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FOREWORD

Microorganisms  are  the  most  abundant  and  diverse  beings  on  Earth  and  are  capable  of
occupying various ecological niches. Among them, there are pathogenic microorganisms that
have the ability to cause infections or diseases when interacting with a host, who they need to
thrive and survive. Once the pathogen sets itself up in a host, it manages to avoid the host’s
immune response and uses its resources to replicate before spreading to new ones.

Infectious diseases are among the main cause of morbidity and mortality worldwide and are a
major challenge for the biomedical sciences. Recently, much progress has been made towards
unraveling the mechanisms of microbial pathogenesis, including the immuno-inflammatory
response  elicited  by  the  parasite-host  relationship.  It  is  worth  mentioning  that  the
mitochondrial  DNA  stands  out,  known  for  its  role  in  oxidative  phosphorylation  and
maternally  inherited  mitochondrial  diseases.  The  release  of  mitochondrial  DNA  into  the
cellular cytoplasm and out to the extracellular milieu activates different pattern recognition
receptors and innate immune responses leading to robust actions.

Cintia de Moraes Borba
Laboratory of Taxonomy, Biochemistry and Bioprospecting of Fungi

Oswaldo Cruz Institute, Oswaldo Cruz Foundation
FIOCRUZ, Rio de Janeiro-RJ

Brazil

Mitochondrial DNA and the Immuno-inflammatory response: new frontiers to control specific
microbial  diseases  aims  to  present  state-of-the-art  coverage  on  topics  central  to  the
understanding of the interactions between pathogenic microorganism (bacteria and virus) and
hosts. The book is divided into six chapters written by professionals with expertise in the field
of cell biology and immuno-inflammatory response. The chapters cover the complexity of
mitochondrial metabolism; the mitochondrial dysfunction in leprosy; mitochondria and the
host immune cell against Mycobacterium tuberculosis; disturbance of mitochondrial function
in Streptococcus pneumoniae infection; inflammatory response in Zika virus infection and
mitochondrial dysfunction; and the potential role of mtDNA as an important marker of hyper
inflammation in the progress of COVID-19. This book represents a comprehensive and an
indispensable tool for researchers in immunology and microbiology wishing to keep abreast
with the latest developments in cellular immunology and mitochondrial DNA. In addition, it
provides a  reliable reference for  undergraduate and graduate students  in their  pursuit  of
becoming competent future immunologists/microbiologists, as well as for health professionals
in general.
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PREFACE

The first cases of the infection caused by the virus SARS-CoV-2 were reported in December,
2019, in China, hence the name of the disease: COVID-19 (Corona Virus Disease, year
2019). The world saw the emergence of a global pandemic in 2020, which still poses a threat
to global health in 2021, despite the recent mass vaccination. In some countries like the USA,
Brazil and India, the number of deaths is still worrisome. The most important lesson learnt
from  this  disease  is  its  destructive  potential  of  triggering  a  sudden  and  uncontrolled
inflammatory response to the virus, which can rapidly decimate populations worldwide. That
was our biggest motivation for choosing the topic Mitochondrial DNA and the Immuno-
inflammatory response: new frontiers to control specific microbial diseases as the second
volume in the book series "Frontiers in Inflammation".

Our objective is to present to the reader a book on the topic of "inflammation" in its broadest
sense, including relatively recent scientific discoveries concerning the active participation of a
cell organelle—mitochondria—and its respective constituents, mainly mitochondrial DNA
(mtDNA), in the immuno-inflammatory responses. It is worth mentioning that, coincidently,
this organelle was studied by James P. Allison, PhD, and Tasuku Honjo, PhD, who were
awarded the Nobel Prize in Physiology or Medicine for their discovery regarding cancer
therapy  by  inhibition  of  negative  immune  regulation.  Thus,  the  mechanism for  oxygen
sensing (mitochondria) has fundamental importance in Physiology and Pathology, in areas
such as the metabolism, immune response and ability to adapt to exercise. All in all, the role
of  mitochondria  goes  far  beyond  their  contribution  to  cellular  energy  metabolism.
Mitochondria  are  multifuncional  organelles  that  actively  participate  in  the  immuno-
inflammatory  response  in  several  pathologies.  To  develop  this  subject,  we  chose  some
pathologies which have already been studied under the light of this specific area. Therefore,
this book will address: (1) two diseases (one bacterial and the other one viral) in which the
exacerbation of the inflammatory response can lead to neuropathies— leprosy (one of the
oldest diseases in the world) and Zika fever (a relatively new disease in Brazil)—and (2) three
diseases (two bacterial and one viral) in which the exacerbation of the inflammatory response
can lead to irreversible lung damage that can cause rapid death—tuberculosis, pneumonia and
the most recent global pathology, COVID-19. In addition, the introductory chapter of this
book deals with updates on mitochondria as multifunctional organelles, enabling Cell Biology
to better interface with Physiology, Pathology and Immunology.

Our goal is to provide up-to-date content on the chosen topic, aiming at broadening horizons
and awakening readers, especially infectologists and pathologists, about the importance of
investigation and research on the subject of inflammation, a very fascinating and promising
topic for new discoveries of therapeutic targets.

We hope that this content may be useful in universities, hospitals and scientific research
centers, as well as for health professionals in general. It is worth mentioning that each author
and  co-author  presents  their  experience  in  their  area  of  expertise  in  Cell  Biology  and
Infectious Diseases.
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Brazil is one of the countries listed with a high incidence of leprosy, Zika fever, tuberculosis,
bacterial pneumonia and COVID-19. We would like to express our sincere thanks to all
authors who have contributed chapters to this book. We would also like to thank Bentham
Science Publishers for the publication opportunity and for their support in disseminating
knowledge.

Dilvani Oliveira Santos (Editor)
Postgraduate Program in Applied Microbiology and Parasitology,

Biomedical Institute, University Federal Fluminense (UFF)
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DEDICATION

This book is dedicated to healthcare professionals and all individuals who have dealt or are
dealing with one or more of the illnesses covered in this book.
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CHAPTER 1

An Auspicious Bacterium: How Mitochondria can
be  Beneficial  to  the  Innate  Immunity  through
Aerobic  Exercises
Dilvani  Oliveira  Santos1,2*,  Arthur  Willkomm  Kazniakowski3,  Anna
Fernandes Silva Chagas do Nascimento1,  Laura Brandão Martins4,  Sourou
Credo Francisco Justus Zinsou4, Rodolfo Avila5 and Maria Elena Samar6

1  Postgraduate  Program  in  Applied  Microbiology  and  Parasitology  of  the  University  Federal
Fluminense (UFF), Niterói, Rio de Janeiro, Brazil
2  Postgraduate  Program in  Sciences  and  Biotechnology  of  the  University  Federal  Fluminense
(UFF), Niterói, Rio de Janeiro, Brazil
3 Faculty of Pharmacy, University Federal Fluminense (UFF), Niterói, Rio de Janeiro, Brazil
4 Biomedical Institute, University Federal Fluminense (UFF), Niterói, Rio de Janeiro, Brazil
5 Department of Cell Biology and Histology, Faculty of Medical Sciences, National University of
Cordoba, Cordoba, Argentina
6  Department of Oral Biology, Faculty of Dentistry, National University of Cordoba, Cordoba,
Argentina

Abstract:  Mitochondria  are  highly  relevant  organelles  with  regard  to  their  unique
function  in  generating  energy  and  contributing  to  metabolism  within  the  cell.
Furthermore,  recent  studies  suggest  that  they might  have an influence on the innate
immune and inflammatory responses, thus affecting antiviral immunity (as example:
Zika virus (ZIKV), hepatitis C virus (HCV), dengue virus and SARS-CoV-2 virus) and
antibacterial immunity as well (Streptococcus pneumoniae, Mycobacterium leprae and
Mycobacterium tuberculosis). Therefore, this chapter aims at bringing a relevant debate
about the role of mitochondria and their multifunctional capacity. We intend to discuss
the  complexity  of  mitochondrial  metabolism,  especially  during  aerobic  physical
exercises, which causes the modulation of the gene expression of proteins that lead to
mitochondrial  proliferation  and,  thus,  promote  health.  In  addition,  considering  the
injuries  caused  by  hypoxia,  this  chapter  also  stresses  the  enormous  potential  of
mitochondria  to  enable  the  survival  of  eukaryotic  cells  by  allowing  them to  turn  to
aerobic respiration, as shown in previous scientific studies. In conclusion, this chapter
points  out  the  importance  of  mitochondrial  biogenesis  (both natural and stimulated

* Corresponding author Dilvani Oliveira Santos: Postgraduate Program in Applied Microbiology and
Parasitology of the University Federal Fluminense (UFF), Niterói, RJ, Brazil and Postgraduate Program in
Science and Biotechnology (PPBI)/Institute of Biology; Federal Fluminense University (UFF), Niterói,
Rio de Janeiro, Brazil; Tel: 55(21)2629-2552;
E-mails: santosdilvani2@gmail.com and dilvanioliveira@id.uff.br

Dilvani Oliveira Santos & Paulo Renato Zuquim Antas (Eds.)
All rights reserved-© 2022 Bentham Science Publishers
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biogenesis  by  aerobic  exercise)  and  the  benefits  this  organelle  brings  to  the  health,
arguing that they go far beyond cellular respiration and oxidative phosphorylation.

1. MITOCHONDRIAL BIOGENESIS

The way in which life emerged on Earth is the subject of study by many scientists
throughout the history of science. Assumptions and theories have been elaborated
to suggest how cellular metabolism developed [1]. Despite those scientific efforts,
the origin of the eukaryotic cell remains unknown. Nevertheless, it is known that
there  are  two  main  cell  types:  the  prokaryote  and  the  eukaryote  cell.  The
prokaryote  cell  is  a  simpler  example  consisting of  cytoplasm,  genetic  material,
cell wall, plasma membrane, cilia, flagella, ribosome and plasmid. The eukaryotic
cell has some components similar to the prokaryotic cell, while it has additional
components such as mitochondria, Golgi apparatus, nucleus, lysosomes, secretion
vesicles,  endoplasmic  reticulum and peroxisomes (which can be  found in  most
eukaryotic cells). However, glyoxysomes, chloroplasts, chlorophylls and the cell
wall  are  present  only  in  the  plant  cell.  Together,  these  peculiarities  make  the
eukaryotic  cell  (Fig.  1)  a  very  complex  system.  In  order  to  understand  the
complexity of these cells, it is necessary to have a closer look at relevant events in
tissues, organs, systems and organisms.

The  energetic  role  of  mitochondria  is  intimately  linked  to  the  origin  of  the
eukaryotic cell and their development in complex organisms. Comprehension of
the  evolutionary  origin  of  mitochondria  is  essential  for  understanding  any
biological structure or process specially involved in birth, aging-related diseases
and cell death. In this context, it is relevant to begin this review by introducing the
meaning of “Biogenesis”, mentioned by Attardi et al. [2] and Leaver et al. [3] to
refer  to  the  production  of  new  mitochondria  inside  the  cells.  According  to  the
review of Nisoli  et  al.  [4],  mitochondrial  division occurs concurrently with the
nuclear  division.  Despite  the  kinetics  of  mitochondrial  division  not  coinciding
with cell proliferation all the time, it is verified that, in muscle cells, mitochondria
divide  during  both  events:  myogenesis  and  physical  exercise.  Furthermore,
mitochondria can also duplicate after some special circumstances, such as under
benzodiazepine treatment, inhibitors of oxidative phosphorylation, phorbol esters
and calcium modulation [4].

Keywords:  Aerobic  exercises,  Immunoinflammatory  response,  Mitochondrial
biogenesis.



An Auspicious Bacterium Frontiers in Inflammation, Vol. 3   3

The scientist Lynn Margulis was the main proponent of the endosymbiotic theory
of the mitochondria’s evolution. She thoroughly changed the understanding of the
evolution of nuclear cells by proposing that it was the result of symbiotic fusions
of bacteria. Throughout her career, Margulis's research has not received due credit
in the scientific community and her article entitled “On the Origin of Mitosing
Cells”  appeared  in  1967,  after  being  rejected  by  about  fifteen  journals  [5].
Margulis defended the theory that cellular organelles, such as mitochondria and
chloroplasts, had been independent bacteria, and this knowledge was ignored for
another  decade,  only  being  accepted  after  robust  genetic  evidence  [6,  7].
Anderson  et  al.  [8]  reported  that  complete  genomic  sequences  for  many
mitochondria,  as  well  as  for  some bacteria,  were  a  consistent  demonstration  to
explain  the  origin  of  mitochondria.  In  addition,  they  argued  that  phylogenetic
reconstructions  with  genes  encoding  proteins  active  in  metabolism  and  energy
translation  were  the  confirmation  of  the  simplest  version  of  the  endosymbiosis
hypothesis.  These  same  authors  warned  that  the  hypotheses  of  hydrogen  and
syntrophy for the origin of the mitochondria, however, were not yet completely
clear,  but  that  future  research  in  this  direction  would  probably  show  that  the
evolution  of  hydrogenosomes  could  be  related  to  that  of  mitochondria.
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Fig. (1). Eukaryotic cell and its organelles. Note that mitochondria are the only intracellular organelle with
DNA inside, besides the nucleus.
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Abstract: Leprosy is a chronic infectious disease caused by Mycobacterium leprae or
Mycobacterium  lepromatosis.  Dermal  tissue  macrophages  and  Schwann  cells  from
peripheral nerves are the main host cells for the pathogen. The clinical manifestations
of this disease depend basically on the host’s immune response to M. leprae. However,
genes relevant to both innate and adaptive immune responses also seem to contribute to
leprosy acquisition and to determine its clinical forms. The crucial clinical problem in
leprosy  is  represented  by  episodes  of  intense  inflammation.  They  represent  a  major
problem  in  the  course  of  leprosy,  as  reactional  episodes  can  be  responsible  for
permanent  damage  to  nerves,  causing  deformities.  Among  bacterial  pathogens,
infection of peripheral nerves is a unique property of M. leprae. The intensity of the
inflammatory reaction in response to tissue damage caused by pathogens is strongly
associated  with  mitochondria  and  their  respective  mitochondrial  DNA,  since  this
organelle  and  its  constituents  act  as  potent  ligands  for  several  innate  immunity
receptors. In this chapter, we will first describe the general context of leprosy and its
various  clinical  forms,  diagnosis  and  treatment,  highlighting  episodes  of  acute
inflammatory response during this pathology and, finally, we will outline some cellular
mechanisms  that  lead  to  neurodegenerative  consequences  in  leprosy.  The  literature
partially attributes these to cytokines and, mainly, to TNF-α, as well as to changes in
mitochondrial  dynamics,  especially  mitochondrial  DNA,  when  mitochondrial
dysfunction  seems  to  be  involved  in  the  pathogenesis  of  neuritis  in  leprosy.
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1. LEPROSY-AN OVERVIEW

Leprosy,  or  Hansen’s  disease  (HD),  is  a  chronic  infectious  disease  caused  by
Mycobacterium leprae  or  M. lepromatosis,  with neural,  skin,  and upper airway
mucosal  involvement.  Its  transmission  mechanism  is  still  unknown,  but  it  is
speculated that it probably occurs from person to person through the inhalation of
bacilli present in upper airways secretions [1, 2]. This may occur in the prolonged
contact between susceptible and genetically predisposed individuals and untreated
multibacillary leprosy patients [3].  Thus, the nasal mucosa is the main route of
entry  or  exit  of  M.  leprae  [1].  Humans  are  the  main  host  and  reservoir  of  M.
leprae,  but  it  has  also  rarely  been  found  in  chimpanzees,  sooty  mangabey
monkeys, cynomolgus macaques and red squirrels. It is also present in about 15%
of wild nine-banded armadillos in the southern United States. Armadillos develop
multibacillary infection and are the only verified environmental reservoir of M.
leprae [4].

Leprosy is the oldest documented disease in human history and, still today, over
200,000 new cases are still reported worldwide each year, despite the employment
of  multidrug  therapy  (MDT)  by  the  Word  Health  Organization  (WHO).  The
incidence  of  leprosy,  as  well  as  tuberculosis,  malaria,  Chagas  disease  and
leishmaniasis,  has  become  a  parameter  for  differentiating  social  conditions
between countries. However, the behavior of several endemic diseases in Brazil
and  other  countries  cannot  be  fully  explained  by  the  stages  of  economic
development,  which  led  to  the  role  of  genetic  factors  gaining  prominence  in
scientific research along with the distribution of the disease in clusters, families or
communities with a common genetic background. However, it is now known that,
despite  advances  in  treatment  and  prospects  for  leprosy  patients  since  the
introduction of MDT three decades ago, the global incidence of leprosy remains
high in countries such as India and Brazil.

Research focusing on the link between human genetics and leprosy susceptibility
is  extremely  useful  for  further  elucidating  how  and  why  people  develop  this
disease [1, 6]. Moreover, there are reports that vitamin D (VDR, a gen receptor on
chromosome 12q12) may be associated with susceptibility to leprosy, as well as a
variety  of  factors  associated with  innate  and adaptive immunity  [7  -  11].  Also,
genetic regulation of the innate immune response in leprosy, as demonstrated by
different  polymorphisms of  the NOD2 gene,  has been associated not  only with
increased susceptibility to this illness but also with inflammatory manifestations
episodes [12, 13].

Furthermore,  Polycarpou  &  Lockwood  and  Mi  et  al.  [12,  14]  mentioned  a
fundamental role of the innate immune system in simultaneous dysregulation of
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the inflammatory response during reactional episodes in leprosy, due to genetic
variability in genetic polymorphisms associated with Toll-like receptors. In 2012,
leprosy  ranked  sixth  on  the  World  Health  Organization’s  neglected  tropical
diseases  scale  [15].  In  2015,  it  was  still  part  of  the  list,  assuming,  the  tenth
position. Diseases such as AIDS, tuberculosis and malaria no longer appeared in
the first positions in this list in 2015, having been replaced with other pathologies,
such  as:  Buruli  ulcer,  cysticercosis,  dengue,  Guinea  worm  disease,
echinococcosis, fascioliasis and sleep disease [16]. In other words, although there
is a fluctuation in the order of occurrence of these pathologies worldwide, leprosy
continues to occupy a position among the pathologies with the highest incidence
and public health problem in some regions around the world, according to WHO
[16].

More up-to-date data provided by WHO also reports that, in 2019 [17], a total of
202,185 new cases of leprosy were detected globally. Brazil, India and Indonesia
are  at  the  top  of  this  list  with  more  than  10,000  cases  each,  while  13  other
countries—Bangladesh,  Democratic  Republic  of  Congo,  Ethiopia,  Madagascar,
Mozambique, Myanmar, Nepal, Nigeria, Philippines, Somalia, North Sudan, Sri
Lanka and United Republic of Tanzania—reported 1,000 to 10,000 cases each [5].
To  sum  up,  leprosy  is  an  ancient  and  deforming  disease  caused  by  M.  leprae,
which needs continued vigilance, especially when it comes to the detection and
treatment of undiagnosed cases.

2. CLINICAL FORMS OF LEPROSY

Humans are the main reservoir of leprosy, while, in the Americas, the armadillo is
also  a  significant  one.  Approximately  95%  of  the  population  is  immune  to  M.
leprae and does not become sick when infected by it, although there are no tools
to  detect  subclinical  infection.  Among  those  who  fall  ill,  what  determines  the
evolution  of  the  disease  is  the  patient’s  own  immune  response  and  genetic
susceptibility  [1,  18,  19].  The  spectral  pathology  of  leprosy  can  be  diagnosed
using two coexisting classification systems. According to Ridley & Jopling [20],
leprosy  is  characterized  by  five  different  types  of  clinical  manifestations:
tuberculoid  (TT),  borderline  tuberculoid  (BT),  borderline  (BB),  borderline
lepromatous  (BL)  and  lepromatous  (LL)  (Fig.  1  and  Table  1).  Indeterminate
leprosy is considered the first manifestation of the disease, and, after a variable
period  of  time,  it  evolves  to  cure  or  into  one  of  the  clinical  forms  mentioned
above [2]. The classification proposed by WHO is based on the number of lesions
and  determines  the  treatment  regimen  [5,  17].  According  to  WHO,  individuals
with more than five lesions are classified as multibacillary (MB) patients, whereas
individuals with less than five lesions are classified as paucibacillary (PB) patients
(Table 1).
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Abstract: Tuberculosis (TB) is a contagious infectious disease that is a major cause of
morbidity, being one of the top 10 causes of death worldwide, and the leading one from
a single infectious agent.  Also called “White Plague” in the past,  TB is  an airborne
disease, propagated when multibacillary people spread M. tuberculosis by coughing or
sneezing. The disease typically affects the lungs (pulmonary TB), but can also affect
other  sites  (extrapulmonary  TB).  TB  is  curable  and  preventable:  about  85%  of  the
people who develop the disease may be successfully treated with a 6-month multidrug
regimen. The treatment has the additional benefit of preventing onward transmission.

Macrophages are the first host cell to get in contact with M. tuberculosis.  They also
have  important  effector  functions,  regardless  of  whether  the  infection  evolves  to  a
chronic  or  latent  form.  However,  M.  tuberculosis  evades  host  cell  innate  defense
mechanisms,  manipulates  organelles  and cell  metabolism,  as  well  as  host  cell  death
pathways. This complex interaction between the host cell and the bacillus determines
the  outcome of  the  infection.  In  this  context,  mitochondria  and mitochondrial  DNA
(mtDNA) contribute to triggering cell death by necrosis. However, excessive necrosis
may lead to tissue damage,  which disrupts  granulomas and benefits  M. tuberculosis
transmission. We intend to revisit the major aspects of this intricated and multifaceted
interface  between  the  host  immune  cell  and  M.  tuberculosis  and  discuss  how
mitochondria  are  the  crux  of  the  matter.
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1. TUBERCULOSIS-AN OVERVIEW

Tuberculosis is an ancient, contagious and chronic infectious disease caused by
Mycobacterium  tuberculosis,  or  Koch’s  bacillus.  M.  tuberculosis  may  infect
human  lungs  when  a  pulmonary  environment  is  favorable  to  its  survival,  as  it
takes advantage of environmental changes. The bacillary proliferation forms lung
colonies, and, if not controlled, part of the bacilli may migrate to other areas of
the respiratory tract. Consequently, TB can spread via  bronchogenic, lymphatic
and hematogenous pathways [1].

There is a gross estimate that, within 24 hours, an infected person may spread up
to 3.5 million tuberculosis bacilli, in the form of microscopic droplets eliminated
through coughing, sneezing or speaking. These tiny particles may remain in the
air for roughly eight hours and deposit on various objects, clothing, and even dust.
Occasionally, the smallest droplets can be inhaled by other individuals, and, if it is
not taken by the mucociliary clearance in the airways,  the bacilli  can reach the
alveoli,  becoming  potentially  infective. In  past  decades,  a  common  route  of
M.  bovis  infection,  a  bacillus  similar  to  M.  tuberculosis  causing  bovine  tuber-
culosis,  was  the  ingestion  of  contaminated  milk  and  meat.  Once  inhaled  or
ingested,  the  bacillus  remains  inactive  for  about  three  days.

Afterwards, the bacillus starts its 18-hour self-renewing cycle. In this phase, the
innate  immune  defense  mechanism  is  fully  activated  [1].  The  M.  tuberculosis
infection  produces  an  initial  inflammatory  lesion,  called  Ghon’s  complex.
Between  the  third  and  the  eighth  week  of  infection,  the  bacilli  have  already
formed a lung colony capable of producing an inflammatory reaction that triggers
the  destructive  process  of  the  lung  parenchyma.  Additionally,  the  bacilli  may
propagate  through  lymphatic  vessels  to  adjacent  lymph  nodes,  establishing  the
primary complex of the infection. The initiation of the immune response creates a
specific  nodule  or  tubercle  granuloma.  Then,  the  infection  may  progress  to
chronic  tuberculosis  or,  more  rarely,  to  acute  progressive  tuberculosis.  The
infection  may also  remain  dormant,  which  allows  latent  bacilli  to  resume their
destructive  action  years  after  that  initial  event.  Strikingly,  humans  present
significant  resistance  against  this  emerging  aggression  (roughly  90%  of  the
population), and the most frequent outcome is the regression of the pathological
process and spontaneous cure, with consequent recovery, scarring, or calcification
of tissue damage [1]. However, sterilizing immunity has not been described in the
case of human tuberculosis.

It is worth mentioning that the factors that determine the course of tuberculosis
are still not fully understood. In addition to the contagion by M. tuberculosis, both
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genetic  predisposition  and  individual  immune  response  are  reported  to  be
probable  causes  that  trigger  TB  [1].

The clinical features presented by tuberculosis are extremely complex, due to the
multiplicity of symptoms that can pose a challenge to diagnosing it. In the initial
phase,  the  infection  is  almost  always  silent  and  characterized  by  mild
manifestations. It is also difficult to be detected by image techniques, such as X-
ray. The evolution of the severe TB disease is described by the appearance of high
fever  (symptom  that  already  mirrors  the  intense  systemic  inflammatory
manifestation), accompanied by night sweats, persistent weight loss, chest pain, a
cough,  increased  expectoration,  tiredness  and  dyspnea.  Later,  hemoptysis
characterizes  a  serious  condition,  especially  when  associated  with  other
symptoms.  The  definitive  tuberculosis  diagnosis  is  made  mainly  through  the
laboratory  analysis  of  sputum,  either  culture  or  smear,  although  pulmonary
images,  either  X-ray  or  tomography,  and  tuberculin  skin  test  are  auxiliary
methods  employed  [1].

Interestingly, tuberculosis and leprosy are caused by different etiological agents
belonging to the same genus, wrongly leading to the idea that both mycobacteria
established an antagonistic relationship due to their immunological competition.
In other words, it is broadly debated whether tuberculosis inhibits the occurrence
of leprosy, a phenomenon that would potentially explain a change in the European
epidemiological profile (Grmek, 1983 APUD [1]).

Studies of human skeletons have shown that tuberculosis is an old disease, having
been affecting humans for thousands of years. Its origin remained unknown until
24th  of  March,  1882,  when  the  German  doctor  Robert  Koch  announced  his
discovery  of  the  bacillus  and  its  disease  [2,  3].

Right  after  having  identified  the  etiological  agent  of  TB,  Koch  examined  the
tissues of some animal varieties and phlegm of contaminated individuals that had
had  tuberculosis  infection.  The  confirmation  of  the  presence  of  the  bacillus
allowed Koch to develop the culture procedures for isolation of the bacillus, and
also  for  inoculating  the  material  in  a  variety  of  animals,  such  as  guinea  pigs,
hamsters, rabbits, monkeys, dogs, cats and chickens. In this interim, Koch attested
the  uniqueness  of  the  pathologies  to  differentiate  several  diseases  from
tuberculosis  [1].

According to Koch, tuberculosis is a pathology caused exclusively by the bacillus
that  received his  name.  It  affects  both humans and animals.  Both eliminate the
bacillus through sneezing and phlegm. Despite the contagious nature of TB, Koch
was cautious in disqualifying the hereditary condition of the disease, suggesting
the need for further studies on the phenomenon [1].

Frontiers in Inflammation, Vol. 3
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Abstract: Streptococcus pneumoniae, or pneumococcus, is one of the leading causes of
morbidity  and  mortality  associated  with  lower  respiratory  infections.  Usually,  it
colonizes  asymptomatically  the  human upper  respiratory  tract,  but  it  can  eventually
migrate  to  other  body  sites  to  cause  invasive  and  non-invasive  diseases.  The
polysaccharide capsule (CPS) is the main pneumococcal virulence factor and it is used
in the currently available vaccines against this pathogen. However, novel therapeutic
and  prevention  approaches  are  urgently  needed  to  target  emergent  non-vaccine
serotypes,  especially  those  associated  with  antimicrobial  resistance.  Besides  CPS,
pneumococcus has several other virulence factors that contribute to its pathogenesis,
including surface proteins (e.g., CbpA), the pore-forming toxin pneumolysin (PLY), as
well  as  enzymes  that  produce  hydrogen  peroxide  (H2O2).  Here,  we  describe  the
pathogenesis  of  pneumococcal  infections  as  well  as  host  cell  molecular  signaling,
focusing on major molecules responsible for host cell invasion and translocation, and
disturbance  of  mitochondrial  function,  resulting  in  mitochondrial  DNA  (mtDNA)
leakage,  inflammation  and  tissue  damage.  Understanding  molecular  and  immuno-
inflammatory mechanisms underlying pathogenesis and pathogen-host cell interactions
is crucial to developing novel approaches to prevent and treat pneumococcal diseases.
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1. INTRODUCTION

Streptococcus pneumoniae, also referred to as pneumococcus, is a gram-positive
diplococcus-shaped human pathogen and a  leading agent  of  infectious  diseases
worldwide. In 2016, S. pneumoniae was the most common cause of morbidity and
mortality  from  lower  respiratory  infections  globally,  contributing  to  over
1,189,937 deaths [1]. Pneumococcus colonizes the upper respiratory tract of 20-
80% of healthy children, and of 5-35% of healthy adults. Colonization is usually
asymptomatic,  and  young  children  are  considered  the  main  reservoir  of
pneumococcus. On the other hand, asymptomatic colonization is also considered a
prerequisite for the establishment of invasive pneumococcal disease (IPD). Risk
groups  for  developing  severe  pneumococcal  disease  include  young  children
(especially  <  2  years  old),  elderly  adults  (>  65  years  old),  and
immunocompromised  individuals  [2  -  5].  The  polysaccharide  capsule  (CPS)  is
considered the main pneumococcal virulence factor, protecting the bacteria from
opsonophagocytosis  [6].  The  pneumococcal  CPS  2  is  chemically  and
antigenically diverse, allowing for the classification of pneumococcal strains into
around 100 different  capsular  types,  or  serotypes [7].  For  all  serotypes,  CPS is
responsible  for  stimulating  the  production  of  specific  antibodies,  and  for  this
reason, currently available pneumococcal conjugate vaccines (PCV) are based on
this target. However, current PCVs provide protection against only 10 (PCV10) or
13  (PCV13)  capsular  types  among  those  identified  so  far.  Reduction  in  the
occurrence  of  serotypes  targeted  by  PCVs  has  led  to  a  great  reduction  in  IPD
cases  and  herd  protection,  but  it  has  also  contributed  to  the  phenomenon  of
serotype  replacement.  Serotype  replacement  consists  of  the  emergence  of
pneumococcal disease associated with non-vaccine serotypes, and can become a
serious problem for the control of the disease.

Pneumococcus  has  also  been  listed  as  one  of  the  current  antibiotic-resistance
threats, and an increase in antimicrobial resistance among pneumococci, including
those  belonging  to  non-vaccine  serotypes,  has  raised  concerns  about  the
effectiveness of empiric antimicrobial therapy for pneumococcal disease [8, 9].

To  overcome  these  issues  related  to  the  current  CPS-based  vaccines  and  the
increasing  antimicrobial  resistance  rates,  new  vaccines  that  can  provide
immunological  protection  regardless  of  serotype  and/or  novel  treatment
approaches  that  can  cover  antibiotic-resistant  strains  need  to  be  developed.

2.  PNEUMOCOCCAL  PATHOGENESIS:  VIRULENCE  FACTORS,
INFLAMMATION AND MITOCHONDRIAL DNA LEAKAGE

Streptococcus  pneumoniae  colonizes  the  upper  respiratory  tract,  mainly  the
nasopharynx,  from  where  it  can  spread  to  adjacent  sites  or  more  distant
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organs/systems,  including  middle  ear,  lungs,  bloodstream,  spleen,  heart  and
central nervous system (CNS), among others. Although traditionally considered
an extracellular pathogen, it can also assume an intracellular lifestyle. This ability
may help the microorganism evade some defense mechanisms and spread within
the human host.

Pneumococcus has various virulence factors that contribute to its adherence to the
airway  epithelium,  evasion  of  host  immune  defenses,  tissue  penetration,  and
invasion and survival  within  host  cells.  These  factors  include  a  CPS,  the  pore-
forming toxin pneumolysin (PLY), several surface proteins (e.g., choline binding
proteins, metalloproteases, neuraminidases, pili, pneumococcal surface protein A
etc.), as well as the pyruvate oxidase SpxB and the α-glycerophosphate oxidase
GlpO,  enzymes  that  produce  hydrogen  peroxide  (H2O2).  Many  pneumococcal
virulence  factors  directly  or  indirectly  damage  host  tissues  or  induce  host
inflammatory  responses,  facilitating  tissue  penetration,  but  two  of  them  are  of
great importance: the choline binding protein A (CbpA) and PLY [10, 11].

Choline  binding  proteins  (Cbp)  are  a  family  of  proteins  that  are  noncovalently
attached to the phosphorylcholine (ChoP) domain on the pneumococcal teichoic
acid and has several functions. CbpA, also called pneumococcal surface protein C
(PspC),  is  one  of  the  major  pneumococcal  adhesins,  responsible  for  binding
pneumococci  to  different  host  cells;  it  has  specific  motifs  for  binding  to  the
polymeric immunoglobulin receptor (pIgR) on nasopharyngeal and lung epithelial
cells  and  the  laminin  receptor  (LR)  on  endothelial  cells,  promoting  adherence,
endocytosis and translocation across epithelial and endothelial barriers [12].

PLY is a pore-forming toxin that is released during bacterial autolysis, although
more recent evidence suggest  that  PLY may also be exposed on pneumococcal
surface [13, 14]. PLY has a wide range of mechanisms of action, playing a pivotal
role  in  the  pathogenesis  of  pneumococcal  infections.  It  induces  extensive  pro-
inflammatory effects,  directly lyses or induces apoptosis of different host cells,
inhibits  mucociliary  clearance  and  separates  tight  junctions  of  the  human
respiratory  epithelial  cells  [10].

In the lungs, CbpA binds to the polymeric immunoglobulin receptor (pIgR) on the
alveolar  epithelium,  whereas  PCho-bearing  teichoic  acid  binds  to  the  platelet
activating  factor  receptor  (PAFR),  promoting  firm  adherence,  followed  by
replication  and  initiation  of  host  damage  responses.  Ultimately,  it  leads  to  the
development  of  lobar  pneumonia.  Different  cell  wall  pathogen-associated
molecular  patterns  (PAMPs)  and  other  molecules  of  S.  pneumoniae  induce
signaling through the Tolllike receptor  (TLR) pathways,  such as  peptidoglycan
components by TLR2 and PLY by TLR4. As a result, the nuclear factor kappa-B
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Abstract:  Zika virus (ZIKV) is  a  member of  the Flavivirus  family.  ZIKV infection
ranges  from  asymptomatic  to  a  mild  disease  in  adults.  However,  in  2015,  ZIKV
infection  became  a  public  health  emergency  in  the  Americas  associated  with
neurological  alterations  such  as  Guillain-Barré  syndrome  (GBS)  in  adults  and
congenital  zika  syndrome  (CZS).  By  blocking  type  I  IFN  interferon  signaling
pathways,  ZIKV  evades  the  immune  system  and  infects  cells  expressing  the  T  cell
immunoglobulin  mucin  domain-1  (TIM-1)  and  TAM  (Tyro3,  AXL,  and  Mer)
receptors,  such  as  neural  progenitor  cells.  Moreover,  ZIKV  seems  to  orchestrate  a
process of astrocytic hypoxia that leads to the production of reactive oxygen species
(ROS), mitochondrial DNA (mtDNA) fragmentation, and apoptosis. In recent decades,
the  active  participation  of  mitochondria  in  the  immuno-inflammatory  response  has
been reported in several pathologies. In this context, mtDNA seems to have an essential
role in triggering the innate immune response by activating inflammasomes, activating
the  cyclic  GMP–AMP  synthase  (cGAS)–stimulator  of  interferon  genes  (STING)
pathway, and also activating toll-like receptors that lead to IFN production and viral
clearance.  Here,  we  present  an  overview  of  some  mechanisms  of  inflammatory
response present in ZIKV infection, which contributes to mitochondrial dysfunction,
mtDNA release, and tissue damage.

Keywords: Inflammation, Mitochondrial DNA, Neuroinflammation, Zika virus.

1. INTRODUCING ZIKA VIRUS (ZIKV)

Zika virus  (ZIKV) belongs  to  the  Flaviviridae  family,  Flavivirus  genus,  which
includes Dengue virus, Yellow Fever, West Nile virus, St. Louis encephalitis, and
Japanese  encephalitis.  ZIKV  was isolated from sentinel rhesus monkeys in 1947
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in  the  Zika  forest  in  Uganda  to  study  the  wild  cycle  of  yellow  fever.
Subsequently, this pathogen was isolated in Ae. Africanus mosquito, but the first
description of human infection occurred in 1954, in serum samples collected from
West African inhabitants [1, 2].

ZIKV  presents  icosahedral  symmetry  and  a  genome  consisting  of  a  single
positive-strand  RNA  encoding  a  single  polyprotein  (Fig.  1).  This  polyprotein
encodes  three  structural  proteins  (capsid,  membrane,  and  envelope)  and  seven
non-structural  proteins  (NS1,  NS2A,  NS2B,  NS3,  NS4A,  NS4B  e  NS5).  The
structural membrane protein plays a vital role in the fusion process between the
viral  envelope  and  the  host  membrane,  while  the  viral  envelope  protein  is
involved in receptor binding, membrane fusion, and viral assembly, in addition to
being the main target of neutralizing antibodies [3]. Non-structural proteins are
involved in essential processes such as evasion of the virus to the host's immune
system  and  mechanism  of  viral  replication  [4].  Genotypic  analysis  shows  that
ZIKV  has  only  one  serotype,  with  two  distinct  strains,  Asian  (P6-740)  and
African  (MR766)  [5].

Fig.  (1).   Schematic  Zika  virus  (ZIKV)  structure  and  viral  polyproteins.  As  described  above,  the  main
structural compartments of ZIKV are composed of an icosahedral capsid (C), an envelope protein (E dimer),
membrane  protein  (M),  and  a  genome  consisting  of  single-strand  positive-sense  RNA (+ssRNA).  At  the
bottom of the figure, structural (C, E, prM) and non-structural proteins (NS1-NS5) are presented.

The transmission occurs mainly through the bite of the Aedes mosquitoes genus;
therefore, ZIKV is classified as an arbovirus (arthropod-borne virus). In addition,
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another  non-vector-mediated  transmission  has  been  described  in  the  literature,
such as blood transfusion [6], sexual transmission [7], and vertical transmission [8
- 10]. In addition, the viral genome was detected in different body fluids such as
urine [11], saliva [12], breast milk [13], and vaginal fluid [14].

The extrinsic incubation stage is the period between the occurrence of the blood
meal with the infected blood and becoming infectious. This period has an average
of ten days and may vary from 3 to 12 days. After that period, the mosquito is
able  to  transmit  the  virus  to  a  susceptible  host  [15  -  17].  ZIKV  can  infect
fibroblasts, keratinocytes, Langerhans cells, monocytes, and macrophages present
at the inoculation site [18, 19]. Also, neural progenitor cells (NPC) [20], radial
glial cells [21], astrocytes [22], microglia [23], and trophoblasts cells [24, 25] can
also be infected by ZIKV. It is known that the virus is able to bind to TIM-1 and
TAM  receptor  families  (Tyro3  and  AXL)  and  to  DC-SIGN  receptors  that  are
expressed  on  the  plasma  membrane  of  host  cells  [26].  Radial  glia,  astrocytes,
microglia, and endothelial cells showed high expression of AXL receptors [27].
Interestingly, studies had described that expression of AXL receptors could confer
vulnerability to ZIKV infection [26, 28, 29].

ZIKV infection is characterized by asymptomatic to mild disease. Symptomatic
cases  occur  in  27-50% of  infected  individuals  [30].  The  clinical  symptoms are
similar to other arboviruses such as Dengue and Chikungunya virus, characterized
by a rash (located frequently on the neck, torso and limbs, palms and soles), mild
to moderate fever, non-purulent conjunctivitis, and arthralgia, and there may be
retro-ocular  pain,  myalgia  between  other  non-specific  symptoms.  The
symptomatic condition usually persists for 3-7 days, except for arthralgia, which
may keep for some weeks [31].

The first description of ZIKV infection in humans was in 1954, and the infection
did  not  appear  to  induce  chronic  symptoms  or  impact  pregnant  women  [32].
However,  in  2015,  the  first  cases  of  ZIKV  infection  were  confirmed  in
northeastern Brazil, and microcephaly in newborns was associated with infection
during  pregnancy  [33].  The  S139N  mutation  in  the  Asian  strain  has  been
described  as  being  responsible  for  the  increase  in  virulence,  neurotropism,  and
apoptosis  in  human  neural  progenitor  cells  and  is  associated  with  the  cases  of
microcephaly related [34].

The vertical transmission has significant impacts on pregnant women with severe
clinical abnormalities that usually affect child development, defined as Congenital
Zika  Syndrome  (CZS).  The  causes  of  the  development  of  CZS  in  only  a  few
infants exposed during the embryonic stage are not yet evident in the literature.
However, the literature suggests that the trimester in which the pregnant woman is
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CHAPTER 6

Mitochondrial  Dysfunction  and  the  Immuno-
inflammatory  Response  Induced  by  SARS-CoV-2
Infection:  the  Role  of  Mitochondrial  DNA
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Abstract: In 2019, a new coronavirus (SARS-CoV-2) was identified in China and had
rapidly  spread  across  the  world.  Its  associated  disease,  coronavirus  disease  2019
(COVID-19),  has  led  to  millions  of  deaths  in  2020-2021.  Studies  have  been
demonstrating that SARS-CoV-2 induces a systemic hyperinflammatory state, which is
associated with a decreased cytotoxic capacity and impaired Type I interferon (IFN)
response.  Moreover,  iron  dysfunction/hyperferritinemia  in  association  with
hyperinflammation leads to oxidative stress and apoptosis. Altogether, these cellular
events  contribute  to  COVID-19  severity.  In  viral  infections,  systemic  and  cellular
alterations  can  promote  mitochondrial  dysfunction.  In  this  regard,  dysfunctional
mitochondria can trigger the immune response, leading to the release of mitochondrial
damage-associated  molecular  patterns,  including  mitochondrial  DNA (mtDNA)  and
reactive oxygen species (mtROS). mtDNA is known to promote a beneficial antiviral
response;  however,  sustained  nocive  stimuli,  such  as  SARS-CoV-2,  could  turn  this
response into oxidative stress and exacerbated inflammation leading to tissue injury. In
addition,  mtDNA  can  be  released  into  the  extracellular  space  and  induce  a
proinflammatory  state  in  neighboring  cells.  Here,  we  highlight  the  potential  role  of
mtDNA as an important marker of hyperinflammation in the progress of COVID-19.
Furthermore,  we  briefly  discuss  the  role  of  mtROS  and  its  interactions  with  the
mitochondrial  antiviral  signaling  (MAVS),  which  can  also  contribute  to  COVID-19
immunopathogenesis.

Keywords:  Coronavirus,  COVID-19,  Immune  response,  Inflammation,
Mitochondrial  DNA.
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1.  INTRODUCING  CORONAVIRUS  INFECTIOUS  DISEASE  2019
(COVID-19)

In December 2019, a substantial increase in pneumonia cases with an unknown
cause was observed in Wuhan, China [1, 2]. Genome sequencing was carried out,
and  the  severe  acute  respiratory  coronavirus  2  (SARS-CoV-2,  also  known  as
2019-nCoV) was identified as responsible for this new disease, which was further
called coronavirus disease 2019 (COVID-19) [3]. After the dramatic increase in
the number of cases in China, the virus promptly spread to other countries with a
very high impact in Europe and the United States [4, 5]. Subsequently, by March
11th 2020, the World Health Organization declared COVID-19 a pandemic [6].

Belonging to the Coronaviridae family, coronaviruses are enveloped viruses with
a single-stranded RNA of positive polarity as their genome. They can be found
among humans and animals and are mainly responsible for respiratory and enteric
diseases [7]. Before the 2002-2004 SARS-CoV outbreak in China, it was believed
that coronaviruses could not cause severe illness in humans. Not only the SARS-
CoV outbreak but also the Middle East respiratory syndrome (caused by MERS-
CoV) epidemics 10 years later proved that these viruses are relevant pathogens of
public health concern [8, 9]. Importantly, compared to SARS-CoV and MERS-
CoV, SARS-CoV-2 has spread more rapidly due to globalization, exceeding the
number of cases and deaths of previous epidemics [10].

The  major  route  of  SARS-CoV-2  transmission  is  through  viral  particles
eliminated in the event of coughing and/or sneezing [5, 11]. Studies have shown
that  direct  inoculation  of  viral  particles  through  manipulation  of  contaminated
surfaces  may  also  occur  since  SARS-CoV-2  can  remain  viable  in  different
surfaces such as plastic,  glass,  and stainless steel for various hours up to a few
days [12 - 14]. Transmission through aerosol is also relevant, mainly in hospital
settings, since various aerosol-generating proceedings such as bronchoscopy and
orotracheal  intubation  are  frequent  [14,  15].  Lastly,  studies  have  shown  that
SARS-CoV-2 can be present in the feces of infected patients, which highlights the
potential for fecal-oral transmission [16].

COVID-19 symptoms frequently appear after an incubation period of ~5.2 days
and can be classified as  mild,  moderate,  severe,  or  critical  illness  based on the
severity of symptoms [5]. In this context, the most common symptoms are fever,
cough, and shortness of breath [17, 18]. Occasionally, non-respiratory symptoms
such as palpitations, diarrhea, or headache can precede the respiratory symptoms
[19].  In  severe  cases,  patients  may  experience  dyspnea  and  decreased  oxygen
saturation,  while critical  cases present  with respiratory failure and septic shock
[19].
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In regards to COVID-19 severity, several factors can contribute to determining if
an individual infected with SARS-CoV-2 will develop a self-limited disease with
flu-like  symptoms  or  a  severe  case  requiring  intensive  care  and  mechanical
ventilation.  To  mention  a  few,  since  the  beginning  of  COVID-19  pandemic,
studies  have  been  showing  that  older  age  and  comorbidities  (such  as  diabetes,
chronic  obstructive  pulmonary  disease,  cardiovascular  disease,  and  cancer)  are
significantly associated with disease severity [20 - 23]. Moreover, an exacerbated
immune response in association with coagulation disorders is also associated with
poor  outcomes  [24  -  27].  Some  studies  also  demonstrate  that  the  frequency  of
severe  cases  is  higher  among  men  when  compared  to  women,  especially  for
elderly  patients  [24,  28].  As  expected,  high  SARS-CoV-2  viral  load  (and
inversely  lower  cycle  threshold  values)  has  also  been  observed  in  severe  cases
[29, 30]. Lastly, co-infections by various pathogens have been a cause of concern,
which  have  empirically  generated  some  treatment  protocols  including  broad-
spectrum antibiotics and antiparasitic drugs [31, 32]. Whether all these factors can
synergistically contribute to COVID-19 severity and lethality is  a question that
must be answered.

2. THE IMMUNOPATHOGENESIS OF COVID-19

It  is  known  that  SARS-CoV-2  can  induce  a  robust  immune  response.  Thus,
considering the urgent need to understand the mechanisms involved in COVID-19
immunopathogenesis,  and  subsequently  contribute  to  the  development  of  new
treatment and vaccine strategies, several studies have been performed in the last
two years to assess different aspects of the immuno-inflammatory response driven
by SARS-CoV-2 infection.

Firstly, the exacerbated release of circulating cytokines and chemokines leading to
a  sustained  state  of  hyperinflammation  has  been  extensively  reported  [24  -  26,
33].  This  immunological  event,  which  is  also  known  as  “cytokine  storm,”  is
promoted  by  the  uncontrolled  and  sustained  activation  of  T  cells  and
macrophages,  which  leads  to  high  serum  levels  of  proinflammatory  cytokines
such as IL-2, IL-6, IL-8, TNF-α, IL-1β; and chemokines such as MCP-1/CCL-2
and  IP-10/CXCL-10  [24,  33].  Elevations  in  circulating  levels  of  anti-
inflammatory  cytokines  such  as  IL-10  can  also  be  observed,  probably  as  an
attempt to suppress the inflammatory process [34, 35]. Notably, this phenomenon
of excessive cytokine release is accompanied by an increase in levels of acute-
phase proteins [36]. We and others have demonstrated that hyperferritinemia is an
important  and  early  indicator  of  inflammation  in  hospitalized  patients,  easily
accessible during clinical follow-up, and considered a relevant predictive factor
for  disease  severity  and  death  by  COVID-19  [37  -  39].  In  this  context,
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