [𝑗𝑦 + 휀

𝜕𝐸𝑦

𝜕𝑡
] ,
𝜕𝐵𝑦

𝜕𝑥
−
𝜕𝐵𝑥

𝜕𝑦
= 𝜇 [𝑗𝑧 + 휀

𝜕𝐸𝑧

𝜕𝑡
](3.1.4)                                                                     

 

As shown in the following, these equations are novel expressions of laws that were 

already known.  

 

Equation (3.1.1) is derived from Coulomb’s law [2] for the electric field given by 
a point electric charge qe 

 

�⃗� =
𝑞𝑒

4𝜋 |𝑟 |3
𝑟                                                   (3.1.5) 

 

The integral of �⃗�  over the surface surrounding the electric charge is given as follows 

using polar coordinate (𝑥 = 𝑟 sin 𝜃 cos𝜙 , 𝑦 = 𝑟 sin 𝜃 sin𝜙, 𝑧 = 𝑟 cos 𝜃): 
 

∬�⃗� ∙ 𝑑𝑆 = ∬|�⃗� | 𝑟2sin 𝜃𝑑𝜃𝑑𝜙 =
𝑞𝑒                              (3.1.6) 

 

From Gauss’s law [3], we have: 
 

|�⃗� | = ∫
𝜕

𝜕𝑟
|�⃗� |𝑑𝑟  

∬�⃗� ∙ 𝑑𝑆 = ∭[
𝜕|�⃗� |

𝜕𝑟
] 𝑑𝑉 =

𝑞𝑒            𝑑𝑉 = 𝑟2 sin 𝜃𝑑𝑟𝑑𝜃𝑑𝜙   

using  
𝜕

𝜕𝑟
=
𝜕𝑥

𝜕𝑟

𝜕

𝜕𝑥
+
𝜕𝑦

𝜕𝑟

𝜕

𝜕𝑦
+
𝜕𝑧

𝜕𝑟

𝜕

𝜕𝑧
= sin 𝜃 cos𝜙

𝜕

𝜕𝑥
+ sin 𝜃 sin𝜙

𝜕

𝜕𝑦
+ cos 𝜃

𝜕

𝜕𝑧
    

               𝐸𝑥 = sin 𝜃 cos𝜙|�⃗� | , 𝐸𝑦 = sin 𝜃 sin𝜙|�⃗� |, 𝐸𝑧 = cos 𝜃|�⃗� | 

   
𝜕|�⃗� |

𝜕𝑟
=
𝜕𝐸𝑥

𝜕𝑥
+
𝜕𝐸𝑦

𝜕𝑦
+
𝜕𝐸𝑧

𝜕𝑧
= ∇ ∙ �⃗�   

∬�⃗� ∙ 𝑑𝑆 = ∭∇ ∙ �⃗� 𝑑𝑉 =
𝑞𝑒 =∭

𝜌
 𝑑𝑉                              (3.1.7) 
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and eq. (3.1.1) is derived. Since there is no magnetic charge, eq. (3.1.3) is derived 

from eq. (3.1.1) by changing �⃗� → �⃗� , 𝜌 → 0.  

 

Before explaining eqs. (3.1.2) and (3.1.4), Stokes’s theorem [4] for the line integral 
of a vector quantity should be introduced. The line integral is a vector quantity, for 

which the x, y, and z-components result from the analyses of the yz, zx, and xy-

planes, respectively. Here, we consider the component in the z-direction (line 

integral in the xy-plane). The line integral of the closed loop of a vector quantity 𝑓  
is given by   

 

∮𝑓 ∙ 𝑑𝑙𝑧⃗⃗  = ∮ 𝑓𝑥𝑑𝑥 + ∮𝑓𝑦𝑑𝑦                                     (3.1.8) 

 

Stokes’s theorem shows that: 
 

    ∮𝑓 ∙ 𝑑𝑙𝑧⃗⃗  = ∬ [
𝜕𝑓𝑦

𝜕𝑥
−
𝜕𝑓𝑥

𝜕𝑦
] 𝑑𝑆𝑧 𝑖𝑛𝑠𝑖𝑑𝑒 𝑙𝑜𝑜𝑝

   𝑑𝑆𝑧 = 𝑑𝑥𝑑𝑦                  (3.1.9) 

 

The detailed derivation of eq. (3.1.9) is represented in Ref. [4]. As a simple case, 

we consider the line integral of a loop (𝑥0, 𝑦0) → (𝑥1, 𝑦0) → (𝑥1, 𝑦1) → (𝑥0, 𝑦1) →
(𝑥0, 𝑦0). Then, we have: 

 

∮𝑓 ∙ 𝑑𝑙𝑧⃗⃗  = ∫ 𝑓𝑥(𝑥, 𝑦0)𝑑𝑥
𝑥1
𝑥0

+ ∫ 𝑓𝑦(𝑥1, 𝑦)𝑑𝑦 +
𝑦1
𝑦0

∫ 𝑓𝑥(𝑥, 𝑦1)𝑑𝑥
𝑥0
𝑥1

+ ∫ 𝑓𝑦(𝑥0, 𝑦)𝑑𝑦
𝑦0
𝑦1

         

= ∫ [𝑓𝑥(𝑥, 𝑦0) − 𝑓𝑥(𝑥, 𝑦1)]𝑑𝑥
𝑥1
𝑥0

+ ∫ [𝑓𝑦(𝑥1, 𝑦) − 𝑓𝑦(𝑥0, 𝑦)]𝑦𝑑𝑦
𝑦1
𝑦0

  

            = ∫ ∫ [
𝜕𝑓𝑦(𝑥,𝑦)

𝜕𝑥
−
𝜕𝑓𝑥(𝑥,𝑦)

𝜕𝑦
]

𝑦1
𝑦0

𝑥1
𝑥0

𝑑𝑥𝑑𝑦                                (3.1.10) 

Next, we consider the vector quantity in the tangential direction of the circular loop, 

𝑓 = (𝑓𝑥 , 𝑓𝑦) = 𝑓(𝑟)(− sin 𝜃, cos 𝜃), using the two-dimensional polar coordinate 

(𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃). Then using: 

 
𝜕

𝜕𝑥
=
𝜕𝑟

𝜕𝑥

𝜕

𝜕𝑟
+
𝜕 tan𝜃

𝜕𝑥

𝜕𝜃

𝜕 tan𝜃

𝜕

𝜕𝜃
= cos 𝜃

𝜕

𝜕𝑟
−
sin𝜃

𝑟

𝜕

𝜕𝜃
,   

𝜕

𝜕𝑦
= sin 𝜃

𝜕

𝜕𝑟
+
cos𝜃

𝑟

𝜕

𝜕𝜃
        (3.1.11) 

 

∬[
𝜕𝑓𝑦

𝜕𝑥
−
𝜕𝑓𝑥

𝑑𝑦
] 𝑑𝑆𝑧⃗⃗  ⃗ = ∫ 𝑑𝜃 ∫ [

𝜕𝑓(𝑟)

𝜕𝑟
+
𝑓(𝑟)

𝑟
] 𝑟𝑑𝑟

𝑟

0

2𝜋

0
= 2𝜋𝑟𝑓(𝑟) = ∮𝑓 ∙ 𝑑𝑙𝑧⃗⃗         (3.1.12) 

 

is derived (see Fig. 3.1). 

 



58 Fundamentals of Analysis in Physics, 2022, 58 -96  

         Masatoshi Kajita 

All rights reserved-© 2022 Bentham Science Publishers 

 

 

 

CHAPTER 4 
 

Fundamentals of Analysis in Quantum Mechanics 

Abstract: Light has the dual characteristics of particles (photons) and electromagnetic 
waves. The photon has an energy of 𝐸 = ℎ𝜈 (: frequency, h: Planck constant) and the 
momentum of �⃗� = ℎ�⃗⃗� (�⃗⃗�: wavenumber and 1

|�⃗⃗�|
 is the wavelength). The photon density is 

proportional to the square of the amplitude of the electromagnetic waves. The 
fundamental aspect of quantum mechanics is that these characteristics apply to all 
matters. The properties of matters are described by wave functions. The probability of 
the existence of the matter is proportional to the square of the associated wave function. 
When a matter is localized in a limited region, it can only assume discrete values of 
energy because the wavelength of the matter wave must be an integral division of the 
region. The phase of the wavefunction has uncertainty on order 1/2 radians; therefore, 
position and momentum (time and energy) cannot be simultaneously determined. As the 
size of the localization area of the wavefunction becomes smaller, the minimum kinetic 
energy becomes larger because of the smaller wavelength (larger momentum 
uncertainty). 
The Schroedinger equation was derived based on the idea that the relationship between 
the frequency and the wavenumber corresponds to that between energy and momentum 
given by classical mechanics, which makes it possible to obtain the wave functions of 
matters in the energy eigenstates. Several examples of solutions to the Schroedinger 
equation are introduced. The mixture between different energy eigenstates and the shift 
in the energy eigenvalues are induced by electromagnetic fields. The temporal change of 
the wave function (transition between different energy states) is also obtained using the 
Schroedinger equation. 

 

Keywords: Adiabatic rapid passage, Backbody radiation, Bohr radius, Boson, 

Eigenfunction, Eigenvalue, Electric induced transparency (EIT), Fermion, 

Operator, Particle-wave duality, Photoelectronic effect, Rabi oscillation, 

Schroedinger equation, Stark shift, Uncertainty principle, Zeeman shift. 

4.1. ESTABLISHMENT OF QUANTUM MECHANICS  

 

As shown in chapter 3.4, the characteristics of light were determined to be identical 

to that of an electromagnetic wave. However, some phenomena could not be 

explained by considering light only as a wave. The spectrum distribution of the 

blackbody radiation (radiation from objects having finite temperature) has the 

following characteristics [1]. 

 



Quantum Mechanics Fundamentals of Analysis in Physics    59 

 
 

 
 

(1) The energy density at the low frequency region is given by 
8𝜋𝜈2

𝑐3
𝑘𝐵𝑇, where  

is the frequency, T is the thermodynamic temperature T (see chapter 6.2), and 

kB is the Boltzmann constant (defined to be 1.380649 J/K at 2019 [2]). This 

characteristic is explained by the pure wave characteristic of the radiation. 

  

(2) With the high frequency region, the distribution is proportional to 

𝜈3 exp [−
ℎ𝜈

𝑘𝐵𝑇
]. Here, h is the Planck constant (defined to be 6.62607004 ×

10−34 J/Hz at 2019 [2]). This characteristic cannot be explained considering 

light only as a wave. 

 

Planck solved this mystery based on the assumption that light energy can only 

assume 𝑛𝛼ℎ𝜈 with the probability proportional to exp (−
𝑛𝛼ℎ𝜈

𝑘𝐵𝑇
)(see chapter 6.3), 

where 𝑛𝛼(≥ 0) is integer. The energy density is given by:  

 

𝑃𝐵𝐵𝑅 =
8𝜋ℎ𝑣3

𝑐3
1

exp[
ℎ𝜈

𝑘𝐵𝑇
]−1

  

    ℎ𝜈 ≪ 𝑘𝐵𝑇  𝑃𝐵𝐵𝑅 ≈
8𝜋𝜈2

𝑐3
𝑘𝐵𝑇  (influence of the energy gap is small) 

     ℎ𝜈 ≫ 𝑘𝐵𝑇  𝑃𝐵𝐵𝑅 ≈
8𝜋ℎ𝜈3

𝑐3
exp [−

ℎ𝜈

𝑘𝐵𝑇
]                              (4.1.1) 

Which is in good agreement with the experimental result. However, the validity of 

Planck’s assumption was not confirmed at that time. 

 

In addition, the emission of electrons from a material was observed when irradiated 

with incident light (called the photoelectronic effect). The experimental results for 

the photoelectric effect show that the energy of the emitted electrons is independent 

of the intensity of the light, although the number of emitted electrons is proportional 

to the intensity. Moreover, emission does not occur when v is lower than a 

minimum threshold value vmin and the energy of the emitted electron is proportional 

to the 𝜈 − 𝜈𝑚𝑖𝑛 [3]. Einstein proposed a new concept of wave-particle duality; light 

has the characteristics of both waves and particles. The energy of each particle 

(called a photon) is 𝐸 = ℎ𝜈 and the momentum in the propagation direction is |�⃗�| =

ℎ|�⃗⃗�| =
ℎ

𝜆
 (as shown in chapter 3.4), where �⃗⃗� is the wavenumber vector and 𝜆 is the 

wavelength. Planck’s assumption was also explained by the particle-wave duality 
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of light. This duality was a special characteristic of light until the concept of matter 

waves was proposed. 

 

There has also been a mystery regarding atomic structure since the discovery of 

electrons [4]. Atoms must have a structure that includes electrons, which cannot be 

explained by classical mechanics. Rutherford’s scattering experiment [5] revealed 

that atoms consist of a nucleus with a positive charge and negatively charged 

electrons that orbit the nucleus. However, the circular motion of electrons leads to 

the emission of radiation energy and the corresponding loss of kinetic energy (see 

chapter 3.5). Electrons should crash into the nucleus after losing kinetic energy. 

Therefore, it was a mystery that electrons remain in their orbit. There was also 

another mystery in that only discrete frequency components were observed from 

the emission of hydrogen atoms [6]. 

 

Bohr established the “Old Quantum Mechanics” in 1913, assuming that particles 
bounded in a limited region of q must satisfy the following relationship [7]. 

 

∮𝑝𝑞𝑑𝑞 = 𝑛ℎ     n: integer, pq: momentum in the q-direction            (4.1.2) 

 

Applying this assumption to the electron in orbit (radius r and velocity v) 
 

2𝜋𝑟𝑝 = 2𝜋𝑟𝜇𝑒𝑣 = 𝑛ℎ                                           (4.1.3) 
 

where e is the reduced mass between the electron and the nuclear. From the 

balance between the centrifugal force and the Coulomb force, 

 
𝜇𝑒𝑣

2

𝑟
=

𝑒2

4𝜋 0𝑟
2  e: unit electric charge                               (4.1.4) 

 

From eqs. (4.1.3-4), the possible radius of the electron orbit is given by:  
 

𝑟 = 𝑎𝐵𝑛
2  𝑎𝐵 =

0ℎ
2

𝜋𝜇𝑒𝑒
2                                        (4.1.5) 

 

where aB is called the Bohr radius. The possible electron energy is given by:   

 

𝐸𝑒 =
𝜇𝑒

2
𝑣2 −−

𝑒2

4𝜋 0𝑟
= −

𝑒2

8𝜋 0𝑎𝐵

1

𝑛2
                                (4.1.6) 
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CHAPTER 5 
 

Relativistic Quantum Mechanics and Spin 

Abstract: Spin is one of the most important characteristics of particles, which results in 
a fine and hyperfine energy structure and Zeeman energy shift. Spin is a property of 
particles, independent of the density distribution given by the potential field. The spin 
eigenfunction should be described using a vector, and the spin operator is given by a 
matrix. The property of spin is not derived from the Schroedinger equation, which treats 
wave functions as scalars.  
The Dirac equation was developed to obtain wave functions from the relationship 
between frequency (energy) and wavenumber (momentum) given by the theory of special 
relativity, for which the equation is given by the 4 × 4 matrix and the wave functions are 
given by four-dimensional vectors. There are four solutions for one equation, which 
correspond to ± 1

2
 spin states and the positive and negative rest energies. The existence 

of negative rest energy was confirmed by the discovery of positrons (antiparticles). The 
Zeeman shift induced by spin is derived from the exchange of matrix production. 

 

Keywords: Antiparticle, Dirac equation, Electron sea, Electron spin, Fine 

structure, Klein-Gordon equation, Lamb shift, Pauli matrix, Quantum 

electrodynamics, Relativistic effect, Zeeman shift. 

5.1. ELECTRON SPIN 

 

As shown in chapter 4, the quantum energy state of an electron in an atom is derived 
from the Schroedinger equation using the principal quantum number n, rotational 
quantum number L, and magnetic quantum number M. These quantum numbers are 
given by the motion of electrons under a Coulomb potential owing to the nucleus. 
An electron is a Fermion, and only one electron can be in a quantum state (chapter 
6.6). However, two electrons can be in an (n, L, M) state, which means there are 
two states with electrons. In the Stern-Gerlach experiment, an Ag atomic beam 
traversed through an area with an inhomogeneous magnetic field. The atoms were 
deflected from the straight path in two opposite directions. The deflection angle 
was the only quantized parameter [1]. The electron orbital angular momentum of 
the Ag atom was zero. This result shows that the electron has two states like a 
permanent magnet: the S-pole or N-pole in the direction of the magnetic field (see 
chapters 4.4 and 4.5). In analogy with the M states defined as −𝐿 ≤ 𝑀 ≤ 𝐿 for each 
L state (number of states  2𝐿 + 1), these two states of electrons were described as 
the components of a virtual angular momentum (called spin) 𝑆 = 1

2
 in one direction, 
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𝑀𝑆 = ±
1

2
. The commen characteristics of the spin and orbital angular momentum 

are confirmed in more detail later. The spin state is a property of the electron itself, 
and the eigenfunction is not described by the wave function associated with the 
density distribution. Pauli proposed describing two spin states using a two-
dimensional vector [2]. The eigenfunction of each spin state is as follows: 
 

𝑀𝑆 =
1

2
  →  𝜉+ = (

1
0
)     𝑀𝑆 = −

1

2
  →  𝜉− = (

0
1
)                      (5.1.1) 

 

and the general wave functions as the combination of both spin states are given by 

 

Ψ = (𝑎𝜉+ + 𝑏𝜉−) ∫ 𝑐(𝐸, �⃗�) exp [
2𝜋𝑖

ℎ
(𝐸𝑡 + �⃗� ∙ 𝑟)] 𝑑𝐸𝑑�⃗�      

 

|𝑎|2 + |𝑏|2 = 1                                                  (5.1.2) 
 

The operator of the spin components in the x,y,z-directions are  
 

𝑆�̃� =
ℎ

4𝜋
𝜎𝑞    𝑞 = 𝑥, 𝑦, 𝑧    

 

𝜎𝑥 = (
0 1
1 0

) , 𝜎𝑦 = (
0 −𝑖
𝑖 0

) , 𝜎𝑧 = (
1 0
0 −1

)                         (5.1.3) 
 

where 𝜎𝑞 are the Pauli matrices. For the Pauli matrices, 

𝜎𝑥
2 = 𝜎𝑦

2 = 𝜎𝑧
2 = 𝐼   𝐼 = (

1 0
0 1

)  

𝜎𝑥𝜎𝑦 + 𝜎𝑦𝜎𝑥 = 𝜎𝑥𝜎𝑧 + 𝜎𝑧𝜎𝑥 = 𝜎𝑦𝜎𝑧 + 𝜎𝑧𝜎𝑦 = 0  

𝜎𝑥𝜎𝑦 − 𝜎𝑦𝜎𝑥 = 2𝑖𝜎𝑧, 𝜎𝑦𝜎𝑧 − 𝜎𝑧𝜎𝑦 = 2𝑖𝜎𝑥,   𝜎𝑧𝜎𝑥 − 𝜎𝑥𝜎𝑧 = 2𝑖𝜎𝑦        (5.1.4) 

 

are satisfied. The exchange law: 
 

𝑆�̃�𝑆�̃� − 𝑆�̃�𝑆�̃� =
ℎ

2𝜋
𝑖𝑆�̃�,    𝑆�̃�𝑆�̃� − 𝑆�̃�𝑆�̃� =

ℎ

2𝜋
𝑖𝑆�̃�,    𝑆�̃�𝑆�̃� − 𝑆�̃�𝑆�̃� =

ℎ

2𝜋
𝑖𝑆�̃�     (5.1.5) 

 

is the same as that for the orbital angular momentum, as shown in eq. (4.4.6). The 
square of the absolute value is given by: 
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(𝑆�̃�)
2
+ (𝑆�̃�)

2
+ (𝑆�̃�)

2
= (

ℎ

2𝜋
)
2 3

4
𝐼 = (

ℎ

2𝜋
)
2
𝑆(𝑆 + 1)𝐼                 (5.1.6) 

 

Which corresponds to the square of the absolute value of the orbital angular 

momentum is given by ( ℎ
2𝜋
)
2
𝐿(𝐿 + 1) as shown by eq. (4.4.12). 

 

Using the operators 

 

𝑆+̃ = 𝑆�̃� + 𝑖𝑆�̃� =
ℎ

2𝜋
(
0 1
0 0

)      𝑆−̃ = 𝑆�̃� − 𝑖𝑆�̃� =
ℎ

2𝜋
(
0 0
1 0

)           (5.1.7) 
 

the following relations hold 

 

𝑆+̃𝜉+ = 0,    𝑆+̃𝜉− =
ℎ

2𝜋
𝜉+,    𝑆−̃𝜉+ =

ℎ

2𝜋
𝜉−,    𝑆−̃𝜉− = 0                (5.1.8) 

 

which corresponds to the relationship with the orbital angular momentum as 
follows (see eq. (4.4.13)): 
 

𝐿±̃Θ𝑀 =
ℎ

2𝜋
√𝐿(𝐿 + 1) − 𝑀(𝑀 ± 1)Θ𝑀±1                          (5.1.9) 

 

Therefore, the electron spin satisfies all the relations with the angular momentum, 
except that the quantum numbers are given as half integers.  
 

As shown in eq. (4.5.13), the Zeeman energy shift induced by the electron spin and 
the magnetic field B is obtained as follows: 
 

𝐸𝑍 = 𝑔𝑆𝜇𝐵𝑀𝑆𝐵       𝜇𝐵 =
𝑒ℎ

4𝜋𝑚𝑒
       

 

gS = 2.002319    𝜇𝐵: Bohr magneton  gS: g-factor of the electron spin     
e: unit charge    me: electron mass                                 (5.1.10) 

 

Electron spin is not derived from the Schroedinger equation treatment of the wave 
function as a scalar, although the Zeeman energy shift is treated as an additional 
perturbation term. Given that the operators of electron spin are matrices, the 
Hamiltonian should be a matrix. The Zeeman energy shift induced by the electron 
spin is derived in chapter 5.3, taking 𝑔𝑆 = 2. 

Relativistic Quantum Mechanics 
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CHAPTER 6 
 

Fundamentals of Statistical Mechanics Using the 

Boltzmann Distribution 

Abstract: The objective of this chapter is an examination of the energy distribution 

of matter for the highest probability, considering that only phenomena with the 

highest possibility are possible for a large number of masses (atoms or molecules in 

a macroscopic object). The thermodynamic temperature T is the parameter for the 

broadening of the energy distribution and the population in a state with an energy of 

E is proportional to Ω exp(-E⁄(kBT)), where Ω is the number of states and kB is the 

Boltzmann constant. The average energy and specific heat are discussed using the 

Boltzmann distribution. The relationship between the gas pressure, volume, and 

temperature (ideal gas law) is obtained from the average of the one-dimensional 

kinetic energy. The work efficiency of the Carnot engine, using gas pressure, is also 

discussed. 

Keywords: Adiabatic expansion, Bose-Einstein condensation, Carnot cycle, 
Entropy, Fermi degeneracy, Free energy, Ideal gas law, Specific heat, Temperature, 
Thermal energy, Thermal equilibrium, Vapor pressure. 

6.1. THERMAL ENERGY 

 

What is thermal energy? From a microscopic perspective, the constituent atoms or 
molecules of an object have kinetic and potential energies. However, at the 
macroscopic scale, the kinetic energy of the object is given by that of the motion of 
the center of mass (see chapter 2.2). The relative motion between the constituent 
atoms or molecules provides an additional energy term called thermal energy. For 
example, we consider the kinetic energy of gaseous molecules with a mass of m. 
The total energy is given by 

 

𝐸𝑡𝑜𝑡 =
𝑚

2
∑ 𝑣𝑖

2𝑁𝑔

𝑖=1
         𝑁𝑔: number of molecules                   (6.1.1) 

 

Considering the average velocity  
 

𝑣𝑎𝑣𝑒 =
∑ 𝑣𝑖

𝑁𝑔
𝑖=1

𝑁
    𝑣𝑖 = 𝑣𝑎𝑣𝑒 + 𝛿𝑣𝑖 

𝐸𝑡𝑜𝑡 = 𝐸𝐾 + 𝐸𝑇    (note ∑ 𝑣𝑎𝑣𝑒(𝛿𝑣𝑖) = 0
𝑁𝑔

𝑖=1
) 
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𝐸𝐾 =
𝑁𝑔𝑚

2
𝑣𝑎𝑣𝑒

2     𝐸𝑇 =
𝑚

2
∑ (𝛿𝑣𝑖)2𝑁𝑔

𝑖=1
                               (6.1.2) 

 

is obtained. EK is the macroscopic kinetic energy and ET is the thermal energy.  
 

The macroscopic kinetic energy tends to transform into thermal energy. When an 
object slides on a floor, it is decelerated by friction, and the kinetic energy is 
transformed into thermal energy, which expands into the entire floor. Why does 
inverse energy flow (the matter on the floor start to move to absorb the thermal 
energy from the floor) not occur? Statistic mechanics dictates that the probability 
of the expansion of thermal energy is much higher than that of focusing on one 
location. When two bodies with different temperatures contact each other, the 
energy (heat) flows from the body at a higher temperature to another body at a 
lower temperature. Finally, the temperatures of both bodies become equal, for 
which the probability is maximum. 
 

6.2. BOLTZMANN DISTRIBUTION 

 

We consider two areas A and B with energies EA and EB, for which Etot = EA + EB is 
constant. Considering the number of states A(EA) and B(EB) at both areas, the 
probability of achieving this energy distribution is proportional to the total number 
of states given by: 
 

Ω𝑡𝑜𝑡 = Ω𝐴(𝐸𝐴)Ω𝐵(𝐸𝐵)                                           (6.2.1) 
 

When tot is a maximum, the following relation holds. 
 

𝑑Ω𝑡𝑜𝑡

𝑑𝐸𝐴
= Ω𝐵(𝐸𝐵)

𝑑Ω𝐴(𝐸𝐴)

𝑑𝐸𝐴
+ Ω𝐴(𝐸𝐴)

𝑑Ω𝐵(𝐸𝐵)

𝑑𝐸𝐴
= Ω𝐵(𝐸𝐵)

𝑑Ω𝐴(𝐸𝐴)

𝑑𝐸𝐴
− Ω𝐴(𝐸𝐴)

𝑑Ω𝐵(𝐸𝐵)

𝑑𝐸𝐵
= 0     

1

Ω𝐴(𝐸𝐴)

𝑑Ω𝐴(𝐸𝐴)

𝑑𝐸𝐴
=

1

Ω𝐵(𝐸𝐵)

𝑑Ω𝐵(𝐸𝐵)

𝑑𝐸𝐵
= 𝛽                                (6.2.2) 

 

Equation (6.2.2) shows that the probability is a maximum when the parameter , 
defined in A and B independently, is equal. Note also that the dimension  is the 
inverse of that of energy. We know empirically that the temperatures of the two 
contacting bodies become equal. In statistical mechanics, the thermodynamic 
temperature T is defined as: 
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1

𝑘𝐵𝑇
= 𝛽 =

1

Ω(𝐸)

𝑑Ω(𝐸)

𝑑𝐸
                                            (6.2.3) 

 

Here, kB is the Boltzmann constant, defined as 1.38064852 × 10-23 J/K in 2019 [1]. 
The statistical mechanical entropy is defined as: 
 

𝑆 = 𝑘𝐵 ln(Ω)                                                   (6.2.4) 
 

and eqs. (6.2.1-2) are rewritten as: 
 

𝑆𝑡𝑜𝑡 = 𝑆𝐴 + 𝑆𝐵                                                 (6.2.5) 
 

1

𝑇
=

𝑑𝑆

𝑑𝐸
                                                        (6.2.6) 

 

We can estimate Ω𝐵 using  and EA as follows: 
 

1

Ω𝐵(𝐸𝐵)

𝑑Ω𝐵(𝐸𝐵)

𝑑𝐸𝐵
= −

1

Ω𝐵(𝐸𝐵)

𝑑Ω𝐵(𝐸𝐵)

𝑑𝐸𝐴
= 𝛽                                    

∫
1

Ω𝐵

𝑑Ω𝐵

𝑑𝐸𝐴
𝑑𝐸𝐴 = −𝛽 ∫ 𝑑𝐸𝐴  

ln(Ω𝐵) = −𝛽𝐸𝐴 + 𝑐𝑜𝑛𝑠𝑡  
Ω𝐵 ∝ exp(−𝛽𝐸𝐴) = exp (−

𝐸𝐴

𝑘𝐵𝑇
)                                  (6.2.7) 

 

Then eq. (6.2.1) is rewritten as: 
 

Ω𝑡𝑜𝑡 ∝ Ω𝐴(𝐸𝐴)exp (−
𝐸𝐴

𝑘𝐵𝑇
)                                         (6.2.8) 

 

This energy distribution is called the “Boltzmann distribution”. For example, the 
gravitational potential distribution is proportional to exp (−

𝑚𝑔ℎ𝑔

𝑘𝐵𝑇
) (g: gravitational 

acceleration, hg: height from the ground) and the mass can be distributed within the 
region: 

0 ≤ ℎ𝑔 <
𝑘𝐵𝑇

𝑚𝑔
                                                  (6.2.9) 

 

For an object with a mass of 1 g (10-3 kg), the possible floating height is 4×10-19 
m, which is much less than the size of a proton, and floating is impossible. However, 
an oxygen (O2) molecule (5.3×10-26 kg) is distributed between hg = 0 and 7900 m. 
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CHAPTER 7 
 

Analysis of the Measurement Uncertainties 

Abstract: Physical laws, which have finite uncertainties, are established to facilitate 
measurements. New physical phenomena have been discovered when the 
measurement uncertainties were reduced. The object of this chapter is to review the 
estimation of the measurement uncertainties. This parameter consists of statistical 
uncertainty and systematic uncertainty. Statistical uncertainty is given by the random 
distribution of measurement results in a region with a broadening of  in the vicinity 
of a real value. The statistical uncertainty of the average of the measurement results 
is expected to be 𝜎

√𝑁
, where N is the number of measurement samples. Systematic 

uncertainty exists because measurements are influenced by the conditions under 
which they are obtained. The real value is defined for a certain circumstance, and the 
measurements obtained under different circumstances are shifted from this value. The 
real value is obtained by correcting the shift, which is estimated according to the 
measurement circumstances.  Statistical uncertainty is obtained from the uncertainty 
in the estimation of the shifts. 

Keywords: Atomic clock, Central limit theorem, CPT-symmetry, Gravitational 
potential in the micro-scale, Measurement uncertainty, Ptolemaic and Copernican 
systems, Spectrum broadening, Stark shift, Statistic uncertainty, Systematic 
uncertainty, Zeeman shift. 

7.1. IMPORTANCE OF THE MEASUREMENT UNCERTAINTY [1] 
 

Physics involves the study of the laws of nature, from which we can make 
predictions regarding future phenomena. This is based on measurement results. For 
example, for the measurement results of (x,y) = (1,1), (2,2), (3,3), (5,5), the law of 
y = x is established. However, uncertainty is always present in measurement results. 
If the measurement uncertainty is 10%, the proportionality cannot be established. 
The measurement result for 𝑥 > 20 may have a discrepancy with the established 
law 𝑦 = 𝑥 (Fig. 7.1).  
 

Physical laws were established based on the measurement results obtained at a 
given time. The development of new physical laws is necessary to account for the 
discovery of new phenomena that are not consistent with previous physical laws. 
New phenomena have often been discovered via the minimization of measurement 
uncertainties. If  the  uncertainty of measurements are reduced to 0.5% and (x,y) =  
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(1,0.99), (2,1.98), (3,2.95), (5,4.79) are obtained, y = 10sin(x/10) is more 
appropriate description than y = x.  
 

 
Fig. (7.1). All measurements have some degree of uncertainty; therefore, laws from measurement 

results should always be subjected. (This figure is used also in “Measurement, Uncertainty and 
Lasers” by M. Kajita). 
 

The development of physics has been closely correlated to improving the accuracy 
of time and frequency, especially with respect to the invention of new clocks [2]. 
In ancient times, the Ptolemaic system was accepted because there was no 
discrepancy related to measurement uncertainties when it was adopted. As the 
accuracy of the clock improved, discrepancies were discovered regarding the 
position of stars at certain moments, and the Copernican system was established. 
Newtonian mechanics was established within 100 years after the accuracy of the 
clock was drastically improved by the discovery of the periodicity of the pendulum. 
As the accuracy of clocks continued to improve, the fluctuation of the orbital period 
of Io (satellite of Jupiter) was observed to be out of the margin of error of these 
instruments. To interpret this phenomenon, the speed of light was recognized as 
being finite for the first time; the light propagation time is not constant because the 
distance between the earth and Jupiter changes owing to their orbital motions. The 
characteristics of light were further elucidated because the propagation of 
electromagnetic waves, as described by Maxwell’s equation, is in good agreement 
with the measured speed of light.  
 

Measurements with ultra-low uncertainty have been performed for atomic 
transition frequencies. Atomic clocks are based on the atomic transition 
frequencies. Fractional measurement uncertainties below 10-17 have been obtained 
for several transition frequencies [3-7].  
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 The slight shift in the transition frequencies significantly contributed to the 
development of modern physics. For example, time slows down in a moving frame, 
as shown in chapter 3.6. However, for a velocity of 1000 m/s, this effect results in 
a fractional shift of 10-11, which can only be detected using atomic clocks. The 
theory of general relativity shows that time shows down in the presence of a strong 
gravitational field (gravitational redshift). This effect results in a fractional shift of 
10-16 with a change in altitude of 1 m. For a measurement uncertainty below 10-17, 
this effect is detected when there is a change in altitude of 15 cm [3]. 
 

 
Fig. (7.2). Comparison of transition frequencies of an H-atom and an anti-H atom. (This figure is 

used also in “Measurement, Uncertainty and Lasers” by M. Kajita). 
 

Further developments in physics are expected based on the detection of slight 
effects, for which measurements with ultralow uncertainties are required. For 
example, there is a mystery concerning the relationship between particles and 
antiparticles. Antiparticles are expected to be charge-conjugated and mirror-image 
inverted particles (CP-symmetry). However, why aren’t antiparticles present in 
nature? If the CP-symmetry is violated, the number of particles can be larger with 
a ratio of 10-9 compared to antiparticles, and particles can continue to exist after 
their antiparticles disappear via pair annihilation. A violation of CP-symmetry was 
discovered in 1964 [8]. However, CPT symmetry (antiparticles must have the image 
of particles after charge-conjugation, mirror-image inversion, and time-reversal) is 
required to maintain the Lorenz invariance; all physical laws in a coordinate must 



144 Fundamentals of Analysis in Physics, 2022, 144  

        Masatoshi Kajita 

All rights reserved-© 2022 Bentham Science Publishers 

 

 

 

 
 

Conclusion 

In this book, I summarize the fundamental part of analysis for the whole field of 

physics. Until 19th century, the fundamental of whole physics was classical 

mechanics, giving the equation of motion under a certain potential field. The 

electromagnetism gives the formula of the potential field, given by the electric and 

magnetic fields.  

 

In the 20th century, the limit of validity of classical mechanics was found. Quantum 

mechanics is required to describe the phenomena on the micro-scale. The 

fundamental of quantum mechanics is wave-particle duality. The wave 

characteristics of particles were derived from the analogy of the characteristics of 

light, which were derived from Maxwell’s equation. The quantum mechanics 

converges to the classical mechanics by ℎ → 0 (h: Planck constant). 

 

The theory of relativity is required to describe the phenomena with high velocity. 

The theory of relativity was based on the constant speed of light in the vacuum c, 

which was derived from Maxwell’s equation. The theory of relativity converges to 

the classical mechanics with  𝑐 → ∞.   

 

Therefore, all fields in physics are closely correlated. It is most important to 

understand the role of each field to establish the whole physics. For example, 

knowledge of classical mechanics is required to understand quantum mechanics. 

On the other hand, a simple imagination of quantum mechanics makes it easy to 

learn classical mechanics more in detail.  

  

I am now writing while the world is in panic with the outbreak of coronavirus. But 

seeing that Newtonian mechanics was established during the plague outbreak, we 

might consider it as the chance to find our next step.   
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