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FOREWORD

This  book  provides  an  up-to-date,  comprehensive,  and  authoritative  overview  of
advancements  in  scaffold  manufacture  and  uses  in  tissue  engineering,  combining  the
foundations for a wide understanding of scaffolds for tissue growth and development. The
chapters cover a wide range of issues, including innovative materials and methodologies for
scaffold preparation, difficulties, and future prospects. The chapters include topics such as
novel  materials  and  techniques  for  scaffold  preparation,  challenges,  future  prospects,  and
much more. The authors have carefully analyzed and summarized recent research findings in
the aforementioned areas, providing an in-depth understanding of scaffold that maintains a
balance among a variety of topics related to tissue engineering, including biology, chemistry,
material science, and engineering, among others, while prioritizing study topics that are likely
to be useful in the future.

Professor Inn-Kyu Kang
Department of Polymer Science and Engineering,

Kyungpook National University,
Daegu, South Korea



ii

PREFACE

This  book  is  a  collection  of  research  and  review articles  from various  parts  of  the  world,
highlighting the pivotal importance of biomaterials and their potential biomedical application.
The articles link new findings and critically review the fundamental concepts and principles
that  are  making  the  base  of  innovation.  The  book  comprises  ten  chapters;  the  first  two
chapters  deal  with  vital  information  about  biomaterials  and  the  strategies  used  for  their
fabrication. The rest of the chapters highlight the most widely used technique, their principle
and their application in detail. The book contains up-to-date knowledge of biomaterials, their
fabrication  technique  and  their  potential  application,  which  is  beneficial  both  for  the
experience  as  well  as  new  researchers.

Adnan Haider
Department of Biological Sciences

National University of Medical Sciences
Rawalpindi

Pakistan

Sajjad Haider
Department of Chemical Engineering

King Saud University
Riyadh

Saudi Arabia
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CHAPTER 1

Introduction  to  Biomaterials  and  Scaffolds  for
Tissue Engineering
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Abstract: Biomaterials are essential elements in various fields, especially medicine.
They can help restore biological functions and speed up the healing process after injury
or disease. Natural or synthetic biomaterials are used in clinical applications to provide
support, replace damaged tissue, or restore biological function. The study of such types
of  biomaterials  is  an  active  area  of  research,  particularly  in  the  field  of  tissue
engineering  (TE).  In  general,  the  term  TE  describes  the  regeneration,  growth,  and
repair of damaged tissue due to disease or injury. TE is a modern science that combines
biology, biochemistry,  clinical  medicine and biomaterials,  which led to the research
and  development  of  various  applications.  For  example,  in  the  field  of  regenerative
medicine,  biomaterials can serve as a support  (scaffold) to promote cell  growth and
differentiation, which ultimately facilitates the healing process of tissues. This chapter
describes the various properties of biomaterials, a detailed discussion of scaffolds in
terms of design, properties and production techniques, and future directions for TE.

Keywords: Biomaterials, Scaffold, Tissue engineering.

INTRODUCTION

The U.S. National Institute of Health defines biomaterials as “any substance or
combination of substances, other than drugs, of synthetic or natural origin, that
can be used for any period of time, partially or completely augments or replaces a
tissue, organ, or function of the body to maintain or improve the quality of life of
the  individual”  [1].  Interestingly,  the  use  of  biomaterials  dates  back  to  ancient
times, when the Romans and Egyptians used plant fibres to suture skin wounds
and made prosthetic limbs from wood [2]. Since then, the use of biomaterials has
gone  through different  phases.  In  the  industrial  era,  biomaterials  have  changed
dramatically,  leading  to  the  synthesis  of  novel  biomaterials for various applic-
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ations,  especially in regenerative medicine and tissue engineering strategies.  In
general,  biomaterials  can  be  divided  into  three  groups:  Ceramics,  synthetic
polymers  and  natural  polymers.  However,  each  group  has  advantages  and
disadvantages  [3].  In  humans,  the  extracellular  matrix  (ECM)  is  considered  a
natural  template  biomaterial  that  provides  support,  spatial  organisation,  and
maintenance of a biologically active microenvironment. The matrix is composed
of different proteins that serve different functions, e.g., structural support proteins
such as collagen and elastin, adhesion proteins such as fibronectin and laminin,
and swellable proteins that contain polysaccharides such as glycosaminoglycans
(GAGs)  and  proteoglycans  [4].  The  restructuring  and  remodelling  of  the  ECM
support  tissue regeneration,  cell  survival,  proliferation,  and other  functions [5].
Based  on  the  functions  of  ECM,  researchers  are  working  to  synthesise
biomaterials  that  can  mimic  the  role  of  ECM,  which  is  currently  not  possible.
Therefore, the most typical approach in the field of biomaterials is to understand
the  ECM  mechanisms  at  the  cellular  level  [6].  The  approach  has  led  to  the
emergence  of  a  new  field  called  tissue  engineering  (TE),  which  enables  the
formation of functional tissues. However, the equation is not simple, as the host
response to biomaterials is complex and can trigger a proinflammatory response
[7, 8]. TE is a multifaceted field that connects many disciplines, as shown in Fig.
(1).  Interestingly,  in  recent  studies,  macrophages play a  crucial  positive role  in
remodelling by secreting cytokines and/or scaffold degradation products [9 - 12].

Fig. (1).  Basic components in TE: Biomaterial scaffold serving as a template for tissue formation. Cells for
regeneration, and signal either chemically from growth factors or physically from bioreceptor.
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BIOMATERIALS FOR SCAFFOLD FABRICATION

As mentioned earlier,  biomaterials play an important role in tissue replacement
and  regeneration.  So  far,  various  types  of  materials  have  been  synthesised  and
used as scaffolds in TE. In the following section, these biomaterials are described
in detail.

Ceramics

Ceramic-based  biomaterials  are  inorganic  compounds  of  natural  or  synthetic
origin that can be doped or un-doped with metals. Ceramics are an ideal choice as
biomaterials because they have excellent properties, such as biocompatibility and
osteoinductivity.  This  type  of  material  has  a  similar  chemical  composition  to
natural human bone and hardly triggers any immune response. They also help in
cell migration and facilitate osteogenic differentiation. Therefore, these types of
biomaterials  are  popular  to  rebuild  injured  body  parts,  especially  in  bone
regeneration. However, ceramics have some disadvantages that limit their use in
scaffold fabrication, such as fragility and slow degradation [13 - 15]. There are
three types of ceramic biomaterials: (I) inert to the biological environment; (II)
resorbable: subject to in vivo degradation by phagocytosis; and (III) bioactive by
chemically  bonding  with  the  cell  surface  [16].  Commonly  used  ceramic
biomaterials  include  (a)  calcium  phosphate  (CaP)  biomaterials  such  as
hydroxyapatite  (HA),  beta-tricalcium  phosphate  (BTP),  a  mixture  of  HA  and
BTP,  (b)  bioactive  glass,  (c)  alumina,  and  (d)  zirconia.

Natural  HA  is  derived  from  a  certain  type  of  bovine  ribbon  phosphate  and
contains  minute  amounts  of  magnesium,  sodium,  carbon  trioxide  and  fluorine.
Synthetic  HA,  on  the  other  hand,  is  prepared  by  various  methods,  including
chemical deposition, biomimetic deposition and wet chemical precipitation [17].
Several  reports  have  been  published  on  synthetic  HA.  For  example,  Ray  and
colleagues reported synthetic HA with biocompatible and biomimetic properties.
The  prepared  material  was  used  for  bone  tissue  engineering  and iliac  wings  of
dogs  [18].  Similarly,  Calabrese  prepared  a  bilayer  type  1  collagen  HA  /Mg
scaffold and used it for osteochondral regeneration in vitro and in vivo [19 - 21].
Bioglass is composed of different elements with different weight percentages in
the following order: SiO2, CaO, Na2O, and P2O5 with weight percentages of 45,
24.5, 24.5, and 6.0, respectively. It was first described by Hench and named 45S5
Bioglass,  which  has  been  used  in  biomedical  applications  [22].  Since  then,
various methods for the synthesis of bioglass have been reported, such as polymer
foam  replication,  thermal  bonding,  and  sol-gel.  Bioglass  and  HA  have  similar
properties, such as higher Ca to P content, making them ideal for bone grafts. The
role of Bioglass in bone regeneration is outlined in Fig. (2). Moreover, bioglass
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CHAPTER 2

Biocomposites for Tissue Engineering
Amjad Khan1,* and Naeem Khan2
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Abstract: The goal of tissue engineering is to restore damaged tissue by combining
cells with biomimetic material to initiate the growth of new tissue. Biomimetic material
plays a crucial role in tissue engineering as it serves as a template and is responsible for
providing a suitable environment for tissue development, which includes adhesion of
cells,  their  proliferation  and  deposition  of  extracellular  matrix.  Biocomposites  are
composite  materials,  consisting  of  one  or  more  multiphase  materials  of  biological
origin. In this chapter, the biocomposites used for tissue engineering are described in
detail. The chapter also highlights the scaffolds and their mechanical properties. This
chapter also includes various materials used for scaffold fabrication.

Keywords: Biocomposites, Ceramics, Polymers, Scaffold, Tissue Engineering.

INTRODUCTION

Biocomposites  are  composite  materials  composed  of  single-  or  multiphase
material derived from natural sources, such as plant fibers, flax, cotton, or fibers
from wood, waste paper, or food crop byproducts [1 - 5]. The criteria for selecting
suitable fibers are determined by the required values of tensile strength, stiffness,
elongation at break, adhesion of fiber and matrix, thermal stability, dynamic and
long-term behavior of a composite, and processing cost [6]. Composite materials
can  be  classified  into  (1)  Particle  reinforced  composites,  (2)  Fiber  reinforced
composites,  and  (3)  Structural  composites.  These  materials  have  been  used  as
scaffolds  for  tissue  engineering.  The  aim  of  tissue  engineering  is  to  restore
damaged tissue based on the combination of cells with biomimetic material. The
biomimetic material should serve as a template for tissue regeneration and provide
a suitable environment for tissue growth [7]. According to the National Science
Foundation (1988), tissue engineering was defined as “the  understanding of the
relationship  between  structure  and  function  of   mammalian   tissues  under
physiological and  pathological  conditions and  their restoration,  maintenance, or
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improvement of function through the development of biological substitutes based
on fundamental principles and procedures of engineering and biological sciences”
[8]. Langer and Vacanti defined tissue engineering as “an interdisciplinary field
involving the application of principles of engineering and biological sciences to
the  development  of  biological  substitutes  for  the  restoration,  maintenance,  and
improvement of the function of a tissue” [9]. The basis of tissue engineering is the
use  of  biomimetic  material  that  provides  a  suitable  environment  for  the
development  of  tissues  and  serves  as  a  template  for  cell  adhesion,  their
proliferation and the  development  of  an  extracellular  matrix  until  the  complete
restoration of tissues. Tissue engineering is based on various scientific principles,
such as clinical medicine, material science, mechanical engineering and biological
sciences  [10  -  14].  The  combination  of  scaffold,  cells  and  growth  factors
(signaling molecules) forms the basis for tissue engineering [15]. Fig. (1) shows a
schematic representation of the role of the scaffold in bone tissue regeneration.

Fig. (1).  Schematic presentation of the role of the scaffold in bone tissue regeneration [16].

BIOMATERIALS FOR TISSUE ENGINEERING

Biomaterials  are  “natural  or  synthetic  substances  (not  drugs by nature)  or  their
combination that can be used as part of a biological system to treat, support, or
replace  a  tissue  or  organ”  [17].  Since  ancient  times,  natural  materials  of  both
animal  and  plant  origin  have  been  sought  in  nature  for  wound  healing  and
maintenance  and  restoration  of  bodily  functions.  Plant  fibers  were  used  by  the
Egyptians  and  Romans  to  suture  skin  wounds  and  were  capable  of  sculpting
wooden prosthetic limbs [18]. Over time, various synthetic materials, including
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metallic  and  polymeric  materials,  were  used  to  make  medical  devices.  These
materials had need-based properties and were suitable for use in medical devices.
In  the  modern  era,  regenerative  medicine  and  tissue  engineering  are  based  on
biomaterials  derived  from  both  natural  and  synthetic  sources.  Biomaterials  of
different  types  such  as  polymers  (natural  and  synthetic),  ceramics,  metal,
composites, and hydrogels, have been used to fabricate scaffolds that are used in
tissue  engineering  [19].  To  be  suitable  for  scaffold  fabrication,  any  material
should  have  basic  properties  such  as  biocompatibility,  bioactivity  and
biodegradability.

Biocompatibility  is  the  basic  requirement  for  any  biomaterial  to  be  used  for
scaffold  fabrication,  and its  compatibility  with  the  biological  system [20].  Any
biomaterial  to  be  used  for  tissue  engineering  should  not  induce  an  immune
response  or  inflammatory  reaction  that  may  lead  to  rejection  or  interfere  with
wound healing after implantation into the living system. Rather, it should promote
cell  adhesion,  cell  proliferation  and  surface  migration  [21,  22].  The  next  is
bioactivity, which is the ability of a biomaterial to interact with tissue and ensure
that cell adhesion, proliferation, and differentiation occur [23]. The bioactivity of
a  biomaterial  is  high  when the  composition  of  the  biomaterial  is  similar  to  the
target  tissue  and  capable  of  inducing  the  cellular  responses  required  for  tissue
growth. Bioactivity can be increased by surface modification of the biomaterial by
adding  macromolecules  from  the  extracellular  matrix  such  as  collagens,
fibronectins and laminins. These macromolecules create an environment similar
to the host tissue that modulates the cellular response [24]. The other important
property is biodegradability, which is the breakdown of biomaterials by the living
system into non-toxic products that can be easily excreted from the body without
adverse effects on other body tissues. This is one of the fundamental properties of
biomaterials  used  in  tissue  engineering,  as  the  scaffolds  only  serve  to  support
tissue repair and growth and should not remain in the body forever [25]. The in
vivo degradation kinetics of any biomaterial should be accurately determined as it
controls the rate of its elimination from the body. If the biodegradation rate of a
biomaterial  is  high,  the  scaffold  will  not  be  able  to  support  cell  growth  for  a
sufficient period of time. In the case of slow biodegradation, the scaffold remains
in the body longer and may cause inflammation and necrosis [26].

SCAFFOLDS FOR TISSUE ENGINEERING

Scaffolds are intended to be implanted in an anatomical location in the body, and
their structure should be suitable for the intended site of implantation. Scaffolds
should  have  mechanical  strength  suitable  for  the  anatomical  site  and  be  strong
enough to withstand surgical manipulations during the implantation process [27].
The  structural  properties  of  a  scaffold  include  macrostructural  properties  and
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Abstract: The freeze-drying process involves solvent sublimation under vacuum from
pre-frozen solution resulting in porous materials. Pore volume, pore size, and density
depend on several variables, including freezing temperature, solute and solvent type,
solution concentration, and freezing direction. Researchers have investigated aqueous
and organic solutions, supercritical CO2 solutions, and colloidal solutions to produce
various porous structures. A more recent process involves freeze-drying of emulsions,
which  leads  to  controlled  pore  volume  and  pore  morphology,  and  porous  organic
nanomaterials.  Directional  and  spray  freezing  are  used  to  produce  aligned  porous
materials and porous particles. In this chapter, we describe the basic principles of the
freeze-drying process, the factors affecting the porosity of freeze-dried biomaterials,
and their biomedical applications. The freeze-dried porous biomaterials are discussed
in detail based on their morphology: porous structures, micro- nanowires, and micro-
nanoparticles. We have summarised the current status and given some directions for
future research in this field.

Keywords:  Freeze  drying,  directional  freezing,  biomaterials,  porous  structure,
microwires, nanowires, microparticles, nanoparticles.
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INTRODUCTION

In  recent  decades,  researchers  have  shown  great  interest  in  the  fabrication  of
three-dimensional (3D) scaffolds for various biomedical applications, including
tissue engineering.Various fabrication methods are based on the transformation of
liquid precursors (mainly polymers and their composites) to solid-state, including
3D printing, gas foaming, electrospinning, solvent casting/porogen leaching, and
freeze-drying  (FD)  [1  -  8].  The  FD  method  can  produce  3D  scaffolds  with  a
porosity of 90% and a pore diameter in the range of 20 - 400 µm. The FD method
was first used by Shackell in 1909 for freeze-drying biological materials. The first
patent  for  FD was filed by Tival  in  1927,  while  Flosdorf  patented the use  of  a
modern FD method to prevent degeneration of blood serum [9 - 13]. However, its
application  for  3D  porous  scaffolds  started  only  recently.  Nowadays,  FD
technologies  are  widely  used  in  various  industries,  including  food  industry,
pharmaceutical industry, nanotechnology, biomaterial development, etc. [14]. It is
the method of choice for high-value materials or heat-sensitive products, or has
special applications due to the direct sublimation of the solvent from ice to vapors
at  low  pressure  and  temperature.Therefore,  sensitive  materials,  including
biological  samples  and  drugs,  are  neither  vaporized  nor  decomposed.
Accordingly, only the solvent is removed from the freeze-dried final product, and
the properties of the ingredient are retained. In addition to 3D scaffolds, the FD
method has also been developed for the preparation of various other biological
materials. For example, nanoparticles and porous materials have been obtained by
combining  emulsion  and  freezing  techniques,  nanofibers  and  microwires  by
controlled  freezing  of  polymer  solutions,  and  colloidal  suspensions  and
microparticles  by  spray  freeze-drying.

In this chapter, we ought to explain the basics of the freeze-drying process and
then introduce the biomaterials obtained through this process,  including porous
scaffolds,  nano/microwires,  nanoparticles,  and  microparticles.  Due  to  the
significant  amount  of  research  on  porous  structures,  we  have  discussed  them
based on the solution system applied for fabrication; aqueous solutions, organic
solutions,  emulsions,  and  colloidal  suspensions.  Although  the  conventional
method  involves  the  immersion  of  liquid  samples  in  liquid  nitrogen,  recent
strategies involve directional freezing to fabricate porous materials with layered
or aligned pores. Herein, we have introduced the conventional porous materials
and then compared them to the materials obtained by directional freezing in each
preparation process.
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THE FREEZE-DRYING PROCESS

A  typical  freeze  dryer  contains  refrigeration,  vacuum  and  control  systems,  a
product chamber, and a condenser. The freeze-drying process involves four basic
steps: (1) formulation or pretreatment, (2) freezing, (3) primary drying, and (4)
secondary drying [14]. In the first step, the precursor is prepared for the process,
which may involve mixing or functionalization, leading to better stability in the
FD  process,  such  as  increased  resistance  to  the  low  pressure  or  enhanced  3D
porosity.  The  freezing  step  involves  the  precursor  loading  into  specific  molds
placed  in  freeze  dryer  shells  by  freezing  using  mechanical  refrigeration,  liquid
nitrogen,  or  dry  ice  in  aqueous  methanol.  The  main  objective  is  to  obtain  the
temperature lower than the solvent triple point, which is the lowest temperature at
which  all  three  solvent  phases  coexist.  Sublimation  will  occur  at  temperatures
lower than the solvent triple point rather than melting during drying (Fig. 1) [14 -
17]. It is worth mentioning that larger solvent crystals sublimate easily. Large and
more  uniform ice  crystals  are  obtained  through  sluggish  freezing  or  annealing.
However,  large  ice  crystals  usually  lead  to  non-uniform 3D porosity  and weak
mechanical properties. Therefore, the solution is rapidly frozen to a temperature
lower than the eutectic point, which usually lies between -40 to -80 ºC to avoid
the  formation  of  giant  crystals.  However,  amorphous  materials  do  not  have  a
eutectic point, so their critical point is considered for the freeze-drying process. In
any  case,  it  is  necessary  to  prevent  the  starting  materials  from  melting  or
collapsing  during  the  freeze-drying  process.  Almost  95%  of  solvent  (mostly
water)  in  the  frozen  samples  is  sublimated  in  the  primary  drying  step.  It  is  a
prolonged  step  and  usually  takes  several  hours  or  days  to  avoid  temperature-
induced  physical  damage.  The  secondary  drying  involves  the  evaporation  of
solvent  molecules  that  remained  unfrozen  during  the  freezing  process.  For
efficient desorption of surface solvent molecules, the temperature is raised to 0 ºC,
and the pressure is dropped further. After complete drying, the vacuum is broken
by an inert gas [1, 18, 19].

CONTROLLED FREEZING

The freezing step determines the morphology of the porous materials produced.
During this step, the frozen solvent crystals grow, excluding the solute particles,
until  the  sample  is  completely  frozen.  Freezing  conditions,  such  as  solute  and
solvent, solution concentration, freezing temperature, and direction determine the
pore structure and pore density of the prepared material.  For example, freezing
aqueous  solutions  in  liquid  nitrogen  results  in  rapid  freezing  and  smaller  ice
crystals.  However,  freezing  at  -20  ºC  results  in  large  ice  crystals  due  to  slow
nucleation leading to porous materials with large pores after freeze-drying.
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Abstract:  Nanofibers  are  a  necessary  source  for  fibrous  materials  and  other  useful
applications  such  as  tissue  engineering,  filtration,  safety  fabrics,  batteries  for  the
production of nanofibers so far. However,  due  to its  low  production  rate,   the wide
commercial  use of  electrospinning  is  minimal.  Almost   all  nanofiber  fabrication
techniques  (e.g.,  melt  blowing,  two-component  processes,  phase  splitting,  template
synthesis,  and  self-assembly,  etc.)  are  used  to  produce  nanofibers  from  a  limited
number of polymeric materials. Centrifugal spinning (CS) and solution blow spinning
(SBS)   are   advanced   replacement  processes  to  fabricate  nanofibers  with  full
performance  from  various  low-cost  raw  materials.  This  chapter  focuses  on  a
comprehensive  overview  of  CS  and  SBS  as  well  as  various  other  aspects  of  the
fabrication  of  nanofibers.
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INTRODUCTION

Electrospinning  is  a  well-known  technique  for  the  production  of  nanofibers  to
prepare  scaffolds  for  tissue  engineering.  Various  polymers,  including  synthetic
and  natural  polymers  [1,  2],  can  be  used  to  develop  scaffolds  for  tissue
engineering  using  different  techniques.  The  specific  surface  area,  porosity,
biomimetic  structure  of  the  extracellular  matrix  (ECM),  and  improved
biocompatibility are all advantages of scaffolds fabricated by electrospinning for
tissue  engineering.  The  ECM  can  associate,  release  and  trigger  signalling
molecules  and  stimulate  cell  response  [3,  4].  Scaffold  nanofibers  can  be  filled
with various bioactive compounds such as proteins, peptides and small molecule
drugs to  functionalize  the  scaffolds  and promote cell  adherence,  differentiation
and proliferation. As a result, electrospun scaffolds offer significant advantages in
biomimetic  ECM  processes  and  packaging  of  bioactive  materials.  Electrospun
scaffolds are also used for drug delivery.  In recent years,  interest  in submicron
fibre mats for tissue engineering applications has increased. They provide a good
surface area for cell adhesion and mimic the fibrillar structure of native ECM. The
porosity  of  the  mat  favours  the  diffusion  of  nutrients,  leading  to  rapid  cell
proliferation [5, 6]. The presence of fibres in the form of implants often makes
them  easy  to  handle  during  surgery.  Submicron  fibres  for  tissue  engineering
applications  are  currently  being  developed  primarily  using  electrospinning
technology,  but  the  process  has  several  limitations.  Limitations  of  the  process
include  low  efficiency,  limited  protective  features,  and  poor  alignment  and
reproducibility of fibre morphology. In addition, the electrospinning process is an
environmentally sensitive fibre production technique where even a small change
in  humidity  affects  fibre  production  and  consistency.  For  tissue  engineering
applications,  a  new  method  that  can  overcome  the  above  limitations  is  highly
desirable [7].

Due to their high rate and easy production of fibres with different morphologies,
fibres produced by centrifugal force have attracted the attention of scientists in
recent years [8].  Polymer concentration, solvent selection and evaporation rate,
spinneret  rotation  speed  and  collector  unit  distance  from  the  spinneret  are
important parameters that contribute to the improvement of fibre quality [9]. By
changing the spinneret configuration and the type of fibre collection, fibres with
different  morphologies  can  be  produced.  An  aligned  fibre  mat  can  be  easily
obtained  to  develop  biomaterials  for  biomedicine  [10].

Micro/nanofibers  are  widely  used  in  both  nature  and  industry  due  to  their
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exceptional  properties  and  utility.  These  fibres  are  now  being  used  in  tissue
bandages.  These tissue bandages have high filtration efficiency,  optical  sensor,
large surface area, rough surface and intense interfacial interaction [11]. Various
techniques can be used to develop continuous microfibers, such as melt spinning,
wet  spinning,  coaxial  spinning,  electrospinning  and  blow  spinning.  The
biomaterial based on these fibre fabrication techniques has certain limitations and
suffers  from  non-uniformity  of  shape  and  size  [12].  Various  hardware  issues,
dynamic  configurations  and  low  throughput  are  industrial  obstacles.
Consequently,  it  is  a  major  limitation  to  fabricate  continuous
submicron/nanofibers with tunable and uniform morphology [13]. It is true that
electrospinning  is  widely  used  in  biomedical,  energy,  environmental,  catalysis,
etc. But as mentioned earlier, the process has its limitations when it comes to the
use of high static voltages, safety and equipment [14] and the conductivity of the
polymer  solution.  This  limits  the  spinnability  of  the  non-conductive  polymers
[15].  At  the  same  time,  the  most  important  argument  is  that  the  nanofibers
produced  by  electrospinning  have  poor  yield.  It  is  difficult  to  produce  large
quantities, which significantly hinders commercial production. CS and SBS have
been proposed to  overcome these  limitations  and eliminate  the  safety  concerns
associated with the electrospinning process. Therefore, there is a need to develop
a new solution for nanofiber development that overcomes the limitations of the
above  approaches  [16].  In  this  chapter,  alternative  methods  using  centrifugal
spinning  and  solution  blow  spinning  are  discussed  to  economically  fabricate
nanofibers  from  various  materials  with  maximum  production.  CS  and  SBS
prevent high voltage as a simple and scalable method to fabricate nanofibers for
various biomedical applications.

CONVENTIONAL FABRICATION TECHNIQUES

The fibrous material can be produced by a number of conventional techniques. In
the  late  19th  century,  Lord  Rayleigh  produced  nanofibers  through  a  technique
known as electrospinning. This technique has the ability and potential to produce
nanofibers with specific properties. Spun nanofibers have numerous advantages,
including  an  extremely  high  surface-to-volume  ratio,  adjustable  porosity,
formability,  pore size and shape, and the ability to control the morphology and
size  of  the  nanofiber  to  achieve  desired  properties.  Nanofibers  have  unique
advantages as they are used as basic structural building blocks in living organisms
[17].  In  addition  to  their  use  in  tissue  engineering,  nanofibers  prepared  from
biopolymers and synthetic polymers are also widely used in drug discovery [18,
19]. In the following, we will discuss some of the known conventional techniques
(Fig. 1) for the fabrication of nanofibers.
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Abstract: The electrospinning (ES) technique in the fabrication of biomaterials-based
electrospun nanofibers (ESNFs) has risen to prominence because of its accessibility,
cost-effectiveness,  high  production  rate  and  diverse  biomedical  applications.  The
ESNFs have unique characteristics, such as stability and mechanical performance, high
permeability, porosity, high surface area to volume ratio, and ease of functionalization.
The characteristics of ESNFs can be controlled by varying either process variables or
biomaterial  solution properties.  The active  pharmaceutical  agents  can be  introduced
into ESNFs by blending, surface modification, or emulsion formation. In this chapter,
in  the  first  part,  we  briefly  discuss  the  fundamental  aspects  of  the  fabrication,
commonly used materials, process parameters, and characterization of ESNFs. In the
second  part,  we  discuss  in  detail  the  biomedical  applications  of  ESNFs  in  drug
delivery,  tissue engineering,  and wound healings,  cancer  therapy,  dentistry,  medical
filtration, biosensing and imaging of disease.
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INTRODUCTION

Nanotechnology  deals  with  the  fabrication  of  materials  ranging  from  1  nm  to
about 1000 nm (nanomaterials) and represents one of the newest approaches in
medicine  and  science.  Due  to  their  unique  physicochemical  properties  and
biocompatibility,  nanomaterials  have  increasingly  been  used  in  a  variety  of
biological  applications,  including  drug  delivery,  wound  healing,  and  tissue
engineering [1]. Electrospun nanofibers (ESNFs) are an example of nanomaterials
that  are  mostly  fabricated  via  the  electrospinning  technique  [2].  Rayleigh
introduced electrospinning in 1897. This is a flexible process in which ESNFs are
produced  from  polymer  solutions  using  an  electric  field  [3].  It  is  worth
mentioning that the ESNFs can be produced using either natural polymers, such as
chitosan,  alginates,  collagen,  and  gelatin  or  synthetic  polymers,  such  as  poly
(lactic-co-glycolic  acid)  (PLGA),  poly(ethylene-co-vinyl  acetate)  (PEVA),
poly(lactic acid) (PLA) polyvinyl alcohol (PVA) and polycaprolactone (PCL) [4,
5].

ESNFs  are  used  in  various  fields,  such  as  air  and  water  filtration  [6],
semiconductors  and  sensors  [7],  sound  absorptions  [8],  chemical  resistance  [9,
10], and clean energy [11]. However, the most pivotal applications of ESNFs lie
in the biomedical fields, which include cancer therapy, drug delivery, dentistry,
wound dressing, tissue engineering and diagnosis of disease [12].  The versatile
biomedical application of ESNFs is attributed to their unique properties, such as
large  surface  area  and  variable  porosity.  Moreover,  the  unique  chemical
composition and physicochemical characteristics of ESNFs usually facilitate the
incorporation of hydrophilic and hydrophobic drugs [4]. The usefulness of ESNFs
using polymers (biocompatible and biodegradable/non biodegradable) and other
compounds can be predicted from the fact that research and review articles are
published regularly. This book chapter highlights the aforementioned promising
biomedical advances of ESNFs reported in literature.

Fundamental Aspects of Electrospinning

Electrospinning is a simple and versatile nanofiber fabrication process that uses a
strong electric field to transform a viscoelastic fluid (e.g., a polymer solution) into
continuous  nanosized  fibers.  The  polymer  solution  is  pushed  from  a  syringe
towards the tip of a metallic needle. The fiber jets are generated from the Taylor
cone  (formed  at  the  tip  of  the  metallic  needle)  when  high  electrostatic  forces
overcome the cohesive forces [13].

The instrument used in electrospinning consists of a syringe pump and a syringe
with  a  metallic  needle,  a  high  voltage  power  supply  as  a  power  source,  and  a
collector  plate  (grounded  metal  plate)  (Fig.  1).  To  operate  the  instrument,  the
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syringe  is  filled  with  the  polymer  solution  and  the  orifice  of  the  needle  is
connected  to  one  terminal  of  the  high  voltage  power  supply,  and  the  other
terminal  of  the  power  supply  is  connected  to  the  collector  [2,  10].  The  main
function of  the syringe is  to pump the polymer solution at  a  constant  flow rate
(mL/h)  to  produce  continuous  ESNFs.  The  electrostatic  forces  overcome  the
surface  tension  and  form fibrous  jets  (the  Taylor  cone  formed at  the  tip  of  the
needle),  which are collected at the collector.  The electric voltage range is from
about 10 to 50 kV approximately [10].

Fig. (1).  Schematic diagram representing the fabrication of ESNFs.

Electrospinning Techniques for ESNFs Fabrication

Blending Electrospinning

In  the  blending  approach,  the  drug  is  dissolved  or  distributed  in  a  polymeric
solution  which  is  then  subjected  to  the  process  of  electrospinning.  The
relationship  between  the  mechanical  and  physicochemical  properties  of  the
obtained  ESNFs  can  be  enhanced  mainly  by  using  the  polymer  blend.  The
polymeric blend is an effective means to control the release rate of the drug from
the ESNFs [14, 15].
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Abstract:  Over  the  past  decade,  three-dimensional  printing  (3DP)  has  gained
popularity among the public and the scientific community in a variety of disciplines,
including  engineering,  medicine,  manufacturing  arts,  and,  more  recently,  education.
The advantage of this technology is that it is capable of designing and printing almost
any object shape using various materials such as ceramics, polymers, metals and bio-
inks. This has further favored the use of this technology for biomedical applications in
both  clinical  and  research  settings.  In  biomedicine,  there  has  been  a  remarkable
development of a variety of biomaterials, which in turn has accelerated the significant
role  of  this  technology  as  synthetic  scaffolds  in  various  forms  such  as  scaffolds,
constructs  or  matrices.  In  this  chapter,  we  would  like  to  review  the  trailblazing
literature on the application of 3DP technology in biomedical engineering. This chapter
focuses on various 3DP techniques and biomaterials for tissue engineering applications
(TE). 3DP technology has a variety of applications in biomedicine and TE (B- TE).
Customized structures for B- TE applications using 3DP have several advantages, e.g.,
they  are  easy  to  fabricate  and  are  inexpensive.  On  the  other  hand,  conventional
technologies, which are costly, time-consuming, and labor intensive, are generally not
compatible with 3DP. Therefore, the capabilities of 3DP, which is a novel fabrication
technology,  need  to  be  explored  for  many  other  potential  applications.  Here,  we
provide a comprehensive overview of the different types of 3DP technologies and how
they can potentially be used.
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INTRODUCTION

Tissue engineering (TE) has greatly changed the need to design complicated 3D
biomedical devices. Reconstruction of 3D anatomical defects, scaffolds for stem
cell differentiation, and reconstruction of complicated organs with sophisticated
3D microarchitecture (e.g., lymphoid, liver organs) are some of the applications
for 3D biomedical devices. For example, anatomical defects in the craniomaxillo
facial  complex  as  a  result  of  cancer,  trauma,  or  congenital  defects  require
functional restoration of important elements of our body systems, such as nerves,
vessels, muscles, ligaments, cartilage, bones, and lymph nodes, to name a few.

In  recent  years,  several  new  approaches  have  been  explored  that  rely  on  TE
principles to restore and reanimate functional tissues that are highly important in
maxillofacial tissue regeneration. In the field of TE, scaffolds are important for a
variety of functions, including providing structural support for cell infiltration and
proliferation,  providing  space  for  extracellular  matrix  regeneration  and
remodeling,  controlling  cell  behavior  by  extending  biochemical  cues,  and
reinforcing  physical  connections  for  destroyed  tissue.  Scaffold  fabrication
requires design at the macro, micro and nano levels of architecture, which in turn
are  important  for  cell  structural  integrity,  nutrient  transfer  and  cell-matrix
interactions [1, 2, 3]. The macroarchitecture dictates the overall structure of the
device, which can be complex considering the various anatomical features as well
as  patient  specificity  and  organ  specificity.  The  architecture  of  the  tissue  with
features  such  as  pore  size,  porosity,  shape,  spatial  distribution  and
interconnectivity,  is  replicated  at  the  micro-architectural  level.  Finally,  the
nanoarchitecture reflects changes at the surface level, such as the attachment of a
biomolecule to ensure cell adhesion, proliferation, and differentiation. Traditional
manufacturing  uses  formative  (molding)  and  subtractive  (machine)  techniques.
These techniques are a multi-step process and require an inefficient infrastructure
that makes it impossible to make changes to the final product in a timely manner
[4].  Moreover,  these  conventional  techniques  limit  the  scope  for  fabrication  of
highly complicated patterns and geometries which are more commonly required
in biomedical engineering applications [1].

Over  the  last  four  decades,  3D  printing  or  additive  manufacturing  (AM)  has
emerged  as  a  robust  tool  to  reconstruct  geometrically  complicated  objects  in  a
short time and in an economical manner [4, 5, 6]. 3D printing, developed in the
1980s,  uses  a  computer-aided model  to  deposit  material  layer  by layer  in  a  3D
space [7]. This breakthrough paved the way for the adoption and reproduction of
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complex  3D  structures  that  would  have  been  impossible  to  achieve  using
traditional  manufacturing  methods.  Various  industries  have  adopted  this
technology due to the creation of complex designs and the far-reaching impact of
3D printing  technology  on  healthcare  [4].  Due  to  its  direct  application  in  drug
delivery  [8,  9,  10],  surgical  planning  [11],  implant  design  [12],  and  tissue
engineering  [13,  14,  15],  3D  printing's  function  in  healthcare  is  increasingly
becoming  critical.

Another rapidly expanding application of additive manufacturing is bioprinting,
which allows cells to be seeded in a 3D space while taking into account spatial
organization  [16].  Bioprinting  enables  the  fabrication  of  replicates  in  vitro  for
drug screening, disease modeling, and biofabrication of implantable tissues such
as skin [17], bone [18] or cartilage [19]. In this review, we aim to highlight AM
fabrication  methods,  printing  materials  used  in  biomedicine  and  their  use  in
health-related applications. The main focus of this review is on the advanced 3D
printing  technologies  currently  used  to  build  scaffolds,  with  emphasis  on  their
ability to align cells and a wide range of materials along intricate 3D gradients.
Most  of  these  technologies  have  been  used  to  date  as  surgical  templates  for
formulating  patient-specific  models,  preoperative  planning,  and  prosthesis
fabrication.  Some  of  the  aforementioned  technologies  have  also  received  FDA
approval  for  implantable  device  fabrication.  In  this  chapter,  we  will  mainly
highlight the work done in the last five years to show the recent progress the field
has made [20].

Three-Dimensional Printing (3DP) Technologies

3DP technology and its applications have made several advances, focusing on the
suitability of material processing. Different states such as solid, liquid and powder
form the  basis  for  different  classes  of  3DP technology.  The  materials  used  for
printing  are  primarily  differentiated  by  the  specific  technology  used  in  3DP.
However,  all  3DP techniques have one thing in common: the combination of a
device with 3D modeling software. The processes involved are [21]:

CAD sketch is  obtained,  and interpretation is  made by the 3DP device of  the●

data retrieved from the CAD file.
A layer upon layer structure is built  via plastic,  paper sheet,  liquid or powder●

filaments, all of which make up the printing materials.

Widely  used  3DP  technologies  such  as  material  jetting,  photopolymerization,
binder jetting, powder bed fusion and material extrusion are shown in Fig. (1a)
[22].  Photo-polymerization  uses  ultraviolet  (UV)  light  to  stiffen  each  layer  of
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Abstract:  The  use  of  polymers  in  the  development  of  biomaterials  for  various
biomedical  applications  has  become  increasingly  important  in  recent  decades.  To
match the innate  properties  of  biological  tissues,  the polymer-based tissue scaffolds
must have the desired structural and functional properties. However, the polymer-based
hydrogels prepared by conventional methods are often delicate and fragile and require
pre-stabilisation.  This  necessitates  the  exploration  of  bio-friendly  cross-linkers  that
promote  kinetic  or  reversible  crosslinking in  the  polymer  network of  hydrogels  and
must  be  nontoxic  to  cells  and  tissues.  The  light  initiators  with  well-organized
multiphoton  cross  sections  that  are  reactive  at  specific  wavelengths  could  be  ideal
candidates.  This  chapter  reviews  the  fabrication  of  solid  or  viscoelastic  biological
scaffolds by multiphoton lithography (MPL) of liquids. It describes the similarities and
differences  between  conventional  and  MPL  photo  polymerization  of  biological
scaffolds in terms of synthesis chemistry, properties, and their relevance to biological
applications.  These  photosensitive  scaffolds  could  be  useful  biomaterials  for  their
biomedical applications.

Keywords:  Biomaterials,  Biomedical  Applications,  Cross-Linkers,  Hydrogels,
Multiphoton  Lithography,  Photosensitive  Polymers.

INTRODUCTION

The emergence of the polymer industry in the early 1950s led to the synthesis of
several  new  products  for  everyday  use  [1  -  3].  Currently,  the  use  of  various
polymers is attracting much attention in the biomedical field, where they are used
in the development of drug delivery systems  [4 - 6],  tissue  engineering scaffolds
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[4,  7  -  9],  synthetic  organs  [10],  medical  implants  [11  -  14],  and  medical
equipment  such  as  biosensors  [15  -  17].  The  use  of  various  polymers  for  their
biomedical  applications  requires  the  development  of  specialized  materials  for
specific applications by controlling their synthesis process. To this end, advances
in photophysics and synthetic chemistry are leading to the synthesis of polymers
in  a  controlled  environment,  e.g.,  the  initiation  and  propagation  of  the
polymerization  reaction  in  the  presence  of  light  [18,  19].

The use of  light  as  a  catalyst  during the polymerization reaction allows unique
control  of  the  reaction  as  well  as  the  freedom  to  perform  the  experiment  at
different times and places. Photo polymerization is a reaction carried out in the
presence  of  light  that,  under  suitable  conditions,  converts  the  low  molecular
weight prepolymer solution or monomers into high molecular weight materials.
The conventional photo polymerization reaction for material synthesis is usually
carried  out  by  the  light-induced  radical  polymerization  [20],  which  requires  a
suitable  light  source  and  at  least  one  precursor  solution  consisting  of  a
multifunctional monomer and a photo initiator. The light is used to irradiate the
precursor solution and produce the photopolymerizable material. The photomask
dictates the shape, while the light dose and intensity control the degree and rate of
the polymerization reaction [21]. In vivo or in situ photo polymerization can also
be  performed  by  introducing  the  precursor  solution  into  the  body  and  then
initiating  the  photo  polymerization  reaction  [22].  In  this  way,  a  biomaterial
corresponding to the desired tissue shape can be rapidly produced. On the other
hand, interfacial photo polymerization can be performed by adsorbing or attaching
a  light  initiator  to  the  surface  of  a  polymerizable  material  that  can  produce
brushes.  These  photo  polymerization  approaches  are  useful  for  achieving
consistent  coatings,  casting  compounds,  and  in  vivo  implantation  of  grafts.
However, they are limited to planar patterns only and cannot take advantage of
the full 3D and spatial resolution offered by light initiation [18].

Over the last couple of decades, photo polymerization has played a crucial role in
the establishment,  growth, and expansion of several  modern industries,  such as
integrated circuits, coatings and adhesives, and optical devices, due to its unique
properties [23, 24]. Even the ancient Egyptians explored photo polymerization by
using sunlight to crosslink oily linen to form an environmental barrier during the
mummification  process  [25].  Nowadays,  photo  polymerization  uses  monomers
and  terminal  functional  polymers  to  develop  functionalized  and  biocompatible
scaffolds and hydrogels [26].

In the field of  biomaterials,  the photo polymerization process  has  been used to
overcome the limitations of functional design, such as achieving defined shapes,
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e.g., in bone implants and skin tissues [13, 27 - 29] and sol-gel transitions after
application, e.g., in hydrogels developed in situ [30 - 32]. The photo polymerized
biomaterials  are  effectively  used  as  cell  [33]  and  drug  delivery  systems  [34],
membrane barriers [35, 36], tissue-engineered scaffolds [37, 38], and as coating
materials  for  medicines  [26].  These  biomedical  applications  of  biomaterials
require  the  development  of  biocompatible  networks  or  hydrogels,  which  are
related to the crosslinked polymers but differ in their physical state. The former
are crosslinked polymers in an undissolved state, while the latter contains a lot of
water and are in a swollen state. The high degree of swelling of hydrogels mimics
the mechanical properties of biological tissue in vivo and facilitates the exchange
of  nutrients,  waste  products,  and  signaling  molecules,  making  them  ideal
candidates  for  various  biomedical  applications  [39].  In  both  cases,  the  three-
dimensional  (3D)  and  sequential  control  during  polymer  synthesis  enabled  by
photo polymerization can produce highly structured materials with predetermined
shapes and in situ polymerization capabilities [40].

With the increasing demand and applications of biomaterials, the old-fashioned
monolithic photo polymerization technique cannot meet the desired standards of
material  production  in  various  disciplines  and  for  various  applications.  For
example, the extracellular matrix (ECM) is a natural environment that supports
and controls cellular functions. However, its time-varying structural design at the
nanoscale and microscale is very complex [41, 42], and thus cannot be fabricated
using  conventional  techniques.  Similarly,  many  applications  require  high
functional  resolution  of  polymers  through 3D objects.  Among various  material
synthesis techniques, photolithography and stereo lithography are widely used for
the fabrication of functional biomaterials at micro and nano scales. At the same
time,  multiphoton  lithography  (MPL)  technology  has  been  applied  to  photo
polymerization to make these necessary tools widely available in the biomedical
field  [43].  The  development  of  integrated  circuits  using  photolithographic
techniques can significantly improve the spatial resolution in the microelectronics
industry  [44].  The  irradiated  areas  are  photo  polymerized  into  non-resolvable
blocks, while the non-polymerized areas are eroded after the fabrication process is
complete. Then, users create planar structures in the micrometer range and obtain
3D structures  by building them layer  by layer  [45].  The lithographic  technique
requires high-resolution photo coverage for each shape. It is limited by diffraction
and can only produce 3D structures. The photo polymerization technique can also
be used for soft lithography [46, 47]. At this time, the main mold is made from the
elastomer material, such as polydimethylsiloxane, with a predefined shape. The
mold  is  filled  with  a  precursor  solution  that  photo  polymerizes  to  restore  the
desired  properties.  This  method  has  proven  successful  in  the  fabrication  of
pharmaceutical  microbial  materials  [48],  tissue  engineering  scaffolds  [49],  and
microfluidic  biosensing  [50].  Recent  advances  in  multiphoton  technology  have
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CHAPTER 8
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Abstract: The most important characteristic of a scaffold used in tissue engineering is
the possession of appropriate physical and mechanical properties to support or restore
the  biological  function  of  damaged  or  degenerated  tissue.  Pore  size,  porosity,  pore
interconnectivity, and mechanical strength are all physical and mechanical properties
that  must  be  considered.  Various  fabrication  techniques  have  been  investigated  to
create a scaffold suitable for tissue engineering. One example is the particulate leaching
(salt leaching) technique. The type of polymers and salts used, the particle size of the
salt,  and  the  fabrication  technique  all  affect  the  desired  physical  and  mechanical
properties of salt leaching scaffolds. Over the past decade, there have been numerous
studies on the fabrication of scaffolds for tissue engineering. This chapter reviews the
different  types  of  materials  used,  the  basic  salt  leaching  process,  and  its  new
modifications. It also discusses the advantages and disadvantages of the salt leaching
technique and its future prospects.

Keywords:  Interconnectivity,  Mechanical  strength,  Polymers,  Porosity,  Salt
leaching,  Scaffold,  Tissue  engineering.

INTRODUCTION

Tissue engineering is a discipline of biomedical engineering that aims to facilitate
cell  ingrowth  or  replace  damaged  or  diseased  tissue  with  a  combination  of
bioactive molecules,  biomaterials,  and cells or engineered cells [1].  To achieve
these  goals,  scaffolds  are  commonly  used  in  tissue  engineering.  Various
biomaterials,  from  biopolymers  to  bioceramics  to  biodegradable  metals,  have
been  shown  to  be  useful  in  the  fabrication  process  [2].

The  most  important  characteristics  of  a  scaffold  for  tissue  engineering  are
sufficient  mechanical  strength  to  support  biological  function  by  promoting  cell
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adhesion, differentiation, and proliferation [3, 4]. Various techniques have been
investigated to fabricate such scaffolds, including particle leaching (salt leaching),
freeze-drying, solvent casting, self-assembly, phase separation, electrospinning,
rapid prototyping, melt molding, gas foaming, and membrane lamination [5]. This
chapter deals exclusively with the fabrication of a framework by particle leaching
(salt leaching).

Particulate leaching (salt leaching/porogen leaching) is one of the most common,
long-established  conventional  techniques  for  preparing  porous  biomaterials  for
tissue  engineering.  It  involves  dispersion  of  salts/porogens  in  a  polymeric  or
monomeric solution, followed by gelation or fixation in the template and removal
of salts/porogens to form an interconnecting porous architecture. The method has
several advantages and disadvantages, which are also discussed in this chapter.

The main goal of preparing biomaterials for tissue engineering is to create a well-
designed  three-dimensional  (3D)  scaffold.  The  scaffold  is  an  important  tool  to
facilitate tissue formation both in vitro  and in vivo.  To regenerate tissue,  tissue
engineering uses biodegradable or non-biodegradable polymers, with or without
the  inclusion  of  molecules  or  biological  cells.  Many  scaffolds  for  tissue
engineering  have  been  fabricated  using  the  particle  leaching  technique  (salt
leaching).  However,  different  tissues  require  different  scaffold  properties.  For
example, scaffolds for bone engineering may have different desirable properties
than  scaffolds  for  skin  substitutes  or  retinal  neural  progenitor  cells.  Therefore,
selecting  the  right  polymers,  salts,  and  salt  leaching  techniques  (simple  or
modified) is critical, especially if the scaffold is designed to allow the target cells
to  function  in  the  manner  required  for  tissue  regeneration.  In  this  chapter,
particle/salt  leaching  is  presented  for  the  preparation  of  biomaterials  for  tissue
engineering  applications.  The  materials  and  methods  used  and  their  new
modifications are compared. Recent studies on scaffold materials fabricated using
these techniques are summarized and discussed.

PARTICULATE LEACHING (SALT LEACHING) TECHNIQUE

The technique of particle leaching (salt leaching) involves the use of polymers or
a  combination  of  polymers  and  salt  particles  of  a  specific  size  to  produce  a
suitable  scaffold  for  tissue  engineering.  The  desired  physical  and  mechanical
properties of the scaffold depend largely on the choice of the type of polymer and
salt,  the  size  of  the  salt  particles,  and  the  fabrication  techniques.  The  types  of
polymers and salt typically used in the salt leaching technique, as well as the step-
by-step approach to the basic salt leaching technique and its modifications, have
been discussed in this section.
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Polymers

Natural  or  synthetic  biodegradable  polymeric  materials  are  widely used for  the
production  of  biomaterials  because  their  properties  offer  greater  advantages
compared to other materials, such as metal or ceramics. Apart from the fact that
biodegradable polymers are naturally absorbed by the human body, some of them
are also suitable for tissue regeneration, which is basically helpful in injuries and
reconstruction  of  damaged  or  aging  tissues.  Another  advantage  of  polymers  as
biodegradable drug carriers is their low cost and ability to adapt to target organs
or  tissues.  In  laboratory  processing,  the  particle  leaching  (or  salt  leaching)
technique  is  often  used  in  the  development  phase  to  produce  biodegradable  or
non-biodegradable polymeric scaffolds with sufficient porosity for use in tissue
engineering. The fabrication technique of this polymer can be easily extended to a
larger quantity through industrial production [6].

Polymers  are  available  with  different  mechanical  and  physical  properties.
Therefore,  the  basic  properties  of  scaffolds,  such  as  biocompatibility  with  the
human body, sterilizability, and a suitable degradation profile, must be considered
before  fabrication.  The  processing  of  polymers  into  scaffolds  for  tissue
engineering with specific properties for each application is highly dependent on
the type of polymer chosen. The most commonly used biodegradable polymers
for  salt  leaching  techniques  are  aliphatic  polyesters,  such  as  poly(lactic  acid)
(PLA), polyglycolic acid (PGA), polycaprolactone (PCL) and their copolymers.
However, there are also some other polymers, such as silk fibroin (SF), nylon and
many others that are used to produce biomaterials for tissue engineering. Table 1
summarizes the properties of the polymers used in the production of biomaterials
using the salt leaching technique.

Table 1. The properties of the polymer used in the preparation of biomaterial with the salt leaching
technique.

Materials
Density
(g/cm3) E (GPa) σ (MPa) ε (%) References

Biodegradable Polymers
Non-biodegradable
Polymers or Other

Material

Poly (glycolic acid) - 1.53 >6.9 >68.9 15-20 [7]

Poly (L-lactic acid) - 1.210–1.430 2.4-4.2 55.2-82.7 5-10 [8]

Poly (L-lactic-co-glycolic acid) - 1.3 1.4-2.08 41.4-55.2 3-10 [9]

Polycaprolactone - 1.14 0.21-0.34 20.7-34.5 300-700 [8, 10]

Chitosan - 0.15–0.3 - 30 - [11]

Starch - 1.5 116.42–294.98 4.48–8.14 35.41–100.34 [12]

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) - 1.17–1.2 0.7–3.5 20–60 6–8 [10]

polymethyl methacrylate - 1.17-1.20 1.8–3.1 48-76 2-10 [10]

Cellulose nanofiber - 0.96–1.02 138 10 - [13]

Silk fibroin - 1.40 9.860 513 23.4 [10, 14]
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CHAPTER 9
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Abstract:  Tissue  engineering  techniques  aim  to  create  a  natural  tissue  architecture
using biomaterials that have all the histological and physiological properties of human
cells to replace or regenerate damaged tissue or organs. Nanotechnology is on the rise
and expanding to all fields of science, including engineering, medicine, diagnostics and
therapeutics.  Nanostructures  (biomaterials)  specifically  designed  to  mimic  the
physiological  signals  of  the  cellular/extracellular  environment  may  prove  to  be
indispensable tools in regenerative medicine and tissue engineering. In this chapter, we
have  discussed  biomaterial  design  from  two  different  perspectives.  Supramolecular
self-assembly is the bottom-up approach to biomaterials design that takes advantage of
all  the  forces  and  interactions  present  in  biomolecules  and  are  responsible  for  their
functional  organization.  This  approach  has  the  potential  for  one  of  the  greatest
breakthroughs in tissue engineering technology because it mimics the natural, complex
process of coiling and folding biomolecules. In contrast, a fiber mesh scaffold is a top-
down  approach  in  which  cells  are  seeded.  The  scaffolds  form  the  cellular  scaffold
while  the  cells  produce  and  release  the  desired  chemical  messengers  to  support  the
regeneration process. Therefore, both techniques, if efficiently explored, may lead to
the development of ideal biomaterials produced by self-assembly or by the fabrication
of optimal scaffolds with long shelf life and minimal adverse reactions.
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INTRODUCTION TO SELF ASSEMBLY

In  the  recent  past,  nanotechnology  has  emerged  as  a  potential  area  for  the
development of advanced, innovative techniques in various fields, including tissue
engineering  and  regenerative  medicine.  Recent  studies  in  nanomedicine  have
focused  on  its  application  in  the  production  of  biomaterials.  To  this  end,
nanotech-based biomaterials are being developed and intensively studied for their
safety, efficacy, and long- and short-term effects on the human body. Nanofibers
and nanotubes have been described in many studies as vehicles for drug delivery.
Nanostructures  specifically  designed  to  mimic  the  physiological  signals  of  the
natural cellular and extracellular environment may prove to be indispensable tools
in regenerative medicine.

Fig. (1).  Approaches for tissue engineering in regenerative medicine A. Traditional scaffold-based top-down
approach where cells are seeded into fully formed porous scaffolds B.  Recent bottom-up approach which
involves cellular seeding in self-assembling tissue modules, capable of forming a complex three-dimensional
network.
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Traditionally, regenerative tissue engineering has used the top-down approach, in
which the desired cells are incorporated into a scaffold in which they proliferate
and  differentiate  into  the  desired  tissue/organ  while  supported  by  the  scaffold
material  (Fig.  1).  This  method  has  some  weaknesses,  such  as  the  difficulty  in
constructing  complex  vital  organs  with  intricate  architecture,  such  as  liver  and
kidneys.  To  overcome  these  drawbacks,  tissue  engineering  scientists  have
explored the relevance and feasibility of other approaches. One of the mechanisms
used  to  produce  such  biomaterials  is  the  bottom-up  approach  of  self-assembly
(Fig.  1B).  In  this  approach,  cells  are  incorporated  into  modules  that  can
spontaneously  fold  and  form  complex  scaffolds.  The  tendency  toward  self-
assembly is driven by the need for molecules/modules to achieve thermodynamic
stability  [1,  2].  The  design  of  complex  nanostructures  by  supramolecular  self-
assembly of  simple  biological/synthetic  building blocks  is  one of  the  attractive
mechanisms  for  the  fabrication  of  biomaterials  for  various  applications  in
biomedical  sciences  [3  -  5].

Self-assembly  is  a  natural  phenomenon  that  leads  to  the  formation  of  complex
macromolecules.  Understanding  the  principles  of  self-assembly  of  natural
molecules has greatly helped us in the synthesis of biomaterials using the same
bottom-up  approach.  Molecular  and  supramolecular  self-assembly  is  a
spontaneous process driven by various interactions of chemical entities (charge,
size,  orientation,  bonds)  that  are  in  close  proximity  to  each  other.  The  forces
underlying the phenomena of self-assembly are weak (non-covalent) forces that
come  into  play  when  the  distance  between  molecules  is  reduced.  These  forces
include  hydrophobic  interactions,  weak  Van  der  Waals  forces,  electrostatic
interactions between dipoles, ion-dipole interactions, and hydrogen bonding (Fig.
2).  Although  these  forces  are  weak  individual  forces,  they  are  collectively
responsible for the formation of the unique, intricate three-dimensional biological
structures with varying complexity and multiple levels of 2-organisation (Fig. 3)
[6 - 8].

Molecular Forces Responsible for Self-Assembly

Electrostatic Forces

Most  macromolecules  carry  functional  groups  with  charged  moieties  (polar
groups  in  side  chains  of  amino  acids).  The  interaction  between  such  charged
groups  of  a  macromolecule  generates  electrostatic  attraction/repulsion,  which
leads to the folding of the macromolecule into supramolecular structures (ion-ion
interaction,  ion-dipole  interaction,  and  dipole-dipole  interaction).  The  self-
assembly  triggered  by  such  interactions  is  found  in  polypeptides  and  lipids  [9,
10].
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Abstract:  Biomaterials  are  receiving  tremendous  attention,  especially  in  the
biomedical  field,  due  to  their  impressive  structural,  physiological,  and  biological
properties,  such  as  nontoxicity,  biocompatibility,  and  biodegradability.  Numerous
biomaterials have been used to fabricate scaffolds for applications in tissue engineering
and regenerative medicine, where they are used as wound dressings, grafts, organs, and
substitutes. To date, a number of techniques have been developed for the fabrication of
scaffolds  from biomaterials.  This  chapter  focuses  on  the  fabrication  of  scaffolds  by
solvent casting and melt-casting techniques. It examines the solvent casting and melt-
casting techniques in terms of their application in the fabrication of biological scaffolds
with tailored micro- and nanostructures for their use in tissue engineering. The merits
and  limitations  of  these  techniques  in  fabricating  biological  scaffolds  for  desired
biomedical applications are also discussed. Finally, various challenges faced by solvent
and  melt  casting  techniques  are  described,  and  solutions  are  proposed  for  future
research  to  develop  biomaterials  for  advanced  biomedical  applications.

Keywords:  Biocompatibility,  Biomaterials,  Fabrication  techniques,  Scaffolds,
Structural  features.

INTRODUCTION

Tissue  engineering  provides  an  innovative  platform  focused  on  developing
scaffolds with biological and mechanical properties to overcome serious medical
problems, such as tissue loss or damage and organ failure. It  is  highly  dependent
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on the biocompatibility, biodegradability, and bioresorbability of scaffolds, which
limits access to available materials and viable techniques [1, 2]. Microstructural
properties,  such  as  porosity  and  pore  connectivity,  as  well  as  the  required
mechanical  strength of  the scaffold,  pose a  major  challenge for  biomaterials  to
meet  the  desired properties  of  the  target  tissue  or  organ [3,  4].  In  addition,  the
cost, reproducibility, and simplicity of the techniques without compromising the
biocompatibility of the material are other obstacles to the fabrication method [5].
The  conventional  fabrication  technologies,  such  as  solvent  casting  and  melt
casting  techniques,  have  numerous  limitations;  nevertheless,  their  simple
protocols  have  promoted  their  use.  These  techniques  are  inexpensive,
straightforward,  and  easily  scalable  compared  to  their  counterparts  [6  -  8].  In
recent  years,  solvent  casting  technology  has  evolved  into  a  high-precision
technique  used  in  the  fabrication  of  optical  and  medical  films,  opening  up
potential  applications  in  bioelectronics  [9].  Melt  casting  techniques  such  as
additive  extrusion  or  injection  molding  techniques  are  widely  used  in  the
development of solid implants such as plates, rods, and screws, and are also used
in  dentistry.  These  techniques  are  often  combined  with  other  technologies  to
obtain  a  framework  with  the  desired  properties.

Biomaterials

Biomaterials  are  non-toxic  substances  composed  of  either  natural  or  synthetic
components, that do not induce immunogenic and inflammatory reactions, and are
frequently used in medical applications [10, 11]. A biomaterial interacts with the
biological  system  and  supplements  or  replaces  a  natural  function.  Generally,
biomaterials are classified into two broad categories, namely natural and synthetic
biomaterials.  Natural  biomaterials  are  mostly  composed  of  natural  polymers,
including  proteins  such  as  collagen  [12],  fibrin  [13],  and  silk  [14],  and
polysaccharides such as cellulose [15 - 17], chitosan [18], alginate [19, 20], and
hyaluronan  [21,  22].  Synthetic  biomaterials  include  three  categories  with
polymers such as peptides and ceramic-based biomaterials [23, 24]. Examples of
commonly used synthetic  polymers  in  the  development  of  biomaterials  include
poly  (lactic-co-glycolic  acid)  (PLGA)  [25],  poly  (ε-caprolactone)  (PCL)  [26],
poly  (ethylene  glycol)  (PEG)  [27],  poly  (vinyl  alcohol)  (PVA)  [28,  29],  and
others. Peptide-based materials include amino acids and peptides [29], ceramic-
based  biomaterials  include  hydroxyapatite  (HAp)  [30],  and  ceramic-based
biomaterials  include  hydroxyapatite  (HAp)  [31]  and  bioactive  glass  [32].
Biomaterials are used together with cells and bioactive substances to synthesize
new  tissues  using  tissue  engineering  techniques  [33].  Recently,  biological
scaffolds have become an important medical substitute for synthetic implants and
tissue grafts [34]. A well-designed three-dimensional (3D) scaffold should have
certain important properties to allow the cells to regenerate the tissues and organs
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in the desired shape and size. They should be biocompatible with the host tissue
and have the required porosity and mechanical strength. Their surface should have
adhesive  properties  that  allow  cell  attachment,  growth,  migration  and
differentiation.  Controlled  biodegradability  and  safe  implantation,  as  well  as
suitable mechanical properties, are other structural and chemical requirements for
the successful development of biological scaffolds [18, 22, 35, 36, 37].

FABRICATION TECHNIQUES

Living  tissue  comprises  different  cell  types  and  extracellular  matrix  organized
into  a  complex  architecture  performing  cellular  and  mechanical  functions.
Designing of scaffolds requires a strategical analysis of the microcellular structure
of native tissue and its functioning at the cellular level enabling the proliferation
and migration of cells. The engineering of scaffolds requires techniques to deliver
scaffolds with the best regenerative performance with respect to the native tissue
requirements. There are several methods for the fabrication of scaffolds, such as
solvent  casting,  melt  molding,  phase  separation,  freeze-drying,  gas  foaming,
phase separation, and membrane lamination, to name a few. In this section, the
main techniques for solvent casting and melt molding are discussed in detail.

Solvent Casting

Solvent casting is a simple and inexpensive technique that requires a mold and a
polymer  dissolved  in  an  organic  solution  to  produce  scaffolds.  The  polymer  is
dissolved  in  an  organic  solvent,  and  the  scaffold  is  obtained  by  simply
evaporating the solvent. The desired scaffold is obtained either by immersing the
mold in the polymeric solvent or by adding the polymeric solution to the mold. In
the first method, the mold is immersed in the solution and then dried to form a
mold from the polymer membrane. In the second method, the solution is added to
the mold, and the solution is allowed sufficient time to dry so that a layer of the
polymer membrane forms on the mold [38]. Fig. (1) shows a generalized diagram
depicting  the  technique  of  solvent  casting  with  particle  leaching  to  develop
scaffolds.

Solvent casting is a widely used technique because it allows uniform distribution
of  polymer  throughout  the  framework  and  provides  changeable  reaction
conditions [39]. The role of the solvent is a critical factor in the preparation of the
polymer surface. The heterogeneity of the surface, the swelling behavior, and the
deformation rates of the scaffold affect its application [40]. The main advantages
of  the  solvent  casting  technique  are  its  simplicity,  convenience,  and  easy
fabrication  of  scaffolds.  The  degeneration  of  the  scaffold  does  not  affect  the
regeneration rate of the native tissue. However, the long drying time of the molds,
the toxicity of the organic solvents used in the fabrication of the scaffolds, and the
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