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PREFACE

In the last year, society has increased its interest in green technology due to higher awareness
about  the  environment.  Analytical  chemistry  plays  a  valuable  role  in  the  sustainable
development of the planet. It is not just for pollutant monitoring in the environment, but also
for the development of more sustainable processes. In this sense, the replacement of existing
extraction  techniques  with  more  environmentally  sustainable  extraction  techniques  is  an
important step to the final greenness of the entire process. Also in food analysis, it is one of
the  main  strategies  to  make  it  greener.  One  of  the  main  aspects  to  be  considered  when
processing  to  change  from  a  current  extraction  method  to  a  greener  one  is  the  choice  of
solvent. The degree of environmental impact changes according to the type of solvent used
because it depends on the way natural resources are harvested, energy usage, and emissions to
air  and  water  from the  production  and  the  use  of  solvents,  transportation,  and  disposal  or
recycling.

This  book  is  composed  of  14  chapters  providing  the  reader  with  the  last  trends  in  the
development  and  applications  of  green  extraction  techniques  in  food  analysis.  Chapter  1
presents the current state of the art of Green Analytical Chemistry and its main strategies for
improving the sustainability of analytical methods, reducing their environmental impact, and
offering  solutions  to  the  needs  that  arise  from  food  analysis.  Chapter  2  introduces  the
principles of green extraction techniques and makes an overview of the main green extraction
techniques (such as microwave-assisted extraction, ultrasound-assisted extraction, subcritical
water extraction, and supercritical fluid extraction). Chapter 3 provides an overview of the
environmentally  friendly  solvents  most  commonly  used in  food analysis  (including water,
carbon  dioxide,  ethanol,  ionic  liquids,  natural  deep  eutectic  solvents,  surfactants,  and
switchable solvents), in which the advantages and limitations of the use of these solvents in
food analysis from the perspective of green analytical chemistry are described. In addition,
some  applications  of  the  combination  of  environmentally  friendly  solvents  with  assisted
extraction  techniques  and  miniaturized  techniques  are  discussed.  In  Chapters  4-6,  recent
applications  of  deep  eutectic  solvents,  ionic  liquids,  and  supramolecular  solvents,
respectively, in food analysis are described in depth. While Chapters 7-14 are focused on the
applications  of  supercritical  fluid  extraction,  gas-expanded  liquids  extraction,  pressurized
liquid extraction, microwave-assisted extraction, enzyme-assisted extraction, pulsed electric
field,  high-voltage  electrical  discharges,  and  high  hydrostatic  pressure  in  food  analysis,
respectively.  Also,  the  main  fundamentals/principles,  instrumental  setups,  as  well  as,  the
advantages  and  drawbacks  of  the  use  of  these  green  extraction  techniques  are  broadly
explained  and  detailed  in  these  chapters.

This book is intended for a large audience comprising Ph.D. students and experts working on
different  topics  related  to  food  analysis  with  new  technological  and  methodological
approaches  to  make  extraction  techniques  greener  and  more  sustainable.
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CHAPTER 1

Green Analytical Chemistry
Miguel de la Guardia1,*, Sergio Armenta1, Francesc A. Esteve-Turrillas1 and
Salvador Garrigues1

1  Departamento  de  Química  Analítica,  Universidad  de  Valencia.  Edificio  Jeroni  Muñoz,  Calle
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Abstract:  Food  analysis  demands  are  mandatory  from  quality,  safety,  and
authentication point of view, and there is an increase in analytical activity in both the
control  laboratory  and  research  and  development.  This  chapter  presents  the  current
state-of-the-art of Green Analytical Chemistry and its main strategies for improving the
sustainability of analytical methods, reducing their environmental impact, and offering
solutions to the needs that arise from food analysis. Direct analysis is presented as the
ideal method that avoids the use of solvents or reagents and the generation of waste.
Miniaturization, automation, and the use of sustainable solvents, in addition to reducing
energy consumption, are the basic strategies that allow us to achieve the objectives of
Green Analytical  Chemistry.  The reduction of  single-use  plastic  laboratory material
and their waste has also been considered an objective for analytical method greenness.

Keywords:  Agro-solvents,  assisted  extraction,  Automation,  Bio-solvents,
Chemical  imaging,  Direct  analysis,  Eco-scale,  Energy  consumption,  Food
authentication,  Food  quality,  Food  safety,  Green  features,  Greenness,
Microextraction,  Miniaturization,  Plastic  waste,  Solvent  consumption.

INTRODUCTION

Green Analytical Chemistry is a challenging strategy focused on the modification
of  conventional  analytical  methods  in  order  to  avoid  or  reduce  the  deleterious
effects on both, users and the environment [1]. This green trend is of particular
importance in the food analysis area, where an extremely high number of samples
must be daily analysed all around the world in order to assess the food quality and
food  safety  of  raw  and  manufactured  products.  Moreover,  food  analysis  is  a
diverse task and it may involve the determination of physico-chemical parameters
and  macronutrients,  to  the  determination  of  micronutrients,  bioactive  compo-
nents, and residues of pesticides. It  also  involves the  detection of  food adultera-
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tion, fraud, and the geographical origin of food products. Most of these studies are
carried  out  by  using  reference  methods  and  guidelines  from  the  Codex
Alimentarius  Commission  of  the  Joint  FAO/WHO Food  Standards  Programme
[2], the Association of Official Agricultural Chemists (AOAC) [3], and European
Food Safety Authority (EFSA) [4],  which typically use conventional  analytical
techniques  that  are  characterized  by  long  analysis  time,  laborious  sample
preparation,  and  high  consumption  of  reagents  and  solvents  that  very  often
involve  the  generation  of  toxic  wastes  [5].

The concept of Green Analytical Chemistry was firstly proposed by de la Guardia
and  Ruzicka  in  1995  with  the  novel  idea  of  environmentally  conscientious
Analytical  Chemistry  through  miniaturization,  containment,  and  reagent
replacement  [6].  Later  in  1999,  de  la  Guardia  proposed  the  “integrated
environmentally  friendly  approach”,  considering  the  side  effects  of  chemical
measurements that can be reduced by using new strategies for sampling, sample
treatment,  and  chemometrics  [7].  In  this  frame,  methodologies  like  in-field
sampling,  on-line  analysis,  microwave-assisted  treatment,  automation  through
flow  analysis,  decontamination  or  passivation  processes,  and  surface  analysis
were proposed in order to achieve excellent analytical figures of merit, but also
considering  external  factors  such  as  environmental  safety,  health,  and  social
problems.  Since  that  time,  the  Green  Analytical  Chemistry  concept  has  been
expanded and widely discussed in several books authored by researchers, such as
Anastas in 1999 [8], Koel and Kaljurand in 2010 [9], de la Guardia and Armenta
in 2011 [10], de la Guardia and Garrigues in 2012 [1], and, more recently, Płotka-
Wasylka and Namieśnik in 2019 [11].

Since  its  inception,  Green  Analytical  Chemistry  concept  has  been  running  in
parallel  to  Green  Chemistry,  focusing  on  chemical  analysis  and  processes,
respectively. Thus, the 12 principles of Green Chemistry defined by Anastas in
1998 [12] were adapted to an analytical focus by Galuzska et al. in 2013 [13]. The
12  principles  of  Green  Analytical  Chemistry  are  shown  in  Fig.  (1),  and  they
summarize  the  diverse  trends  proposed  to  reduce  the  environmental  impact  of
analytical procedures. From a Food Analysis perspective, the main principles to
have into account are those related to the implementation of in situ measurements
and direct analytical techniques in order to avoid or reduce sample treatment, the
reduction  of  the  number  of  samples  to  be  analysed,  the  use  of  automated  and
miniaturized  methodologies,  and  the  preferential  use  of  multianalyte  methods,
improving  in  all  cases  the  level  of  information  obtained  from  sample
measurements.
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Fig. (1).  The 12 principles of Green Analytical Chemistry (adapted from reference [13]).

During  these  years,  several  criteria  have  been  proposed  to  evaluate  the  green
character of an analytical method, such as: the National Environmental Methods
Index  (NEMI)  [14],  Green  Assessment  Profile  [15],  color  scale  adapted-NEMI
[16],  penalty  points  and Eco-scale  [17],  Green Motion tool  [18],  E-factor  [19],
Green  Certificate  [20],  and  Green  Analytical  Procedure  Index  (GAPI)  [21].
However, today there is not still a common agreement among analytical chemists
about  what  is  the  definitive  criterion  to  evaluate  the  green  character  of  an
analytical  methodology.  Thus,  a  homogeneous  guideline  is  still  required  to
quantify the green features of analytical methods and evaluate their environmental
impact.  Nevertheless,  after  two  decades  since  the  inception  of  the  Green
Analytical Chemistry concept, it can be confirmed that the environmental concern
has increased with a significant positive balance.

Vibrational  spectroscopy  is  widely  applied  in  both,  food  laboratories  and
production lines using techniques based on infrared, Raman, and Hyperspectral
Image  System,  usually  associated  with  chemometrics  [22].  These  techniques
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CHAPTER 2

Green Extraction Techniques
Malak  Tabib1,2,  Njara  Rakotomanomana2,  Adnane  Remmal1,*  and  Farid
Chemat2,*
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Abstract:  Green  extraction  of  natural  products  was  and  will  always  remain  an
important research subject in various fields. It is based on developing techniques that
meet the six principles of eco-extraction. This concept responds to the challenges of the
21st  century,  aiming  to  protect  the  environment,  the  operator,  and  the  consumer  by
reducing  hazardous  solvent  consumption  and  by  favoring  the  use  of  more
environmentally  friendly  methods.  In  this  chapter,  we  review the  principles  of  eco-
extraction  in  detail,  followed  by  an  overview  of  four  methods  widely  used  in
extraction,  namely  ultrasound-assisted  extraction  (UAE),  microwave-assisted
extraction (MAE), subcritical water extraction (SWE), and supercritical fluid extraction
(SFE).

Keywords: Green extraction techniques, Microwave-assisted extraction (MAE),
Principles,  Subcritical  water  extraction  (SWE),  Supercritical  fluid  extraction
(SFE),  Ultrasound-assisted  extraction  (UAE).

INTRODUCTION

Sustainable  development  is  one  of  the  most  commonly  used  terms  in  today’s
debates.  It  is  considered  a  development  that  satisfies  the  needs  of  the  present
without compromising the ability of  future generations to respond to their  own
needs.  This  demand  affects  all  areas  of  society,  including  chemistry.  It  should
reflect on how chemistry can contribute to greater sustainability in our society,
now and in the future.

One  of  the  contributions  of  chemistry  to  meet  the  challenge   of  greater
sustainability  in the development of our society is promoting sustainable chemist-
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ry in research and industrial production. Under the name of green chemistry (or in
Europe  also  sustainable  chemistry),  many  efforts  have  been  made  to  make  the
chemistry  of  tomorrow less  toxic  and less  dangerous.  Green chemistry  aims to
make  chemistry  more  energy  efficient,  reduce  waste  disposal,  and/or  produce
innovative  products  using  fewer  natural  resources.  Alternative  processes  and
reaction  routes  are  designed,  and  new  materials  and  products  are  developed,
helping  to  ensure  our  current  requirements,  but  taking  greater  account  of  the
interests  of  future  generations.

Extraction  is  considered  a  key  step  in  food  processing  which  consists  of
separating the  desired  compounds  from the  raw material  and transferring these
compounds into a solvent. It includes several methods, such as solvent extraction,
ultrasound-assisted extraction, microwave-assisted extraction, Soxhlet extraction,
supercritical fluid extraction, and subcritical water extraction. In the main, natural
product extraction goes through the following phases: (1) the solvent penetrates
the solid matrix; (2) the solute dissolves in the solvents; (3) the solute is diffused
out of the solid matrix; (4) the extracted solutes are collected. The efficiency of
the extraction is  conditioned by various parameters,  including particle  size,  the
extraction  solvent,  the  solvent-to-solid  ratio,  the  extraction  temperature,  and
duration.

These  extraction  methods  allow  for  faster  and  more  sustainable  component
separation, as fewer toxic solvents [1] and energy [2] are used. In addition, they
simplify manipulation and sample preparation, give high purity and yield of the
final extract, and eliminate post-treatment of wastewater [3]. Numerous classes of
compounds such as  vitamins,  sugars,  proteins,  lipids,  fibers,  aromas,  pigments,
antioxidants, and other organic and mineral compounds have been extracted from
various matrices, mainly insects [4], plant materials [5 - 8], and animal tissues [9].

This chapter provides an overview of existing knowledge on innovating methods
of  sample  preparation  of  natural  products.  It  gives  the  fundamental  theoretical
framework  and  a  few  details  about  the  extraction  using  some  of  the  most
innovative,  green,  fast  techniques  such  as  ultrasound-assisted  extraction,
microwave-assisted extraction, subcritical water extraction, and supercritical fluid
extraction by detailing their principles, instrumentations, and applications in food
analysis.

GREEN EXTRACTION: DEFINITION AND PRINCIPLES

Despite  the  prejudicial  opinions  of  some  world  leaders  today,  global
environmental awareness continues to be on the increase. Terms such as green,
biorefinery, and sustainability, are increasingly important in all facets of global
development.  This  idea  is  closely  associated  with  the  principles  of  green
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extraction,  which  can  be  defined  as  a  process  of  obtaining  an  extract  using
minimal  hazardous  /  petroleum  solvents  by  reducing  energy  consumption  and
waste as well as ensuring safe and high-quality extracts. It is a concept that seeks
to meet the challenges of the 21st century by protecting the environment and the
consumers, and at the same time, increasing competition between universities and
industries to be more environmentally, economically, and innovative [2, 10, 11].

According  to  Chemat  et  al.  (2012),  The  list  of  the  “Six  Principles  of  Green
Extraction of Natural Products” can be consulted by industry and scientists as a
direction to establish an innovative and green label, charter, and standard, and as a
reflection  to  innovate  not  only  in  the  process  but  in  all  aspects  of  solid-liquid
extraction. The principles have been identified and described not as rules but more
as  innovative  examples  to  follow,  discovered  by  scientists,  and  successfully
applied  by  industry  [2].

Principle  1:  Innovation  by  A  Selection  of  Varieties  and  Use  of  Renewable
Plant Resources

The rising claim of natural products and extracts to respond to the need of food,
cosmetic  and  pharmaceutical  industries  is  resulting  in  the  over-exploitation  of
plant  resources.  Using  agricultural  by-products  became  trendy,  providing
additional income to primary producers and industries and improving the overall
agricultural  value  chain.  Nowadays,  trends  in  botanical  by-products  are  to
increase  their  added  value,  from  organic  fertilizers  and  raw  material  pellets  to
functional ingredients [10, 12].

Plant/crop-based resources are defined as raw materials derived from the natural
flora and the transformation processes in numerous industries (food, feed, fiber,
etc.). An underlying hypothesis is that these resources are renewable over a short
period,  using  annual  crops,  perennials,  and  short-rotation  woody  species.  The
reuse of these plant resources as raw materials for industrial production or as a
source  of  energy  is  quite  limited.  This  is  due  to  the  poor  adaptation  of  the
hydrocarbon processing system, which, unlike these materials, was developed in a
more advanced way to use fossil fuels.

Renewable plant-based resources represent a strategic option to fulfill the growing
need for industrial components, enabling economic, environmental, and societal
benefits.  The  opportunity  is  advantageous.  Nevertheless,  it  requires  a  foresight
perspective,  stakeholders’  integration,  investment  in  new  approaches,  and
coordination  of  research  to  generate  a  safe  future.

An example can be given with the plant breeding technique. Medicinal plants for
instance  play  an  important  role  in  prevention  and  treatment.  As  stated  by  the
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CHAPTER 3

Environmentally Friendly Solvents
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Abstract: The present chapter aims to provide a brief overview of the environmentally
friendly  solvents  most  commonly  used  in  food  analysis,  including  water,  carbon
dioxide, ethanol, ionic liquids, (natural) deep eutectic solvents (NA)DES, surfactants,
and switchable solvents. A general outlook of their properties, production sources, and
classification is provided. The advantages and limitations of the use of these solvents in
food  analysis  are  evaluated  from the  point  of  view  of  Green  Analytical  Chemistry.
Some  recent  applications  have  been  selected  to  illustrate  the  potential  of
environmentally friendly solvents in combination with assisted extraction techniques
and miniaturized techniques for the development of green extraction methods in food
analysis.

Keywords:  Analytical  Chemistry,  Environmentally  friendly  solvents,  Food
analysis, Green Chemistry, Green extraction, Green solvent, Sample preparation.

INTRODUCTION

Environmentally  friendly  solvents,  commonly  designated  as  “green”  solvents,
respond  to  the  need  of  minimizing  the  impact  of  chemical  processes  in  the
environment. These solvents show better EHS (environmental, health, and safety)
properties than the traditional hazardous ones, but other aspects are also taken into
consideration,  such  as  energy  flows  and  costs  related  to  their  production,
performance,  and disposal.  In  this  context,  an  environmentally  friendly solvent
may be defined as one solvent that fulfills some of the following twelve criteria
[1]:  (1)  availability  at  a  large scale,  (2)  competitive price,  (3)  recyclability,  (4)
purity grade, (5) synthesis, (6) negligible toxicity, (7) biodegradability, (8) perfor-
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mance, (9) thermal and chemical stability, (10) flammability, (11) transport and
storage,  (12)  renewability.  The use  of  these  solvents  is  encompassed under  the
principles  of  Green  Analytical  Chemistry  (GAC)  [2],  which  aim,  among  other
goals, to reduce the amounts of solvents and reagents used in analytical methods
along  with  the  waste  generated,  and  the  replacement  of  toxic  solvents.  In  this
regard, sample preparation, which consumes more than 80% of the analysis time,
is a key step in the development of any analytical application [3].  It  is obvious
that the greenest approach is the direct analysis of samples, but even though fields
such as ambient mass spectrometry have developed in recent years, direct analysis
of  food  is  still  a  complex  issue  [4].  Therefore,  the  current  approaches  to  make
methods  for  food  analysis  and  foodomics  greener  are  more  focused  on  the
miniaturization  of  analytical  techniques  and  the  use  of  green  solvents  [5,  6].

In  terms  of  solvent  consumption,  the  employment  of  environmentally  friendly
solvents  instead  of  more  hazardous  ones  is  critical  in  studies  aiming  at  the
recovery  of  bioactive  compounds  from natural  sources  to  produce  food-related
products. The most common conventional techniques used for the extraction of
valuable  compounds  from  food  and  other  natural  sources  are  solid-liquid
extraction  (SLE)  and  liquid-liquid  extraction  (LLE).  These  techniques  are
characterized by simplicity and the use of not expensive instrumentation, but one
of their main drawbacks is the consumption of considerable amounts of organic
solvents [7]. Among the strategies followed to seek greener alternatives to these
methods, the use of the so-called assisted extraction techniques is a widely used
approach. The application of ultrasounds, microwaves, or high pressures allows
the reduction of extraction time and solvent consumption.  Another approach to
reducing the consumption of organic solvents is the use of miniaturized extraction
techniques,  such  as  liquid-phase  micro  extraction  techniques  (LPME),  or
miniaturized  solid-phase  extraction  (µSPE)  [8].

According to GAC principles, the reduction of the amount of solvents used is not
sufficient,  but  additionally,  toxic  solvents  should  be  replaced  by  greener  ones,
preferably  obtained  from renewable  sources.  Therefore,  it  is  important  to  have
some tools that allow the classification of environmentally friendly solvents into
groups, helping the analyst in the selection of the most suitable solvent or solvent
mixture for a particular food application. In the next section, different selection
guides  are  presented,  and  the  considerations  to  be  taken  into  account  are
discussed.  Following,  a  detailed  description  of  different  solvents  and  their
applications  in  food  analysis  is  presented.
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CLASSIFICATION  AND  SELECTION  OF  ENVIRONMENTALLY
FRIENDLY SOLVENTS

The selection of an environmentally friendly solvent for a particular application is
a challenging task. Considering that the concept of green solvent is based on the
fulfillment of a sort of criteria related to green chemistry [1], it is easy to figure
out  that  there  is  not  a  straightforward  definition  and  classification  of  green
solvents. In addition, a one-to-one replacement of conventional-to-green solvents
is difficult and has to be based on a two-side comparison: on one hand, the green
solvent should own better EHS properties than the solvent to be replaced and, on
the other hand, the physicochemical properties and analytical performance of the
new  solvent  should  be  at  least  similar  to  the  one  to  be  replaced.  To  this  aim,
efforts have been taken to develop different computer-aided selection tools that
put environmentally friendly solvents into groups.

Among  the  classification  tools  based  on  EHS  characteristics  of  solvents,  it  is
worth mentioning the solvent selection guide CHEM21, although it was designed
for  the  pharmaceutical  industry  [9].  It  establishes  a  scoring  system  based  on
environmental issues such as volatility, recyclability or bioaccumulation, health
issues related to occupational hazards, and safety issues such as flammability. One
of  the  strengths  of  this  guide  is  that  it  is  based  on  easy-to-access  information
contained in the solvents Safety Data Sheets. The outcome of the CHEM21 guide
is  a  ranking  that  groups  the  solvents  into  four  categories,  namely  highly
hazardous, hazardous, problematic, and recommended solvents. Another approach
is  the  combination  of  EHS  information  with  life  cycle  assessment  (LCA)
methodology,  which considers  energy use during solvent  production and waste
treatment  [10].  LCA  methodology  may  be  also  applied  to  the  entire  chemical
process  (and not  only to  the solvents),  which is  the so-called “cradle-to-grave”
approach [11]. Likewise, the “analytical Eco-Scale” is a tool designed for GAC
that evaluates the analytical method as a whole, considering not only the hazards
associated with the solvents but also the energy consumed by the instrumentation
and  the  waste  generated  [12].  This  scale  starts  from  100  points,  from  which
penalty points are subtracted, thus being the greenest approach the highest scored
one.  It  should  be  noted  that  in  the  last  years  the  trend  is  moving  towards  the
development of green metrics that assess the entire method of analysis, instead of
focusing on a simple replacement of solvents and reagents for greener ones [13 -
15].

Regarding the tools  available  for  the  comparison of  solvent  properties,  Hansen
solubility parameters (HSP) [16, 17] or Kamlet-Taft solvatochromic parameters
[18,  19]  can  be  used  to  compare  solvent  properties.  Both  models  consider
molecular  interactions  such  as  hydrogen-bond  donating  ability  (acidity),
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Abstract: Among the different strategies applied in recent years for the development
of  green extraction techniques  in  food analysis,  the  design and use  of  deep eutectic
solvents (DESs) have aroused the utmost attention due to the advantages provided by
these materials in terms of sustainability and versatility. Different types of DESs have
been  applied  in  this  field  including  hydrophilic  and  hydrophobic  mixtures,  natural
DESs, or polymeric-DESs. In this sense, the great availability of components and the
wide range of possible combinations constitute potential tools to increase the selectivity
and enhance the extraction capacity of the procedures, which is an important concern
when  complex  food  samples  are  tackled.  This  broad  spectrum  of  possibilities  has
allowed the extraction of diverse compounds including not only contaminants such as
pesticides, plastic migrants, heavy metals, or pharmaceuticals, among others, but also
the extraction of biomolecules from food and food by-products. However, despite the
advantages of these materials, there are important drawbacks like their high viscosity
and low volatility that limit their application. In this context, an important effort has
been  carried  out  by  the  study  of  different  combinations  and  the  development  of
numerous approaches. In this chapter, the most relevant applications of DESs in the last
five  years  in  food  analysis  have  been  compiled  and  discussed  in  order  to  provide  a
global  view  of  the  advantages  and  limitations  of  the  application  of  these  green
extraction solvents in the field. Additionally, the current trends and future perspectives
in the use of DESs in food analysis are also pointed out.

Keywords:  Biomolecule,  Bioactive  compound,  Extraction  technique,  Food
safety,  Green  solvent,  Sustainability.
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INTRODUCTION

Solvents represent the largest proportion of substances used in chemical protocols.
Thus, it is not surprising that, within the framework of green chemistry, several
efforts have done to develop green solvents [1] due to the contaminant power and
typical intrinsic toxicity of the traditional ones obtained from fossil feedstocks. In
this regard, apart from water and CO2, several bio-based molecular solvents [1]
(substances  available  from  low  value  and  extensively  accessible  biomass
resources),  supramolecular  solvents  [2]  (nanostructured  liquids  composed  of
three-dimensional  amphiphilic  aggregates),  and  low  transition  temperature
mixtures  [3]  (LTTMs,  solvents  made  from  mixtures  of  compounds  with  a  low
transition temperature between liquid and solid-state) have been proposed.

Different families of substances can be classified as LTTMs [3], including ionic
liquids (ILs) and DESs (from the Greek word “ευτύπος” eutēktos -easily melted).
Generally speaking, LTTMs share similar physicochemical properties (e.g., low
vapor  pressure,  high  density,  low  volatility,  etc.)  and  components.  This  is  the
reason why some of these solvents are sometimes classified as DESs or ILs [3],
depending on the particular application. Although some of them are formed by a
similar process (and for this reason, there is some confusion in the nomenclature),
ILs  are  normally  recognized  as  molten  salt  liquid  at  room  temperature.
Meanwhile,  DESs  can  be  defined  as  mixtures  of  at  least  two  constituents  (a
hydrogen bond acceptor (HBA) and a hydrogen bond donor (HBD)) that remain
liquid over a wide range of temperatures (also room temperature) [4]. The main
force driving the formation of DESs is strong hydrogen bond interaction, but other
forces,  such  as  Van  der  Waals,  dipole,  alkyl-alkyl,  halogen  bonds,  and  other
electrostatic interactions, are also involved [4]. As a result of those interactions
(and  the  corresponding  charge  delocalization),  the  eutectic  temperature  is
significantly  lower  than  the  melting  point  of  the  specific  constituents  and  also
much  lower  than  expected  from  the  known  enthalpies  of  fusion  of  the  pure
components. Strictly speaking, the eutectic point is only achieved at a particular
molar ratio of the individual constituents (Fig. 1) and, thus, the term DESs should
be only employed for this mixture. However, different mixtures present melting
temperatures  lower  than  the  predictable,  which  are  frequently  included  in  this
category (although some authors prefer the term “eutectic mixtures”). It should be
noted that certain particular DESs (for example those containing SnCl2, AlCl3, and
FeCl3 mixed with imidazolium chlorides) have two different eutectic points [5].
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Fig. (1).  Schematic representation of the phase diagram for a binary eutectic mixture. L: liquid phase, α:
solid rich in component A, β: solid rich in component B.

Typical HBDs are alcohols, amides, amines, azole, carboxylic acids, imidazole,
phenol, thiourea, urea, and water, whereas conventional HBAs comprise dication-
based, imidazolium-based, quaternary phosphonium, and quaternary ammonium
salts, inner salts, and molecular imidazole and its analogs.

Archetypally, DESs can be described by the formula C+X-zY, where C+ is a cation
of a salt, X- refers to a Lewis base (such as the halide anion of the salt), and z is
the number of units of a Y Lewis or Brønsted acid or HBD molecule [5]. Initially,
the vast majority of DESs were classified into four different types [5], attending to
the nature of the components. This way, type I DESs are those formed by a salt
and metal halide; type II are composed of salts and metal halide hydrates; type III
by  salts  and  HBDs;  and  type  IV  contain  metal  chloride  hydrates  and  HBDs.
Moreover,  the  search  for  non-ionic  DESs,  that  overcome  the  issues  associated
with salt-based DESs, led to the emergence of type V, which are characterized by
a mixture of molecular components. It should be mentioned that in those DESs
formed  by  non-ionic  components,  it  is  not  easily  distinguishable  which
component  acts  as  HBD  and  which  one  as  HBA.

Apart from the nature of the components, DESs can also be classified according
to  their  hydrophobicity  and  to  the  origin  of  their  components.  As  the  name
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Abstract:  The  significant  potential  of  ionic  liquids  (ILs)  in  the  extraction  and
separation of valuable products from food samples is deeply discussed in this chapter,
where  the  main  studies  on  the  application  of  ionic  liquids  to  food  analysis  are
presented. The novel extraction strategies reviewed in this chapter have the potential to
significantly enhance the extraction yield, in particular when the combination of ionic
liquids with accelerated and green extraction techniques, such as microwave-assisted
extraction (MAE), ultrasound-assisted extraction (UAE) or subcritical water extraction
(SBWE) are used. ILs are considered environmentally-friendly solvents and they offer
some advantageous properties which are particularly relevant in extraction systems in
food  matrices,  such  as  their  low  toxicity  and  volatility  and  different  polarity,
hydrophobicity  and  selectivity.  A  particular  section  is  devoted  to  microextraction
techniques with ionic liquids, which have shown great performance in the extraction of
valuable compounds for a variety of food samples. This chapter summarizes and gives
an  overview of  the  latest  developments  and  applications  of  ILs  in  the  extraction  of
bioactive compounds from food.

Keywords:  Bioactive  compounds,  Food  analysis,  Green  extraction  techniques,
Ionic liquids, Microextraction, Sustainable solvents.

INTRODUCTION

One  of  the  main  reasons  for  the  gradual  implementation  of  green  extraction
techniques in analytical procedures is the increasing awareness of the use of high
amounts of potentially toxic and non-sustainable organic solvents in traditional
extraction  methods.  The  replacement  of  solvents  with  emerging  green
alternatives,  such  as  deep  eutectic  solvents,  ionic  liquids,  and  non-ionic
surfactants,  is  in  line  with  sustainable  development  strategies  [1].  Ionic  liquids
(ILs) have been proposed as environmentally-friendly alternatives in their use as
extraction solvents in food analysis. Their use in combination with advanced and
sustainable extraction  techniques, such as  microwave-assisted extraction (MAE),
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ultrasound-assisted  extraction  (UAE)  and  supercritical/subcritical  extraction
techniques  is  considered  an  adequate  alternative  to  traditional  solid-liquid
methods.  In  particular,  their  use  in  food  matrices  can  be  considered  a  very
promising possibility with multiple applications. ILs have been the subject of a
number  of  interesting  and  recent  reviews  and  they  have  raised  great  attention
since  their  introduction  during  the  90s  [2].  Most  of  these  reviews  deal  with
general issues in the use of ILs under different extraction conditions [3 - 5] and
specific applications, including food analysis [6 - 9].

It  is  noteworthy that  ILs can also be considered as  one of  the most  fascinating
“green” solvents  for  food analysis  owing to their  high thermal stability (higher
than 300 ºC in most of the cases) along with very low vapour pressure and the
huge  number  of  possibilities  in  their  application,  including  their  use  in
miniaturized  systems  [10].  ILs  are  organic  salts  with  low  melting  temperature
(below  100  ºC),  consisting  of  large  organic  cations  and  organic  or  inorganic
anions. They exhibit unique characteristics, such as high ionic conductivity, low
flammability  and  non-volatility  among  others,  making  them  environmentally-
friendly  alternatives  to  traditional  organic  solvents  commonly  used  in  the
extraction  of  food  components.  Additionally,  their  high  viscosity  and  surface
tension  lead  to  the  formation  of  stable  phase  boundaries,  enhancing  the  easy
extraction  of  analytes.

These  outstanding  properties  make  ionic  liquids  the  ideal  candidates  as  green
solvents and hardeners in many extraction processes. In particular, halogen-free
ILs are more advantageous for environmental reasons due to their low toxicity,
being  excellent  solvents  for  food  analysis.  As  an  example,  Husson  et  al.  [11]
indicated that acidic ionic liquids are good solvents for fast esterification of many
food components, particularly lipids, without the need of any catalyst. Hence, the
use of ILs as green solvents for the selective extraction of polyacids from food
samples  can  modify  the  food  structure  without  any  additional  catalyst  in  the
esterification process [12]. The main aim of this chapter is to perform a general
overview of the use of ionic liquids in food analysis, particularly in the extraction
of  valuable  components  coupled  with  advanced  and  sustainable  extraction
methods.

CHEMICAL STRUCTURE AND PROPERTIES OF IONIC LIQUIDS

Ionic liquids are  liquid organic salts  with low melting point,  which are  usually
made up of a large organic cation and a smaller inorganic or organic anion [4, 6].
Those ILs with melting points at or below room temperature are defined as room
temperature ionic liquids (RTILs) [13] and they are highly valuable since their use
leads to significant energy savings during extraction. The origin of ILs dates back
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to 1914, when Walden [14] succeeded in the synthesis of ethylammonium nitrate
([C2NH3][NO3]); with a melting point of 12 °C [6]. However, the interest in the
use of ILs as alternative to conventional solvents has raised only in the last three
decades and their research and development have become a milestone in different
scientific  applications,  including  their  use  as  catalysts  in  organic  synthesis  and
separation processes, as part of lithium-ion batteries and sensors, thermal fluids,
biomass solvents, lubricant additives or as a CO2 absorption medium [15].

Some of the most common organic cations that make up the structure of ILs are
those based on imidazolium, pyridinium, pyrrolidinium, triazolium, thiazolium,
piperidinium, sulfonium, phosphonium or ammonium. In the same way, anions
can be both inorganic and organic, including magnetic anions. Inorganic anions
include  halides  (such  as  Cl-,  Br-  and  I-),  tetrafluoroborate  (BF4

-)  and
hexafluorophosphate  (PF6

-).  Organic  anions  include  acetate,
bis(trifluoromethylsulfonyl)imide  ([NTf2]-),  trifluoro-methanesulfonate  ([OTf]-),
trifluoroacetate, bis(pentafluoroethylsulfonyl) imide ([BETI]-) and many others. In
addition,  the  incorporation  of  paramagnetic  components,  including  metal  ions
(Mn, Fe, Co and Ni) and rare earths (Gd and Dy), into the IL structure has raised
some interest in recent years [16, 17]. Some examples include tetrachloroferrate,
tetrachloromanganate2- and tetrachlorocobaltate2-. The structure and nomenclature
of the most common cations and anions in ILs are shown in Fig. (1).

The large number of potential combinations of cations and anions in the formation
of ILs results in their unique and characteristic properties, including their broad
range of  working temperatures,  high polarities,  variable viscosities,  low charge
densities, reasonable ionic conductivities and low electrical conductivities [18].
Their  miscibility  with  water  and  organic  solvents  can  be  controlled  by  the
different  cation/anion  combination,  their  ratio  or  by  incorporating  certain
functional  groups  to  the  IL  structure,  resulting  in  tailor-made  compounds  for
specific applications. In addition, their very low vapour pressure (associated with
low combustibility and high thermal stability), as well as their non-explosive and
minimally corrosive character,  give ILs a clear environmentally-friendly nature
[4]. However, not all ILs can be classified as fully sustainable, since some of them
have been reported as toxic when incorporated into the environment [19 - 22].

A  summary  of  those  unique  properties  of  ILs,  which  make  them  especially
valuable as extraction media is shown in Fig. (2). As mentioned above, one of the
most important characteristics of ILs is their negligible vapour pressure, making
unnecessary  the  inclusion  of  distillation  processes  in  the  overall  extraction
methods.  However,  it  has  been  observed  that  vapour  pressure  should  not  be
considered  negligible at very low pressures  and temperatures above 200  or 300
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Abstract:  Supramolecular  solvents  (SUPRASs)  are  becoming  more  and  more
demanded  for  sample  preparation  in  food  analysis.  Their  inherent  properties  (e.g.
different polarity microenvironments, multiple binding sites, discontinuous nature, easy
tailoring  of  their  properties,  etc.)  make  them  highly  efficient  for  the  extraction  of
single- and multi-class contaminants in food matrices. Likewise, they offer numerous
opportunities  for  the  development  of  innovative  sample  treatment  platforms  not
attainable by conventional solvents. In this chapter, the fundamentals underlying the
production of SUPRASs and their more relevant properties regarding their application
to the extraction of food contaminants are discussed.  An overview of representative
developments in this field is given based on the different types of SUPRASs applied so
far in food analysis. Major achievements attained, mainly related to the extraction of
single- and multi-components prior to their quantification by liquid chromatography
coupled to different detection systems, are critically presented. The main challenges to
be  faced  in  order  to  get  SUPRAS-based  methodologies  that  meet  European
requirements for screening/quantification of contaminants in food and promote their
use in food control labs are discussed.

Keywords:  Coacervates,  Cloud  point,  Extraction,  Food  analysis,  Liquid
chromatography-mass  spectrometry,  Supramolecular  solvents.

INTRODUCTION

Supramolecular solvents (SUPRASs),  tailored and green nanostructured liquids
consisting of self-assembled amphiphilic aggregates, have gained momentum in
recent years for sample treatment in analytical chemistry [1]. Major driving forces
for their increasing demand in this field are the potential of SUPRASs for facing
the challenges that the detection/quantification of contaminants have in areas such
as food quality assurance [2], environmental analysis [3], anti-doping control [4],
and so on.
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Developing effective sample treatments in food analysis has to cope with highly
demanding requirements. Among them, the high chemical structural variability of
the  analytes,  the  required  low  detection  limits,  the  need  for  high  specificity  to
avoid false-positive and negative findings; and the high number of samples to be
analysed while delivering results in a short time, are worth noting. Thus, regulated
and unregulated chemicals in food are very diverse and originate from different
sources  along  the  food  chain  (crop,  transport,  storage,  processing,  packaging,
etc.).  Regulated  chemicals  in  food  include  a  variety  of  contaminants  such  as
mycotoxins,  dioxins,  polychlorinated  biphenyls  (PCBs),  polycyclic  aromatic
hydrocarbons (PAHs), residues of veterinary medicines, hormones, pesticides and
so on. Unregulated food contaminants are not routinely controlled, despite they
could exert a risk to public health. One of the most important sources of unknown
potentially toxic food contaminants is food contact materials (FCMs) [5], which
constitute  a  hot  topic  and  a  priority  for  the  European  Food  Safety  Authority
(EFSA) [6]. Global lists for FCMs do not usually take into account the so-called
non-intentionally  added  substances  (NIAS),  impurities,  by-products  or
degradation  products  that  originated  during  food  processing  or  come  from
recycling and that could constitute the majority of chemicals present in a product
[7]. So, effective food quality control requires multi-methods for dealing with the
huge number of chemicals under regulation, as well as proactive approaches to
cope with the potential harm of unknown chemicals and fraudulent practices.

Nowadays,  analytical  method  requirements  for  food  control  of  regulated
substances are well established [8, 9]. Mass spectrometry (MS), combined with
liquid  chromatography  (LC)  and  gas  chromatography  (GC),  has  become  the
primary technique for confirmatory methods in food control since they provide
suitable  identification  points  for  legislated  chemicals.  For  this  purpose,  LC-
MS/MS  using  electrospray  (ESI)  or  atmospheric  pressure  chemical  ionisation
(APCI)  and  GC-MS  using  electron  impact  (EI)  are  routinely  used,  whose
selection  mainly  depends  on  the  compound  polarity  and  technique  availability
[10].  GC-head  space  (HS)  injectors  have  gained  popularity  in  routine  analysis,
given their potential to perform clean-up in an easy automated way through the
selective desorption of analytes from the matrix.

Suspect  and  non-target  screening  analysis  is  nowadays  of  great  interest  for
identifying  emerging  food  safety  issues  at  their  early  stages.  To  address  this
interest,  LC-MS with  time-of-flight  (TOF,  QTOF) and Orbitrap analysers  have
become  the  most  suitable  techniques  due  to  their  high  capacity  for  compound
identification on the basis of mass accuracy and isotopic pattern [11, 12]. On the
other hand, ambient mass spectrometry (AMS) is an emerging approach based on
new ion sources capable of desorbing the analytes directly from the sample with
minimal  or  no  sample  treatment  and  of  ionising  chemicals  under  ambient
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conditions. AMS is gaining interest in food fraud detection given the possibility of
generating results quicker than conventional MS techniques [13, 14].

On  the  whole,  sophisticated  processes  are  mostly  required  for  food  quality
control.  So,  there  is  a  need for  quick but  accurate  screening and quantification
methods  in  order  to  make  them  affordable  and  not  hamper  trade  [15].  In  this
respect,  comprehensive  MS-based  screening  and  confirmation  analytical
platforms able to identify and quantify as many as possible single- or multi-class
analytes  in  a  run  should  be  developed.  To  fulfil  this  demand,  suitable  sample
treatments  for  efficient  isolation  of  a  wide  polarity  range  of  chemicals  while
providing also effective sample clean-up should be developed [16]. In short, there
is a need for greener, simple and quick matrix- and analyte-independent sample
treatments,  which  are  compatible  with  LC-  and  GC-  combined  with  MS,  and
emerging techniques such as AMS. In this respect, green SUPRASs, tailored to
meet specific functionalities, represent a great promise for developing innovative
sample treatments.

This book chapter deals with some fundamentals and characteristics of SUPRASs
relevant  for  their  application  to  the  extraction  of  contaminants  in  food,  the
achievements attained so far in this area, and the ongoing challenges that need to
be confronted to make SUPRAS competitive extractants in food analysis.

SYNTHESIS OF SUPRAMOLECULAR SOLVENTS

The  synthesis  of  SUPRASs  occurs  through  a  bottom-up  approach  in  which
amphiphilic  molecules  in  colloidal  solutions  undergo  self-assembly  and
coacervation  under  environmental  conditions  where  amphiphile-amphiphile
interactions predominate over amphiphile-solvent interactions [17]. The general
synthesis procedure comprises two steps (Fig. 1). First, amphiphilic molecules are
in  an  aqueous  or  organic  solution  above  the  critical  aggregation  concentration
(cac), forming a colloidal suspension. The aggregates in suspension are usually
aqueous or reversed micelles or vesicles. Second, the size of the supramolecular
aggregates  can  be  controlled  by  changing  the  environmental  conditions  of  the
colloidal suspension through the action of a coacervation-inducing agent (e.g. pH
or temperature modification, the addition of inorganic and organic salts or poor
solvents for the amphiphile). As a result, the aggregates grow into oily droplets,
which spontaneously associate in clusters of individual droplets. The density of
these clusters differs from that of the synthesis solution, so they are separated into
a new liquid phase (SUPRAS) by flocculation or precipitation. The SUPRAS is
not a continuous phase but is composed of coacervate droplets clearly visible by
optical microscopy. This phase is in equilibrium with the solution from which it
formed (bulk solution), which contains the amphiphile at the cac [18].
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CHAPTER 7
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Abstract: In this chapter,  we highlight the basic concepts behind the use of SFE to
select molecules present in food matrices, e.g., carotenoids, essential oils, waxes, and
phenolic  compounds.  Also,  we highlight  the  SFE equipment  setup,  the  methods  for
process intensification, and mass transfer mechanisms involved in the process, besides
the advantages and drawbacks. Supercritical fluids have been suggested as a powerful
tool to improve the performance of analytical methods in terms of reduced steps for
sample preparation and waste generation, besides enhanced precision and recovery of
analytes detected.  The offline association of  SFE with analytical  detection has been
elucidated  for  decades.  Currently,  many  efforts  have  been  made  to  reach  the
miniaturization of equipment as well as the online hyphenation between extraction and
analytical detection with supercritical fluids as a novel method for sample preparation
to detect food analytes in real time with accuracy and robustness.

Keywords:  Analytical  chemistry,  Chromatography,  Food  bioactive,  Overall
extraction  curves,  Sample  preparation,  Supercritical  CO2.

INTRODUCTION

Supercritical fluid extraction (SFE) is a green technology widely used to extract
active  principles  present  in  varied  matrices  for  multiple  applications,  including
foods,  pharmaceuticals, and cosmetics.  A significant number  of works have sho-
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wn that supercritical fluids are more effective in extracting target compounds than
conventional methods that use organic solvents (methanol, acetone, and hexane)
[1, 2].

Supercritical carbon dioxide (SC-CO2) is the most used supercritical fluid due to
its mild critical point (31.1 °C and 7.38 MPa), low cost,  and non-flammability.
Compared with conventional solvent extraction and steam distillation, CO2 does
not interact with the analytes in the sample, providing extracts of high quality in
terms  of  target  compounds,  including  carotenoids,  phenolic  compounds,  and
tocotrienols,  which  are  extensively  required  by  food  industries.

In  food  analysis,  SFE  has  been  used  as  a  sample  preparation  protocol  before
detecting  target  compounds  in  an  analytical  instrument.  In  chromatographic
methods,  the  use  of  SC-CO2  as  mobile  phase  reduced  retention  times  of
compounds,  and enhanced sensitivity over other methods,  including HPLC and
GC. Such advantages supported works on the optimization of supercritical fluid
chromatography (SFC) and the implementation of direct hyphenation of SFE of
matrix with the SFC or other analytical instruments for the real-time acquisition
of data [3].

Efforts  have  been  made  to  develop  robust  and  accurate  analytical  methods  to
identify  and  quantify  target  compounds  in  food  samples,  including  the
miniaturization of SFE hyphenated with chromatographic techniques [4 - 6]. The
direct hyphenation of SFE and analytical detection has been proposed to reduce
the analysis time and generation of waste solvents. However, direct hyphenation
represents a difficult task because of damage to the detector or lack of stability in
the baseline induced by high pressure [7, 8].

In this chapter,  we introduce recent findings on the use of SFE to obtain target
compounds present in food samples, as well as the theoretical aspects behind SFE
and the equipment used. Also, we discuss the factors that justify the selection of
SFE  to  analyze  foods,  and  the  current  developments  to  include  supercritical
technology as an analytical method to improve the reliability of methods used in
food analysis.

FUNDAMENTALS ABOUT SFE

Properties and Procedure

A  substance  becomes  a  supercritical  fluid  when  subjected  to  temperature  and
pressure  above  its  critical  values  [1].  At  a  supercritical  state,  there  are  no
distinctions  between  the  liquid  and  vapor  phases  [9].  Some   properties  can  be
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significantly  tuned  by  increasing  the  temperature  and/or  pressure  above  their
critical  values.

Supercritical  fluids  have  a  density  close  to  a  liquid,  whereas  their  viscosity  is
close  to  that  of  gas.  In  contrast,  its  diffusivity  between  liquid  and  gas  values
enhances transport properties, favoring solute extraction from the solid matrix [3,
4].  Likewise,  the  solvent  density  is  easily  tuned  by  temperature  and  pressure
changes,  which  effectively  modifies  the  solubility  of  the  solute  in  the  solvent,
inducing  high  selectivity  [10-12].  Thus,  the  flexibility  of  SFE  that  allows
modification of the solvating power and its selectivity are the attractions of the
process [13-15].

Specifically,  the  thermodynamic  properties  of  carbon  dioxide  (CO2)  attract
attention  and  make  it  the  most  commonly  used  solvent  in  food  applications.
Carbon dioxide presents a mild critical point (Tc = 31.1 °C, Pc = 7.38 MPa); it is
nontoxic,  nonexplosive,  has  low  cost,  commercially  available,  and  has  an
environmentally friendly nature [3, 4, 7 - 9]. In addition, CO2 was designated as a
GRAS (generally recognized as safe) solvent for the food industry. Additionally,
CO2  is  a  gas  at  room temperature,  and  1  atm (0.1  MPa),  making  it  possible  to
obtain  a  solvent-free  extract  by  depressurization,  which  is  applicable  while
making  bioactive  compounds  [16].  For  these  reasons,  CO2  has  been  used  as  a
supercritical solvent in over 90% of SFE applications [13].

On the other hand, the physical properties of CO2 limit its use in the extraction of
compounds  with  low polarity  or  nonpolar  compounds.  A  polar  cosolvent  (also
known as a modifier) can be added to CO2 in small amounts (usually 1 to 15%)
[17] to improve the solubility of polar compounds in CO2. Due to its low toxicity,
anhydrous ethanol or aqueous ethanol is the most common cosolvent reported in
food applications [18 - 21]. There are also reports in the literature regarding the
use  of  water,  methanol,  ethyl  ether,  formic  acid,  acetic  acid,  acetone,  and
isopropanol  as  cosolvents  [12,  14].  Likewise,  cosolvents  such  as  ethyl  lactate,
vegetable oils, and ethyl acetate combined with CO2 (less than 10% of the total)
have been applied [22].

Concerning the process, the SFE of solid matrices comprises two essential steps:
extraction  and  separation.  Firstly,  the  solvent  must  be  tuned  to  a  supercritical
state,  i.e.,  the  fluid  is  heated  and  pressurized,  reaching  the  desired  operating
temperature  and  pressure.  Once  the  fluid  has  reached  the  supercritical  state,  it
flows through the extractor filled with the pretreated sample, extracting the solid
matrix's solute by convection and diffusion. Afterward, the dissolved compounds
pass through the separator, where they are  separated from the solvent.  The solute
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CHAPTER 8
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Abstract:  Gas  Expanded  Liquids  (GXL)  are  mixtures  of  liquid  solvents  (organic,
water)  and  gases  or  supercritical  fluids  with  diverse  physicochemical  properties
halfway between pure liquids and supercritical fluids. The possibility of changing their
properties by introducing small changes in pressure, temperature, and/or solvent/gas
ratio,  makes these solvents  a  very interesting and appropriate  option for  developing
green extraction protocols for food analysis. In general, GXLs have similar densities as
the solvent used in their  composition,  while having improved mass transfer through
reduced viscosity, increased solute diffusivity, and decreased interfacial tension. Some
other  advantages  are  related  to  the  wide  range  of  polarities  that  can  be  obtained,
depending on the liquid selected. Moreover, the substitution of a liquid fraction for a
gas  reduces  the  final  use  of  organic  solvent,  thus  improving  the  green  character  of
GXLs. In the present chapter, the physicochemical properties of GXL are addressed
along together with the description of applications in the food science and technology
area.

Keywords:  Biorefinery,  By-products,  Food  analysis,  Gas-expanded  liquids,
Green  solvent,  Natural  compounds.

INTRODUCTION

Sustainable  Development  Goals  (SDGs)  are  at  present  guiding  the  action  of
countries, governments, industries, and people since we have great challenges in
front that are necessary to address for the future of humankind. The high levels of
pollution,  food  waste,  increasing  poverty,  and  the  accelerated  degradation  of
natural resources are only some of  the challenges we are  facing; the shift towards
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SDGs in all areas is necessary, and food analysis can contribute by greening the
different  steps  involved  in  any  analytical  protocol  and  linking  them  to  Green
Chemistry and Green Analytical Chemistry (GAC) principles, as suggested in a
very recent opinion paper [1].

According  to  United  Nations  (https://www.un.org/sustainabledevelopment/),
energy is the main contributor to climate change, accounting for about 60% of all
global  greenhouse  gas  emissions.  In  fact,  in  2015,  only  17.5%  of  final  energy
consumption worldwide came from renewable sources. In this sense, research has
the  challenge  of  developing  increasingly  cleaner  and  safer  processes  that
incorporate  high  energy  efficiency,  while  companies  need  to  move  forward  in
decreasing  energy  consumption  or  using  renewable  energy  sources  as  a
competitive  strategy  towards  sustainable  industrialization.

Therefore,  green  technologies  (considered  this  way  not  only  the  use  of  green
solvents but also energy-efficient practices) are at the forefront when applied to
the extraction of bioactive metabolites and to food analysis.

This book chapter is structured in three parts: 1) some general features about GXL
solvents  such  as  fundamental  principles,  parameters,  and  basic  equipment,  2)
some  applications  of  GXL  extraction  in  natural  sources  as  highly  efficient
alternative  for  obtaining  bioactive  metabolites  from  natural  sources  and  by-
products,  food wastes  and agricultural  residues,  and 3)  examples of  multi-fluid
platforms  using  GXL  involved  in  biorefinery  approach  that  can  be  run  at
analytical  or  processing  scale.

GREEN EXTRACTION TECHNIQUE: MEAN FEATURES

In the previous chapter, the reader has entered deeply into the Supercritical Fluid
Extraction  world,  which  is  highly  connected  with  the  Gas  Expanded  Liquid
Extraction (GXLE). Before knowing more about extraction using Gas Expanded
Liquids  (GXL),  this  type  of  solvents  will  be  introduced  to  let  the  reader  know
more about the composition, types, physical properties, and the effects of physical
parameters  such  as  pressure,  temperature,  and  gas  molar  ratio  on  solvents’
properties.

Fundamentals of GXL

An  organic  solvent  that  dissolves,  partially  or  totally,  a  compressible  gas  or  a
supercritical fluid, composes GXLs. The gas phase is commonly carbon dioxide,
ethane, or ethylene, but due to the environmental and economic advantages, and
safety  of  CO2,  it  is  the  main  fluid  used  in  GXLs.  When  carbon  dioxide  is
employed under GXLs conditions, it is named as carbon dioxide expanded-liquids

https://www.un.org/sustainabledevelopment/
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(CXL). The transformation from a pure solvent to a GXL by increasing pressure
and  addition  of  gas  is  shown  in  Fig.  (1).  GXL  can  be  defined  as  switchable
solvents since they can be easily turned back to a pure solvent just by decreasing
pressure  or  removing  the  gas  phase.  In  fact,  this  switchability  of  GXL and  the
common  use  of  CO2  have  been  used  to  define  GXL  as  “a  type  of  switchable
solvents  that  is  halfway  from  pressurized  liquids  to  supercritical  fluids  by
increasing the amount of  compressed CO2  [2-4]”.  They are often referred to as
“enhanced fluidity solvents” when liquid phase is under subcritical conditions [5].
The  advantages  of  using  GXLs  are  similar  to  those  described  for  supercritical
fluids,  such  as  higher  gas  diffusivity  and  enhanced  transport  properties  in
solvents,  but  the  extraction  conditions  using  GXL  can  be  milder  than  those
required for SFE. The possibility offered by GXL of introducing a gas or a fluid
such as supercritical CO2 for producing multiple immiscible phases with enhanced
fluidity is also interesting.

Fig. (1).  Scheme of GXL formation from neat liquid and main physicochemical parameters affected.

It  is  important  to  note  that  in  this  chapter  we  will  talk  about  gas  phase  or
supercritical phase indistinctly in contrast with the liquid phase. As can be seen in
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Pressurized Liquid Extraction (PLE)
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Abstract: Pressurized liquid extraction (PLE) is regarded as an emergent extraction
technique;  it  is  an  appropriate  tool  to  obtain  green  extracts  from  foods  or  related
samples. Studies on the content of contaminants in foods or food raw materials can be
carried  out  by PLE.  In  the  same way,  studies  on the  obtention of  bioactive  extracts
from classic and emerging foods and their by-products can be carried out by PLE too.
Besides  sequential  process  combinations  of  PLE  with  other  innovative  extraction
techniques could generate benefits for the food industry. The objective of this chapter
is to clearly define the role that this technique plays in food analysis,  as well as the
updated spectrum of some of its applications during the last lustrum.

Keywords:  Bioactive  extracts,  Food  analysis,  Green  extraction,  Instrumental
analysis  techniques,  Pressurized  liquid  extraction.

INTRODUCTION

The pressurized liquid extraction (PLE) technique was developed in 1995 by the
Dionex Corporation under the name Accelerated solvent extraction (ASE®). It is
also known as pressurized hot solvent extraction (PHSE) and if it uses water as
the solvent, it can also be called subcritical water extraction (SWE) or pressurized
hot water extraction (PHWE) [1]. PLE is used in chemical analysis to undertake
exhaustive  extractions  from  solid  samples  in  short  periods  of  time  with  small
amounts  of  solvent  [2].  With  the  growth  of  green  chemistry,  the  use  of
environmentally  friendly  solvents   under  PLE  allows  the  recovery  of  harmless
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extracts and extraction by-products [3]. Fig. (1) shows some basic applications of
PLE  in  food  analysis,  classic  and  emerging  foods,  or  their  by-products.  These
matrices  can  be  subjected  to  a  PLE  to  obtain  an  enriched  extract  with  the
contaminants,  or  the  bioactive  compounds  from  the  initial  sample.

Fig. (1).  PLE basic applications in food analysis. Created with BioRender.com.

PLE  consists  of  exposing  the  sample  for  extraction  to  pressurized  solvents
(pressures lower than the critical pressure) and temperatures higher than those of
their boiling point, thus ensuring that the solvent remains in its liquid phase [4].
This technique was initially employed in the analysis of soils contaminated with
organic  compounds  (PCBs,  PHAs)  [5].  The  Environmental  Protection  Agency
(EPA) of the U.S. government has now established the use of PLE in the analysis
of some contaminants in soil samples [6]. More recently the use of PLE has been
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growing  relative  to  other  emerging  extraction  techniques  such  as  supercritical
fluid extraction (SFE). As shown in Fig. (2), two decades ago the relationship of
works that “mentioned SFE” topic to those that “mentioned PLE” topic was 2:1
approximately. Nowadays that relationship is close to 1:1. At this time, the works
that mention the “PLE” topic has increased from 293 to 2414.

Fig. (2).  Ratio of works that mention the PLE topic vs the SFE topic.

The  main  uses  of  PLE  in  food  analysis  consist  of  obtaining  extracts  from
biomasses  commonly  used  for  food  preparation,  emerging  biomasses,  or  their
corresponding  by-products.  Different  applications  can  be  given  to  PLE  using
green solvents [3, 7]: Food valorization using green techniques [8], recovery of
bioactive  compounds  or  extracts  from biomasses  [9],  obtention  of  antioxidants
from  agro-industrial  by-products  [10],  isolation  of  organic  contaminants  from
food samples or food used materials [11, 12], as is the case of ethylene polymers
content [13, 14].

In this chapter, we will deal with the basic principles of PLE and its experimental
conditions as well as the equipment and the extraction methods used in PLE. We
will  consider  the  combination  of  PLE  with  other  extraction  and  analysis
techniques, and we will finish by reviewing the use of PLE to obtain extracts from
traditional or promising foods and from their by-products as well as from inputs
used in the food industry, for example, the raw packaging materials.
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CHAPTER 10

Microwave-Assisted Extraction (MAE)
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Abstract: Microwave assistance is an optimum strategy to shorten time, solvent, and
energy consumption during the extraction of target solutes from different sources. This
intensification strategy has been successfully applied to laboratory methods to enhance
the extraction performance of a number of bioactive compounds of interest for food,
cosmetic  and pharmaceutical  applications.  This  chapter  presents  an overview of  the
fundamentals,  equipment  configurations,  combinations  with  other  techniques,  and
some representative applications for the extraction of compounds from food products
and byproducts.

Keywords:  Bioactive  compounds,  By-products,  Biomass,  Green  extraction,
Microwave  treatment.

INTRODUCTION

Plant bioactives are an excellent resource that is gaining commercial interest and
in  order  to  provide  standardized  products,  reliable  extraction  methods  both  for
analysis and for industrial production are needed. Understanding the cellular and
subcellular localization of plant metabolites is essential to study their extraction.
Usually, the target solutes are not readily accessible to the extracting solvent and a
previous  pretreatment  aimed  at  breaking  the  solid  matrix  structure  is  needed.
Efficient solvent extraction techniques aim to reduce mass transfer limitations to
enhance rates and to increase the yield. The use of intensification strategies can
speed up the process without undesirable effects on the quality of the products.
Their combination could also provide interesting and synergistic effects [1].

The benefits of microwaves in extraction processes are in relation to selective hea-
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ting  and  thermal  effects  on  the  physicochemical  and  transport  properties  of
solvent and solutes, as well as thermal-induced structural damage of the matrix. In
analytical applications, microwave extraction offers a number of advantages over
conventional  methods,  particularly  in  relation  to  the  shortened  extraction  time,
lower  solvent  consumption,  improved  efficiency  and  selectivity,  as  well  as
reproducibility and precision for analytes recovery [2, 3]. Furthermore, the costs
and pollution are lower compared to conventional techniques and as a result, this
technique  is  commonly  found  in  laboratories  and  has  been  included  in  some
standardized  extraction  protocols.

This chapter presents a short survey on the fundamentals, major types of extractor
configuration,  combination  with  other  intensification  strategies  as  well  as
representative  examples  of  microwave-assisted  extraction  of  bioactives  from
vegetal  biomass  and  also  from  other  sources.

GREEN EXTRACTION TECHNOLOGIES

Bioactive  compounds  from  foods  can  be  obtained  using  different  extraction
strategies  which  can  be  classified  as  conventional  or  non-conventional
methodologies.  The  main  advantage  of  the  conventional  extraction  process  is
simplicity, but among the several disadvantages can be mentioned low selectivity,
low yield, high temperature, long time, high energy consumption, and sometimes
the  use  of  organic  solvents  increases  the  cost.  Besides,  a  possible  thermal
degradation of the compounds could happen. The common traditional techniques
are:  soxhlet  extraction,  maceration,  and  hydrodistillation  [4].  Nowadays,
innovative  extraction  technologies,  focused  on  the  reduction  of  energy
consumption with the purpose of reducing the environmental impact by fostering
eco-friendly technologies have been studied and developed.  The environmental
impact  can  be  lower  because  these  eco-friendly  methodologies  use  a  limited
amount  of  toxic  chemicals,  which  could  be  replaced  using  green  solvents  (e.g.
ethanol  solutions,  ionic  liquids,  deep  eutectic,  and  supramolecular  solvents  or
water), therefore their resultant hazardous wastes are significantly reduced [5, 6].

In  this  context,  the  recent  tendency  of  society  towards  consuming  products
obtained through environmentally sustainable processes is growing [7]. This trend
fits into the “green chemistry” concept, which can be defined as a model aimed at
designing  products  and  processes  that  are  less  harmful  to  the  environment  and
people [8]. On the other hand, a definition related to green extraction techniques
has  been  proposed  by  Chemat  et  al.  [8]  as  “processes  in  which  energy
consumption and the use of harmful solvents will be reduced, in order to obtain a
high quality and sustainable extract/product”.
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A general  overview of  the conventional  and innovative extraction technologies
and their  possible combinations is  summarized in Fig.  (1),  the novelty of these
green extraction techniques is presented in this section. Some examples of green
extraction processes, defined by the extraction technique and the greener character
of  the  solvents,  have  been  summarized  in  Table  1.  The  operation  time  can  be
significantly shortened compared to those of the conventional process and these
innovative  techniques  can  also  be  valid  for  the  extraction  of  compounds  from
other biomass, not only from plant sources.

Table 1. Examples of green extraction of edible materials.

Extraction
Technique Solvent Raw material Compound

extracted

Operation
conditions

T(°C), P(MPa),
T(min), P(W),

F(kHz)

References

EAE Water Fish scale Collagen 135 ˚C; 360 rpm [31]

EAE*

Water Kinnow peel Naringin 90 ˚C; 10 min [32]

Water Lentils and
white beans

Protein 50 ˚C; 180 min [33]

Water/EtOH Vanilla green
poods

Glucovanillin 8-70 ºC [34]

HHP

EtOH Seafood (boone) Astaxanthin 0.1-600 MPa; 0-
20 min

[35]

Water Black garlic Melanoidins 25 ˚C; 200 - 500
MPa; 5, 15, 25

min

[36]

PEF

Water Tomato Carotenoids 60 ˚C; 0.5
kV/cm; 1 kJ/kg

[37]

EtOH Purple-fleshed
potato

Anthocyanins 40 ˚C; 3.4 kV/cm [38]

EtOH Grape seeds Polyphenols 5 kV/cm [39]

SFE

EtOH/CO2 Strawberry Phenolic compounds 30 ˚C; 5 MPa; 60
min

[40]

CO2 Wine grapes
(seeds)

Flavonoids and
phenolic acids

39.85 ˚C; 35
MPa; 240 min

[41]

EtOH/CO2 Mushrooms Antioxidants 35-55 ˚C; 10-30
MPa; 30 min

[42]

EtOH/CO2 Grape bagasse
(stems, skins
and seeds)

Anthocyanins,
catechins, glucosides

of flavonols

40 ˚C; 20 and 35
MPa; 300 min

[43]

EtOH Coffee (grounds
and husk)

Phenolic compounds 20-20 MPa; 50-
60 ˚C

[44]
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Abstract: The transition to a circular bioeconomic model that incorporates sustainable
extraction processes such as enzyme-assisted extraction (EAE) is motivated by climate
change, population growth, and changing diets to address food security and safety, and
preserve natural resources (land, and water) and biodiversity. EAE can be applied to
extract  nutrients  and  bioactive  molecules  for  food  analysis  and  profiling,  and  for
industrial  exploitation  of  bioactive  compounds  from  novel  feedstocks.  Commercial
extraction  processes  require  high  recovery  of  the  targeted  compounds  and  must
guarantee the preservation of the biological activity of the products, which is difficult
to achieve using conventional methods. EAE is a possible alternative to preserve the
quality of final products while reducing the industrial footprint in the food sector at a
larger  scale.  This  chapter  describes  the  parameters  that  impact  the  extraction  yield
obtained in the EAE process and provides recent examples of its successful application
for the extraction of polymers and bioactive compounds of very diverse matrices (plant,
animal,  mushrooms,  yeast,  food  waste,  and  insects),  with  emphasis  on  process
conditions. This chapter also identifies the challenges and opportunities of EAE and the
emerging  areas  of  research  to  facilitate  the  economic  feasibility  of  the  enzymatic
extraction of bioactive molecules. Costs related to enzyme production and its use are
one of the main impediments to the industrial application of the EAE process. Recent
research progress suggests that reduction of EAE costs can be achieved by a holistic
approach considering all steps: enzyme production (by using cheap enzyme production
media,  in-house  enzyme  production),  selection  of  feedstock  (i.e.,  food  byproducts),
enzyme  recycling  (enzyme  immobilization,  nano-biocatalysts),  the  search  of  novel
enzymes  (marine  degrading  polysaccharides),  more  robust  enzymes  (i.e.,
extremozymes)  and/or  enzyme  improvement  (bioengineering),  and  EAE  process
optimization (minimum optimal enzyme dosage).  EAE technology for food analysis
and production of bioactive molecules keeps building momentum as it is sustainable,
environmentally friendly, and innovative.
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INTRODUCTION

Enzymes have been applied as tools for research and development in almost every
industrial sector [1]. Enzyme technology is one of the keystones of biotechnology,
particularly  industrial  or  white  biotechnology,  with  an  expanding  market
projected  to  reach  $10,519  million  by  2024  [2].  It  involves  the  application  of
enzymes  as  catalysts  in  diverse  industrial  processes  for  the  manufacture  of
products and thus fulfilling human needs. The primary goal of enzyme technology
is  the  development  of  more  sustainable  processes  to  generate  novel  products
and/or  conventional  products  from  traditional  or  new  raw  materials.  Enzyme
technology  has  important  applications  in  the  food  and  beverage  industry  as
bioprocessing agents and as tools for food analysis. Factors that are driving the
global food enzymes market are also related to changes in consumer preferences.
There is a growing demand for: natural preservatives, antioxidants, and colorants
in place of synthetic ones from health concerns [3, 4]; novel and exotic flavors;
nutritious foods;  and functional  foods (i.e.,  food enrichments,  fortifiers).  These
increased requirements  could be met  by the extraction of  bioactive compounds
from  different  sources,  including  food  waste  [5].  Enzyme-assisted  extraction
(EAE)  is  gaining  popularity  owing  to  more  stringent  regulations  over  the
industrial extraction of bioactive compounds and its impact on the environment
and  health  [6].  The  increasing  weight  of  biocatalysis  in  the  food  and  beverage
sector is reflected by the estimated expansion of its enzyme market from about
USD 2.8 billion in 2020 to around USD 3.7 billion by 2026 [7].

Enzymes  were  discovered  in  the  1830s  when  scientists  demonstrated  the
hydrolysis  of  starch  using  an  enzyme  present  in  germinated  cereal  grains,  the
enzyme that we know these days as amylase. The production of rennet constitutes
another example of biocatalysis where enzymes (aspartic protease) from calves’
stomachs were used to coagulate the proteins in the milk for cheese making. The
food industry has capitalized on enzyme applications not only for cheese products
but also in other applications such as the clarification of fruit juices (pectinases).
The microbial enzymes started to be applied in the food industry by 1960, with
major applications in the starch industry. The starch industry is a good example of
the  adoption  of  a  greener  technology  based  on  enzymes,  α-amylases,  and  β-
glucoamylases, in substitution of the acid hydrolysis process for the conversion of
starch into glucose. The innovation of enzyme technology increased abruptly with
the development of DNA technology that relies on the progress of other enzyme
applications. Simultaneously, the discovery of more and more enzymes through
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metagenomics and the continuous progress in enzyme engineering is favoring the
transition  from  conventional  chemical  processes  to  greener  enzyme-based
conversion  technologies  [1].

Enzymes are specialized proteins able to increase the speed of a chemical reaction
(reduction  of  activation  energy)  up  to  more  than  1010  times,  promoting  the
transformation of different compounds into specific products of interest. There is
an  enzyme-catalyzed  reaction  corresponding  to  almost  every  type  of  known
organic  reaction.  The  nomenclature  committee  of  the  International  Union  of
Biochemistry  and Molecular  Biology (IUBMB) classified  the  enzymes into  six
classes  according  to  the  reaction  they  catalyze:  oxidoreductases,  transferases,
hydrolases, lyases, isomerases, and ligases. The IUBMB assigned a code of four
digits to the enzymes, designated as Enzyme Commission number (EC number).
This  EC  number  also  considers  substrate  specificity  and  the  functional  groups
involved. The first digit refers to the enzyme class, the second digit refers to the
sub-class  and  its  substrate  specificity,  the  third  number  corresponds  to  the
functional  group  donor  and  the  fourth  one  refers  to  the  acceptor  molecule.  EC
numbers  do  not  identify  specific  enzymes,  but  enzyme-catalyzed  reactions,
meaning  that  different  enzymes  that  catalyze  the  same  reaction  will  share  the
same EC number.  Databases dealing with enzyme nomenclature are ExplorEnz
[8]  and  IntEnz  [9].  Although  the  EC  classification  has  been  broadly  used,  it
presents some limitations since it does not consider enzyme structure, its amino
acid sequence, or mechanisms of action, all of which are significant parameters
for  elucidating  the  enzymatic  reactions.  Thus,  enzyme  databases  have  been
created  to  cover  a  wide  range  of  aspects  including  enzyme  function  and
properties,  distribution,  kinetics  of  catalyzed  reactions,  structure  (three-
dimensional  folds)  and  amino  acid  sequence,  or  metabolic  function.  BRENDA
[10]  supplies  vast  information  of  all  classified  enzymes  whereas  KEGG  [11],
EzCatDB  [12],  MEROPS  [13],  MetaCyc  [14],  REBASE  [15],  CAZy  [16],
ESTHER [17],  RedoxiBase  [18],  and  KinBase  [19]  in  either  certain  aspects  of
enzyme function or specific enzyme classes, organisms, or metabolic pathways.
There are other interesting databases on enzyme application that can be used to
predict  the  cleavage  sites  of  proteins  of  known  sequence  and  structure  when
subjected to proteases, as well as to predict the potential biological activity of the
products of the reaction [20].

The different  enzyme classes and some examples used in the food industry are
given below:

1. Oxidoreductases (EC 1) catalyze oxidation-reduction reactions where there is a
transfer  of  electrons from an electron donor (reductant)  to  an electron acceptor
molecule (oxidant). This group of enzymes usually utilizes nicotinamide adenine
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Abstract: This chapter reviews the fundamentals of the Pulsed Electric Field (PEF)
and  its  applications  to  the  extraction  of  high-added  value  substances  from  food
matrices. The electroporation process on the cell membrane is explained and the most
recent  works  dealing  with  the  use  of  PEF for  extracting  essential  molecules  for  the
human body such as lipids, phenolic compounds, carotenoids, proteins, carbohydrates,
and vitamins, from food and plant matrices, and food waste, are described in detail.
The combination of PEF with other extraction techniques is a common practice and
improves the extractability of specific compounds to increase the recovery yields.

Keywords: Electroporation, Extraction, Food matrices, Food waste, High-added
value substances, Pulsed electric field.

INTRODUCTION

Pulsed  electric  field  (PEF)  technology  consists  of  an  electric  treatment  of
repetitive  short  pulses  with  high  voltage  to  a  sample  placed  between  two
electrodes. The application of an electric field leads to the formation of pores on
the cell membrane due to the electroporation phenomenon. This process improves
cell  permeability,  increasing  mass  transfer  by  the  diffusion  of  solutes  located
inside the cells toward the solvent. In this way, PEF enhances the extraction yield
of intracellular compounds. Moreover, the application of electric pulses at short
time periods allows for decreasing the processing time avoiding the elevation of
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temperature,  so  this  non-thermal  technique  reduces  the  degradation  of  heat-
sensitive  compounds.  In  addition,  this  technology  facilitates  obtaining  purified
extracts due to the release of selective molecules and easy separation between the
solid particles and the extracted compounds in the solvent. In addition, it reduces
the economic and energetic impact and the extraction times, so it is considered an
environmentally friendly technique [1, 2].

PEF  technology  presents  numerous  applications  in  food  processing.  The  main
applications  are  the  extraction  of  intracellular  compounds  and  the  food
preservation,  especially  juices.  PEF  enhances  the  diffusion  extraction,  osmotic
treatment,  pressing  extraction,  drying,  and  freezing  [2,  3].  PEF  has  also  been
applied  to  pasteurization  and  sterilization  processes,  inactivation  of  pathogenic
and spoilage microorganisms, and enzyme deactivation, among others [2, 4 - 6].

The extraction of compounds by PEF takes place in a treatment chamber in batch
or continuous flow systems [7]. Special attention must be paid to the chamber to
avoid fouling and corrosion of the electrodes [8]. The PEF technology is used for
treating liquid, solid, and semisolid foods. Food waste has also been treated by
PEF.  The  valorisation  of  food  residues  supposes  a  big  challenge  from  the
environmental,  economic,  and  social  point  of  views.  Food  residues  are  cheap
sources of valuable compounds whose recovery contributes to reach the target of a
circular  economy  (zero  residues).  In  order  to  increase  the  recovery  yields  of
specific compounds, many researchers have combined a PEF pre-treatment with
other extraction techniques such as solid-liquid extraction, ultrasounds, and high
hydrostatic pressure, among others [9 - 11].

This chapter reviews the action mechanism of a pulsed electric field based on the
electroporation  phenomenon  and  focuses  on  the  application  of  PEF  to  extract
essential compounds for the human body from different food matrices.

MECHANISM OF PULSED ELECTRIC FIELD

PEF is based on the electroporation phenomenon. This phenomenon is related to
the formation of pores inside the cell membrane under the influence of an external
electrical field. The electroporation process increases the electric conductivity and
improves the cell permeability and the extraction of intracellular compounds [12].
PEF is an environmentally friendly technique that enhances mass transfer in food
products.

Generator of Electrical Pulse and Pulse Waveforms

A  PEF  equipment  is  composed  of  a  pulsed  power  generator  and  a  treatment
chamber. PEF treatments are based on the application of electric pulses for very
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short  periods of time (µs) [13].  Different  types of pulses can be produced by a
PEF system. The exponential decay and square wave pulses are the most used, but
each one is produced by a different electrical circuit (Fig. 1) [14]. Fig. (1a) shows
an electrical circuit formed by a high-voltage power supply, a capacitor connected
in series with a charging resistor, a high-voltage switch, and a treatment chamber.
When the switch is opened, the high-voltage power supply charges the capacitor
of  energy.  When  the  trigger  signal  is  applied,  the  switch  is  closed  and  the
electrical energy stored in the capacitor flows toward the treatment chamber. In
that  moment,  the  exponential  decay  pulses  are  produced  due  to  the  voltage  is
unidirectional and it rises quickly to a maximum value. Then, it decays slowly to
zero [14, 15]. These pulses offer short peaks of high electric field intensity and
long  tails  of  low  electric  field  strength  [16].  On  the  other  hand,  square  wave
pulses are more energetic than the exponential decay pulses. Square waveforms
offer width peaks with fast rising and fast falling. This electrical circuit is formed
by an array of capacitors, inductors, and switching devices (Fig. 1b) [14, 15]. In
both cases, exponential decay and square wave pulses, the duration of the pulse is
determined by the control signal of the switch, because the pulse starts by closing
the switch and it ends by opening it [13].

Fig. (1).  Schemes of electrical circuits employed to generate exponential decay pulse (a) and square wave
pulse (b).

The application of a pulsed electric field can take place in batch or static systems
and  in  dynamic  or  continuous  flow  systems  [17].  Batch  systems  are  the  most
employed at the lab and pilot scale. The treatment chamber has two parallel plate
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Abstract:  High-Voltage  Electrical  Discharges  (HVED)  are  considered  an  emergent
extraction technique based on the application of high-pulsed voltages. The aim of this
chapter  was  to  review its  fundamentals  for  applications  at  laboratory  and  industrial
scales. The configuration of devices and employed electrodes is described. Moreover,
main  steps  required  for  using  HVED  and  most  important  factors  affecting  this
technique are also highlighted. Extraction of high added-value compounds from food
waste and plant matrices using batch HVED has been the most usual application in last
five years. In many cases, the low selectivity of the technique has made the use of a
solid-liquid extraction step after HVED application necessary.

Keywords:  Application,  Electrodes,  Extraction,  Food,  High-voltage  electrical
discharges,  Treatment  chamber.

INTRODUCTION

High-voltage electrical discharges (HVED) is a non-thermal technology based on
the application of high-pulsed voltages within a liquid phase. Main applications of
this technique are the preservation of foods and the extraction of compounds. The
application  of  HVED  to  a  liquid  phase  can  lead  to  the  fragmentation  of  cell
membranes  and  the  permeation  of  cell  walls.  This  fact  has  been  applied  for
increasing  food  shelf  life  by  the  deactivation  of  microorganisms,  which
constitutes an interesting alternative to other thermal methods that can result in
sample degradation. Moreover, HVED technique is also an interesting tool for the
extraction of compounds by promoting the availability of intracellular compounds
[1]. Indeed, HVED enhances mass transfer and increases extraction yields.
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Additionally, it is considered an environmentally friendly technique since it requires low
solvent and energy consumptions and short treatment times [2]. Furthermore, HVED is
suitable  for  extracting  thermolabile  compounds  since  it  can  use  mild  conditions  and
temperatures.

Nevertheless, this technique also shows some limitations. It can disintegrate food
particles, making more difficult the separation of target compounds. Moreover, it
is not a selective technique and can generate reactive oxidizing species [3, 4]. In
order  to  overcome  these  drawbacks,  some  researchers  have  suggested  the
application of electrical discharges at low energy followed by an additional step to
promote mass transfer and increase the extraction yield of compounds [5]. Thus,
HVED has often been used as a pre-treatment followed by a conventional solid-
liquid  extraction  [6  -  8],  enzymatic  hydrolysis  [4]  or  other  non-conventional
techniques  such  as  high-pressure  homogenization  [9].

This  chapter  reviews  the  main  designs  and  theoretical  aspects  related  to  this
technique  and  the  application  of  HVED  to  the  sustainable  extraction  of
compounds.

DEVICE CONFIGURATION

HVED  can  be  applied  in  three  different  regimes:  batch,  continuous,  and
circulating. The design of the treatment chamber, the geometry of electrodes, and
the process scale limit the kind of regime. The batch HVED system is the most
used when the aim is the extraction of high added-value compounds from food
matrices, at the lab or pilot scale. In this case, electrical discharges are generated
in  a  treatment  chamber  usually  constituted  by  two  needle-plate  geometry
electrodes  (point-plane)  working  in  an  intermittent  way  [1].  The  continuous
HVED system is  preferred for  industrial  applications.  In this  case,  the material
and solvent are continuously pumped through a cooling system into a treatment
chamber where electrical discharges are applied. After the application of HVED,
the treated material enters again into the cooling system. There are two continuous
systems  with  different  treatment  chambers:  the  converged  electric  field  system
and the annular gap system. The converged electric field system is constituted by
a  pair  of  parallel  plates  electrodes,  separated  by  a  small  gap  where  electrical
discharges are produced. The annular gap system presents a treatment chamber
that consists of two concentric electrodes of different diameters with an annular
gap between them for hosting the material to treat [4]. Samples with high amounts
of solids could provoke the clogging of the converged electric field system, being
the annular gap system the best choice in this case [10]. Finally, the circulating
HVED system contains a needle electrode located in the centre of a ring electrode.
The material and solvent are introduced into the bore region between electrodes
for their treatment. Afterward, the treated material is diffused into an extraction
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tank, located at the end of the treatment chamber. After extraction, a valve enables
the separation of the supernatant from the residues, which can be driven into the
treatment chamber again [4]. This system can enhance the extraction yield since
the material can be exposed to electrical discharges several times [10].

THEORETICAL FUNDAMENTALS

HVED technology is based on the phenomenon of electrical breakdown in water.
The application of high-voltage electrical discharges generates physical processes
and  chemical  reactions  that  lead  to  the  fragmentation  of  the  cell  membrane
promoting  the  extraction  of  intracellular  compounds.  It  is  considered  a  green
extraction technique since it is a non-thermal and low energy technique [11]. The
batch extraction system has been the most applied at lab and pilot scale [4]. The
mechanism,  in  this  case,  involves  the  generation  of  the  electrical  pulse,  the
streamer  propagation  and  the  electrical  arc  formation,  the  fragmentation  of  the
raw material, and the extraction of compounds. A brief description of these steps
is given below.

Generation of the Electrical Pulse

HVED are  generated through a  system connected to  a  pulsed power  generator.
This  generator  consists  of  a  high  voltage  power  supply,  a  high  energy  storage
capacitor, and a high voltage switch (Fig. 1) [12]. The power source supplies a
high voltage and generates electrical energy that is stored in the capacitor.  The
maximum stored energy in the capacitor depends on its capacitance and can be
calculated using the following equation [12]:

(1)

where Ee is the stored electrical energy (Joules), C is the capacitance (Farads), and
V is the charging voltage (V) in the capacitor.

When the capacitor reaches its maximum voltage, the stored energy is transferred
towards  the  switch.  The  high  voltage  switch  is  constituted  by  two  spherical
electrodes  separated  a  certain  distance.  When  the  voltage  reaches  a  threshold
value,  an  electric  arc  is  formed  in  the  air,  and  the  switch  is  closed.  Then,  the
electrical  energy  from  the  capacitor  is  transmitted  to  the  chamber  electrodes.
When the electrical current arrives at the needle electrode, the voltage rises in few
seconds (nanoseconds) and the streamer reaches the ground electrode, which leads
to  the  formation  of  the  electrical  discharge.  After  the  energy  stored  in  the
capacitors  is  transferred  to  the  chamber,  the  switch  is  opened  again  [12].  This



Current and Future Developments in Food Science, 2023, Vol. 3, 565-598 565

CHAPTER 14

High  Hydrostatic  Pressure:  A  Green  Extraction
Technique for Food and Pharmaceutical Industries
Ergin Murat Altuner1,*

1 Department of Biology, Faculty of Science, Kastamonu University, Kastamonu, Turkey

Abstract: High Hydrostatic Pressure (HHP) is a green extraction method, which finds
several uses in different branches of science. HHP is a novel non-thermal technique
mostly used in food processing. The “high pressure” in HHP states an ultra-high cold
isostatic  hydraulic  pressure,  which  processes  basically  at  low  or  mild  process
temperatures (<45 °C) ranging between 100 and 800 MPa. In some applications, this
pressure can extend up to 1000 MPa. In food processing, there are several purposes for
using  HHP,  such  as  sterilizing,  coagulating,  and  gelatinizing  food  samples.
Alternatively,  HHP has  many  remarkable  uses  in  some branches  of  science  besides
food  processing.  This  chapter  aims  to  present  the  capabilities  of  HHP  as  a  green
extraction technique in the food and pharmaceutical industries.

Keywords:  Extraction,  HHP,  High  hydrostatic  pressure,  UHP,  Ultra-high
pressure.

INTRODUCTION

High  hydrostatic  pressure  (HHP)  or  alternatively  known  as  ultra-high  pressure
(UHP), is one of the novel food processing techniques. It is a non-thermal food
processing method that has become popular, especially in the last three decades,
due  to  its  wide  application  potential.  As  a  non-thermal  process,  it  has  minor
effects on both the quality and nutritional characteristics of processed food [1].
The “high pressure” in HHP states an ultra-high cold isostatic hydraulic pressure
[2],  which  processes  basically  at  low  or  mild  process  temperatures  (<45  °C)
ranging between 100 and 800 MPa. In some applications, this pressure can extend
up to 1000 MPa [3, 4].

In  HHP processing,  water  is  generally  the  medium to  transfer  pressure.  As  the
pressurizing process starts, pressure acts immediately on the whole sample  being
processed. Thus, HHP is  a quicker process than thermal  food processing techniq-
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ues, which require a longer time to act on the whole food [5, 6]. In addition, using
HHP in food processing does not require to use heat which can damage proteins,
enzymes,  etc  [7].  On  the  other  hand,  HHP  can  cause  cellular  deformation,
membrane  damage,  and  protein  denaturation  [8  -  11].

In food processing, there are several purposes for using HHP, such as sterilizing,
coagulating, and gelatinizing food samples [12]. In addition, some new potential
uses  of  HHP  in  processing  food  are  under  research  by  several  researchers.
Alternatively,  HHP  has  many  remarkable  uses  in  some  branches  of  science
besides  food  processing  [7,  12  -  20].

This  chapter  aims  to  present  the  capabilities  of  HHP  as  a  green  extraction
technique  in  the  food  and  pharmaceutical  industries.

The Definition of Pressure

The  particles  in  a  closed  container  hit  the  inner  walls  of  this  thermodynamic
system and create a force on the walls of the container. The total net force on the
container’s wall is known as pressure [21].

In thermodynamics, pressure, which is quite important, is a characteristic element
of  a  system.  It  is  affected by volume,  temperature,  entropy,  and the number  of
particles.

Pressure (p or P) is the amount of force that acts on a unit area (Fig. 1).

Fig. (1).  Definition of pressure.
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The following formula (1) shows how to express pressure mathematically.

(1)

In the above equation, “p” stands for pressure, “F” for force, and “A” for surface
area.

The official SI unit of pressure is the Pascal (Pa). It is possible to convert Pascal
to other pressure units as follows [22].

1 Pa = 10-5 bar = 1 N/m2

Since 1 atmosphere (atm) equals 1.01325 bar, the pressure unit Pascal represents a
low pressure. For this reason, the megapascal (MPa) is the pressure unit in HHP
studies.

1 MPa = 106 Pa

Table 1 shows the conversion of different pressure units.

Table 1. Conversion of different pressure units (adapted from Rivalain et al. [22]).

- Atm Bar MPa PSI*

Atm 1 0.987 9.901 0.068

Bar 1.013 1 10.000 0.069

MPa 0.101 0.100 1 0.00689

PSI 14.696 14.504 145.038 1
* PSI: pounds/inch2

What is Hydrostatic Pressure?

Fluid  systems  are  either  static  or  dynamic.  Thus,  a  fluid  system  can  be  either
defined as hydrostatic or hydrodynamic. In a hydrostatic system, the fluid does
not move. Therefore, it is called a static system.

In a static system, the pressure can be isostatic or non-isostatic. Isostatic pressure
has  the  same  value  at  any  point  in  a  system  and  acts  in  all  directions.  But  a
pressure  gradient  is  present  in  the  non-isostatic  type.  The  structure  of  the
pressure-generating equipment and the non-homogeneous compressibility of the
medium are the main factors in generating pressure gradients [22].
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