# CHEMISTRY OF BIPYRAZOLES: SYNTHESIS AND APPLICATIONS

Kamal M. Dawood Ashraf A. Abbas

**Bentham Books** 

Authored by

## Kamal M. Dawood

&

## Ashraf A. Abbas

Department of Chemistry, Faculty of Science, Cairo University Giza 12613, Egypt

Authors: Kamal M. Dawood and Ashraf A. Abbas

ISBN (Online): 978-981-5051-75-9

ISBN (Print): 978-981-5051-76-6

ISBN (Paperback): 978-981-5051-77-3

© 2022, Bentham Books imprint.

Published by Bentham Science Publishers Pte. Ltd. Singapore. All Rights Reserved.

#### BENTHAM SCIENCE PUBLISHERS LTD.

#### End User License Agreement (for non-institutional, personal use)

This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the ebook/echapter/ejournal (**"Work"**). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: permission@benthamscience.net.

#### **Usage Rules:**

- 1. All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit the Work or make the Work available for others to do any of the same, in any form or by any means, in whole or in part, in each case without the prior written permission of Bentham Science Publishers, unless stated otherwise in this License Agreement.
- 2. You may download a copy of the Work on one occasion to one personal computer (including tablet, laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it.
- 3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights.

#### **Disclaimer:**

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the Work.

#### Limitation of Liability:

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

#### General:

<sup>1.</sup> Any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims) will be governed by and construed in accordance with the laws of Singapore. Each party agrees that the courts of the state of Singapore shall have exclusive jurisdiction to settle any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims).

<sup>2.</sup> Your rights under this License Agreement will automatically terminate without notice and without the

need for a court order if at any point you breach any terms of this License Agreement. In no event will any delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement constitute a waiver of any of its rights.

3. You acknowledge that you have read this License Agreement, and agree to be bound by its terms and conditions. To the extent that any other terms and conditions presented on any website of Bentham Science Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail.

Bentham Science Publishers Pte. Ltd. 80 Robinson Road #02-00 Singapore 068898 Singapore Email: subscriptions@benthamscience.net



#### CONTENTS

| REFACE                                                                                   |
|------------------------------------------------------------------------------------------|
| CONSENT FOR PUBLICATION                                                                  |
| CONFLICT OF INTEREST                                                                     |
| ACKNOWLEDGEMENT                                                                          |
| HAPTER 1 CHEMISTRY OF N,N- AND C,N-LINKED BIPYRAZOLE DERIVATIVE                          |
| 1. INTRODUCTION                                                                          |
| 2. SYNTHESIS OF BIPYRAZOLE SYSTEMS                                                       |
| 2.1. Synthesis of 1,1'-Bipyrazoles                                                       |
| 2.2. Synthesis of 1,3'-bipyrazoles                                                       |
| 2.3. Synthesis of 1,4'-bipyrazoles                                                       |
| CONCLUSION                                                                               |
| REFERENCES                                                                               |
| HAPTER 2 CHEMISTRY OF 3,3'-BIPYRAZOLE DERIVATIVES                                        |
| 1. INTRODUCTION                                                                          |
| 2. SYNTHESIS OF 3,3'-BIPYRAZOLE SYSTEMS                                                  |
| 2.1. From 1,3-Dipolar Cycloaddition Reactions                                            |
| 2.2. Via Cyclocondensation Reactions                                                     |
| 2.3. From Metal Catalyzed C-H Activation Reactions                                       |
| 3. REACTIONS OF 3,3'-BIPYRAZOLE DERIVATIVES                                              |
| 3.1. Nitration of 3,3'-Bipyrazole Derivatives                                            |
| 3.2. Miscellaneous Reactions                                                             |
| CONCLUSIONS                                                                              |
| REFERENCES                                                                               |
| HAPTER 3 CHEMISTRY OF 3.4'-BIPYRAZOLES                                                   |
| 1. INTRODUCTION                                                                          |
| 2. SYNTHESIS OF 3.4`-BIPYRAZOLE DERIVATIVES                                              |
| 2.1. From 1.3-dipolar Cycloaddition Reactions                                            |
| 2.2. From Cyclocondensation of 4-pyrazolylchalcones                                      |
| 2.3. From Cyclocondensation of 4-pyrazolyl-bifunctional Side-arm with Hydrazines         |
| 2.4. From C-C Cross Coupling Between Two Pyrazole Units                                  |
| CONCLUSION                                                                               |
| REFERENCES                                                                               |
| HADTED A CHEMISTRY OF A C DIDVDAZOLES                                                    |
| 1 INTRODUCTION                                                                           |
| <ul> <li>1. INTRODUCTION</li> <li>2. SVNTHESIS OF 4.4' RIPVDA7OLE DEDIVATIVES</li> </ul> |
| 2. STRINESIS OF 4,4 - DI TRAZOLE DERIVATIVES                                             |
| 2.1. From Differization of Pylazoles                                                     |
| 2.2. From Eurotionalized Purezoles                                                       |
| 2.3. FIOIII FUIICIONAIIZEU PYTAZOIES                                                     |
|                                                                                          |
|                                                                                          |
| HAPTER 5 APPLICATIONS OF BIPYRAZOLE DERIVATIVES                                          |
| 1. INTRODUCTION                                                                          |
| 2. APPLICATIONS OF BIPYRAZOLE DERIVATIVES                                                |
| 2.1. Bipyrazoles as Ligands                                                              |
| 2.2. Bipyrazoles in Synthesis of Polybipyrazoles                                         |
| 2.3. Bipyrazoles as Energetic Materials                                                  |
| 2.4. Bipyrazoles as Corrosion Inhibitors                                                 |

| 2.5. Bipyrazoles as Therapeutics                    | 121 |
|-----------------------------------------------------|-----|
| 2.6. Bipyrazoles in Metal–organic Frameworks (MOFs) | 122 |
| CONCLUSION                                          | 136 |
| REFERENCES                                          | 137 |
| SUBJECT INDEX                                       | 145 |

## PREFACE

Pyrazole is one of the most valuable nitrogen-based heterocycles and is incorporated in the constitution of a wide range of pharmaceuticals and agrochemicals. Direct connection of two pyrazole units produces six different bipyrazole skeletons that can be classified as i) N-N bond connected 1,1'-bipyrazoles; ii) C-N bond connected 1,3'- and 1,4'-bipyrazoles and iii) C-C bond connected 3,3'-, 3,4'- and 4,4'-bipyrazoles.

This book presents the recent achievements in the synthetic platforms toward the directly connected bipyrazole systems and their applications in academic, industrial, and material science fields. The construction of the targeted bipyrazole heterocycles was carried out *via* a wide-range of synthetic routes that grasp the attention of graduate and postgraduate chemists and pharmacists and material science researchers to make more efforts in this area to reach high impact findings for their applications in our life.

Most of the reported bipyrazoles are highly bioactive heterocycles demonstrating a broad array of significant inhibitory activities against several human diseases and agricultural pesticides and herbicides. They also have considerable applications in the material science area *via* involvement in the construction of metal-organic frameworks (MOFs) with distinguished industrial applications.

This book is presented in five chapters describing the synthesis of six connected bipyrazole systems and their brilliant and vibrant applications. As a result, we expect that the provided book chapters will be of pronounced support and a valuable source for the scientific community for developing new bipyrazole-based fascinating candidates towards optimization of their pharmacological benefits in the treatment of diseases as well as building up new MOFs for daily life applications that serve the humanity and industry.

We hope that the researchers and readers will find new ideas based on the provided work. Finally, we are very thankful to the Bentham Science Publishers for giving us the chance to publish this book.

#### **CONSENT FOR PUBLICATION**

Not applicable.

#### **CONFLICT OF INTEREST**

The authors declare that there is no conflict of interest.

#### ACKNOWLEDGEMENT

Declared none.

Kamal M. Dawood & Ashraf A. Abbas

Department of Chemistry, Faculty of Science, Cairo University Giza 12613, Egypt

## Chemistry of *N*,*N*- and *C*,*N*-Linked Bipyrazole Derivatives

**Abstract:** The synthetic routes to three differently connected bipyrazole systems, namely; 1,1'-, 1,3'- and 1,4'-bipyrazoles were reported. The main synthetic platforms were cyclocondensation reactions. Many of the reported bipyrazole derivatives had potent applications in material science as well as in pharmaceutical fields.

**Keywords:** 1,1'-bipyrazoles, 1,3'-bipyrazoles, 1,4'-bipyrazoles, Cross-coupling, Cyclocondensation, Nitrilimines.

#### **1. INTRODUCTION**

Bipyrazoles are nitrogen heterocycles that are consisted of two pyrazole moieties connected directly by a covalent sigma bond without any space linker. In this chapter, the considered connections are either N,N- or C,N-connection types. The N,N-linked bipyrazoles are named as 1,1'-bipyrazoles, and those C,N-bonded compounds are named as either 1,3'-bipyrazoles or 1,4'-bipyrazoles as shown in Scheme (1).



Scheme (1). The directly connected *N*,*N*- and *C*,*N*- bipyrazole systems.

The fulfilling pathways are: 1) reactions of tetracarbonyl or dihydroxydicarbonyl building units with hydrazines, 2) reaction of pyrazoles having a difunctional-side arm with hydrazines, 3) reaction of pyrazolyl-hydrazines with difunctional compounds (*e.g.* dicarbonyl, hydroxycarbonyl, ketonitrile or dinitrile substrates), and 4) metal catalyzed C-C cross coupling reactions of pyrazoles *via* C-H activation (Scheme **2**).

Kamal M. Dawood and Ashraf A. Abbas All rights reserved-© 2022 Bentham Science Publishers

Dawood and Abbas



Scheme (2). The possible synthetic routes to *N*,*N*- and *C*,*N*-bipyrazoles.

Pyrazoles are one of the most abundant nitrogen heterocyclic compounds that have huge pharmaceutical and agro-chemical industrial applications [1 - 6]. Bipyrazoles are also a very interesting bioactive class of heterocycles that had pronounced biological activities. Particularly, 1,3'-bipyrazole derivatives had potent inhibitory activities against various diseases. For example, they exhibited cytotoxic [7], antimicrobial [8], anti-inflammatory [9] and antidiabetic activities [10] as well as herbicidal activities with excellent weed-controlling effects [11 - 13], potential agricultural pesticides [14, 15]. On the other hand, several 1,4'-bipyrazole derivatives were reported to have pronounced cytotoxicity activities [16] and for the treatment of Parkinson's disease [17]. The 1,4'-bipyrazole derivatives were employed as efficient ligands in the palladium-catalyzed C-N and C-O cross-coupling reactions of aryl halides with urea and with primary alcohols derivatives [18 - 22].

#### 2. SYNTHESIS OF BIPYRAZOLE SYSTEMS

#### 2.1. Synthesis of 1,1<sup>-</sup>-Bipyrazoles

Formation of the 1,1'-bipyrazole derivative **2** was performed by photolysis of ethyl 5-amino-3-(phenylamino)pyrazole-4-carboxylate **1** with *tert*-butyl peroxide or with dibenzoyl peroxide under mild reaction conditions. The reaction took place *via* radical dimerization of the pyrazole **1** (Scheme **3**) [23].



Scheme (3). Synthesis of 1,1<sup>-</sup>-bipyrazole 2.

The dihydro-1,1'-bipyrazole derivative **6** was obtained from the reaction of 3methoxycarbonyl-2-pyrazoline **3** with lead tetraacetate in benzene at 60°C. The reaction proceeded *via* the pyrazoline intermediate **4** which underwent further attack on **3** to give **6** in 17% yield. The <sup>13</sup>C NMR of compound **6** showed five peaks  $\delta$  52.3, 109.1 129.4 142.3 161.3 ppm due to OCH<sub>3</sub>, pyrazole-carbons (C-4, C-5 and C-3) and C=O, respectively. The oxidation of **6** with *N*bromosuccinimide (NBS) in refluxing carbon tetrachloride in the presence of a few drops of dry pyridine resulted in the formation of the symmetrical 1,1'bipyrazole **7** in 55% yield (Scheme **4**) [24].



Scheme (4). Synthesis of 1,1'-bipyrazole 7.

#### 2.2. Synthesis of 1,3'-bipyrazoles

The 1,3-bipyrazole derivative derivatives **10** were synthesized, in good yields, from the reaction of the hydrazino-pyrazole derivative **8** with various symmetrical and unsymmetrical 1,3-dicarbonyl compounds **9** in the presence of 5% HCl (Scheme **5**) [7]. The <sup>1</sup>H NMR spectrum of compound **10** ( $R_1=R_2=Me$ ,  $R_3=H$ ) displayed five singlet peaks at  $\delta$  2.16, 2.61, 3.32, 3.67 (due to four CH<sub>3</sub> protons) and 6.11 due to CH-proton and its <sup>13</sup>C NMR exhibited nine peaks at  $\delta$  11.0

## **Chemistry of 3,3`-Bipyrazole Derivatives**

**Abstract:** Synthesis of 3,3'-bipyrazole systems was achieved *via* interesting synthetic methodologies such as 1,3-dipolar cycloaddition reactions, cyclocondensation reactions and metal catalysed C-H activation reactions. Construction of the structurally related 3,3'-bipyrazolines or 3-(pyrazol-3-yl)pyrazolines is described.

**Keywords:** 3,3'-bipyrazoles, 3,3'-bipyrazolines, Cyclocondensation, Cyclo addition, Cross-coupling, Nitrilimines.

#### **1. INTRODUCTION**

3,3'-Bipyrazoles, 3,3'-bipyrazolines and 3-(pyrazol-3-yl)pyrazolines are all structurally related C-C directly connected two pyrazole units by sigma bond between 3,3'-positions without any spacer. There are several tautomeric structural formulae that can be drawn for such 3,3'-bipyrazole derivatives, as depicted in Scheme (1). The synthetic pathways for the 3,3'-bipyrazole structures are briefly summarized in Scheme (2). Such routes are: 1) reactions of tetracarbonyl or dihydroxydicarbonyl building units with hydrazines, 2) reaction of pyrazoles having a difunctional-side arm at position 3 with hydrazines, 3) reaction of 3-pyrazolylhydrazines with difunctional compounds, 4) 1,3-dipolar cycloaddition of pyrazolyl-nitrilimines with olefins or acetylenes, and 5) 1,3-dipolar cycloaddition of bis-nitrilimines with two equivalents of olefins or acetylenes.

The 3,3'-bipyrazole derivatives had several academic and industrial applications. They formed complexes with copper(I/II) that were efficiently used for oxidation of catechol to o-quinine with the atmospheric dioxygen [1]. Their ruthenium(II) complexes showed good catalytic activity and transfer of hydrogen in catalyzed hydrogenation reactions [2, 3], and their palladium(II)-complexes were reported as good precatalysts for Suzuki-Miyaura C-C cross-coupling reactions in aqueous media [4]. They have involved in the synthesis of poly(3,3'-bipyrazole) derivatives with high thermal stability and electrochemical activity [5]. Nitration of 3,3-bipyrazole gave several polynitro-3,3'-bipyrazole derivatives that were found to be metal-free primary explosives with high energetic properties and excellent thermal stability [6 - 8].

Chemistry of 3,3'-Bipyrazole Derivatives

The 3,3'-bipyrazole derivatives also had solvatochromic behaviour [9] The platinum and osmium complexes of 3,3'-bipyrazoles were also useful as emitting materials for organic light-emitting diode (OLED) [10 - 12]. 3,3'-Bipyrazole derivatives were also reported to have high antitumor inhibitory activity [13].



Scheme (1). The possible tautomeric forms of 3.3'-bipyrazoles.



Scheme (2). The possible synthetic routes to 3,3'-bipyrazoles.

#### 2. SYNTHESIS OF 3,3'-BIPYRAZOLE SYSTEMS

#### 2.1. From 1,3-Dipolar Cycloaddition Reactions

When the *bis*-arylnitrilimines **2** (generated *in situ* from the treatment of *bis*hydrazonyl halides **1** with triethylamine in dry benzene) was treated with the active methylene compounds **3**, they resulted in the formation of the 3,3'bipyrazole derivatives **4** in high yields. Similarly, the *bis*-arylnitrilimines **2** underwent 1,3-dipolar cycloaddition reactions with the activated olefins **5** to give the 3,3'-bi(2-pyrazolines) **6**. Oxidation of compound **6** ( $\mathbb{R}^2 = \mathbb{Ph}$ ,  $\mathbb{R}^3 = \mathbb{COPh}$ ,  $\mathbb{Ar} = \mathbb{Ph}$ ) with chloranil afforded the corresponding 3,3'-bipyrazole derivative **7** in 71% yield (Scheme **3**) [14].



Scheme (3). Synthesis of 3,3'-bipyrazole 4 and 7.

Regioselective synthesis of polysubstituted 3,3'-bi-1*H*-pyrazole derivatives **10** was carried out *via* 1,3-dipolar cycloaddition reaction of the *bis*-arylnitrilimines **2** with the cinnamonitriles **8** to yield the cycloadducts 5,5'-dicyano-4,4',5,5'-tetrahydro-3,3'-bi-1*H*-pyrazoles **9** in 40-75% yields. Aromatization of compounds **9** *via* thermal elimination of hydrogen cyanide under the basic reaction conditions afforded the 3,3'-bi-1*H*-pyrazole derivatives **10** in good yields (Scheme **4**) [15].

### **CHAPTER 3**

## **Chemistry of 3,4`-Bipyrazoles**

**Abstract:** All the possible synthetic routes to the 3,4'-bipyrazole systems were thoroughly reported. Such synthetic platforms include: cyclocondensation and 1,3-dipolar cycloaddition reactions. Many of the reported 3,4'-bipyrazoles have potent applications in the field of pharmaceutical and material science.

**Keywords:** 1,3-dipolar cycloaddition, 3,4'-bipyrazoles, 3,4'-bipyrazolines, Cross-coupling, Cyclocondensation, Pyrazolylhydrazones.

#### **1. INTRODUCTION**

Various 3,4'-bipyrazoles ring skeletons were reported in the literature. They are composed of either two aromatic pyrazole units or 4-pyrazolyl attached with pyrazoline at C-3 or 4-pyrazolinyl attached to pyrazole at C-3. As a result, there will be the aromatic 3,4'-bipyrazole skeleton or partially aromatic pyrazolylpyrazoline skeleton. The two pyrazole unites are connected directly with a sigma bond between the two units. A number of tautomeric forms can be constructed, as shown in Scheme (1). Synthesis of such 3,4'-bipyrazole skeletons was achieved *via* several synthetic routes as outlined in Scheme (2). Such synthetic routes include: 1) cyclocondensation of an activated 4-pyrazole ring having chalcones or 1,3-dicarbonyl functions with hydrazines; 2) 1,3-dipolar cycloaddition of nitrilimines with bis-olefines with nitrilimines or diazo-alkanes; and 4) C-C cross coupling reactions of pyrazolylboronic acids with halopyrazoles or pyrazoles themselves *via* C-H activation using palladium catalysts.

The fully aromatic 3,4'-bipyrazoles and their partially aromatic ones (pyrazolylpyrazolines) are potent inhibitory active heterocycles with significant biological potentialities. The 3,4'-bipyrazole derivatives were also considered to have anticancer [1 - 5], antimicrobial [6 - 12], anti-inflammatory [13 - 19], antioxidant [20], antitubercular [21 - 23] and antimalarial activities [24]. They

Kamal M. Dawood and Ashraf A. Abbas All rights reserved-© 2022 Bentham Science Publishers

were found to be effective enzyme inhibitors against carbonic anhydrase inhibitory activity [25], human Tropomyosin-related kinase A (TrkA) [26 - 30], and Janus kinase (JAK1/JAK2) [31]. 3,4`-Bipyrazole-based metal coordination complexes were reported to display remarkable pharmaceuticals applications. For example, gold(III) and iridium(II) complexes of 3,4`-bipyrazoles were useful as anticancer agents [4, 5]. In addition, the palladium(II) and platinum(II) complexes of 3,4`-bipyrazoles were found to have excellent antibacterial and antifungal activities [6, 32].



Scheme (1). The possible direct connected 3,4'-bipyrazole derivatives



Scheme (2). The possible synthetic routes to 3,4'-bipyrazoles systems

#### 2. SYNTHESIS OF 3,4'-BIPYRAZOLE DERIVATIVES

#### 2.1. From 1,3-dipolar Cycloaddition Reactions

1,3-Dipolar cycloaddition of 4-pyrazolylformylhydrazone 1 with some activated dipolarophiles such as dimethyl fumarate **3** and ethyl 3-phenylpropiolate **5** under solvent-free conditions using microwave irradiation technique resulted in the construction of the corresponding 3,4'-bipyrazoles 4 and 6, respectively. Similar reaction of the hydrazone 1 with ethyl propiolate 7 under microwave heating at 170 °C afforded a mixture of the 3,4'-bipyrazole derivatives 8 and 9 (Scheme 3). The <sup>1</sup>H NMR analysis of structure 9 presented the following data:  $\delta$  5 1.37 (t, J = 7.1 Hz, 3H, CH<sub>3</sub>), 4.33 (q, J = 7.1 Hz, 2H, CH<sub>2</sub>), 7.35 (s, 1H, H-5'), 7.28-7.48 (m, 8H, ArH's) 7.64 (d, J = 8.6 Hz, 2H, o-H 1-Ph), 8.17 (s, 1H, H-3), 8.40 (s, 1H, H-5). Mechanistically, the regioselective cycloaddition process proceeded *via* the addition of the dipolarophiles 3 and 5 to the dipolar intermediate 2 followed by aromatization via air oxidation [33, 34]. Carrying out the 1.3-dipolar cycloaddition of the pyrazolylhydrazone 1 with dimethyl fumarate (3) under classical thermal heating at same temperature and reaction time on an oil bath led to the formation of the bipyrazole 4 in only 17% yield. The obtained result confirmed the advantage of microwave radiation in organic synthesis compared with classical heating.



Scheme (3). Synthesis of the 3,4'-bipyrazoles 4, 6, 8 and 9.

The 4-pyrazolylformylhydrazones 1 underwent similar 1,3-dipolar cycloaddition with  $\beta$ -nitrostyrenes 10 under solvent-free microwave irradiation condition (at 130°C for 10 min) to give a mixture of the 3,4'-bipyrazole derivatives 11 and 12 (Scheme 4) [33, 35].

### **Chemistry of 4,4`-Bipyrazoles**

**Abstract:** Synthesis of a huge number of 4,4'-bipyrazole derivatives was achieved employing various synthetic platforms. This chapter outlines all possible routes (such as cyclocondensation, 1,3-dipolar cycloaddition and dimerization reactions) towards the construction of the 4,4'-bipyrazole heterocycles.

**Keywords:** 1,3-dipolar cycloaddition, 4,4`-bipyrazoles, Cross-coupling, Cyclocondensation, Hydrazonoyl halides.

#### **1. INTRODUCTION**

The 4,4'-bipyrazole ring skeletons can have the possible tautomeric forms that are constructed in Fig. (1). Synthesis of 4,4'-bipyrazoles was achieved through a number of synthetic routes as outlined in Fig. (2). The reported synthetic routes are as follows: 1) cyclocondensation of the activated 4-pyrazole ring having dicarbonyl functions with hydrazines; 2) cyclocondensation of tetraketones or bisenals with hydrazines; 3) 1,3-dipolar cycloaddition of nitrilimines or diazomethane with bis-olefines, and 4) dimerization of pyrazole ring *via* electrolysis or homocoupling reactions using palladium catalysts.



Fig. (1). The possible tautomeric forms of 4,4'-bipyrazole systems.

Kamal M. Dawood and Ashraf A. Abbas All rights reserved-© 2022 Bentham Science Publishers Chemistry of 4,4'-Bipyrazoles



Fig. (2). The possible synthetic routes to 4,4'-bipyrazole systems.

4,4'-Bipyrazole derivatives were found to possess high biological potency and industrial applications. Some 4.4'-bipyrazole derivatives had a selective Janus kinase-1 (JAK1) inhibitory activity [1, 2]. Some 5,5'-dihydroxy-4,4'-bipyrazole derivatives were found to be useful for treatment of cerebral ischemia, heart diseases, gastrointestinal diseases, cancer, aging and inflammation, where they are effective in capturing the active oxygen and free radicals that are responsible for adult diseases [3 - 5]. Palladium(II) and platinum(II) complexes of 4.4'-bipyrazole were reported as potential anticancer agents [6], and the 4,4'-bipyrazol--Gadolonium(III) complexes were effective Paramagnetic Contrast Agent for clinical Magnetic Resonance Imaging (MRI) [7]. The nitrated 4,4'-bipyrazoles were classified as energetic and explosive materials [8, 9]. 4,4'-Bipyrazole systems were incorporated in the construction of several metal-organic frameworks (MOF). The MOF had promising diverse applications in drug delivery, gas separations, sensing, electrical conductivity, energy storage. and participated in forming porous coordination polymers with potential uses as solid sorbents, ion exchangers and heterogeneous catalysts [10 - 23].

#### 2. SYNTHESIS OF 4,4`-BIPYRAZOLE DERIVATIVES

#### 2.1. From Dimerization of Pyrazoles

Homocoupling of the pyrazolylboronic esters **1** and **3** catalyzed by  $Pd(PPh_3)_4$  (5 mol%), in water solvent using  $Cs_2CO_3$  as a base in the open air, led to the production of the symmetric 4,4'-bipyrazoles **2** and **4** in good yields, respectively (Scheme **1**) [11].



Scheme (1). Synthesis of the 3,4'-bipyrazole derivatives 2 and 4.

Treatment of the pyrazolin-5-one **5** with  $Fe(ClO_4)_3$  at ambient temperature led to its oxidative dimerization and formation of a diastereomeric mixture of 4,4'bipyrazole-3,3'-diones **7** (*racemic*, 32% yield) and **8** (*meso*, 44% yield). The <sup>1</sup>H NMR spectral data of the *racemic* product **7** in CDCl<sub>3</sub> were as following:  $\delta$  1.60 (s, 6H, 2Me), 2.19 (s, 6H, 2Me), 7.18 (t, J = 7.3 Hz, 2H, ArH's), 7.45–7.31 (m, 4H, ArH's), 7.85 (d, J = 7.9 Hz, 4H, ArH's); however the <sup>1</sup>H NMR spectrum of the *meso*-compound **8** showed the following data:  $\delta$  1.73 (s, 6H, 2Me), 1.93 (s, 6H, 2Me), 7.22 (t, J = 7.3 Hz, 2H, ArH's), 7.49–7.34 (m, 4H, ArH's), 7.89 (d, J =8.2 Hz, 4H, ArH's). The reaction was supposed to took place *via* the pyrazolyl radical intermediate **6** as shown in Scheme (**2**) [24].



Scheme (2). Synthesis of 4,4 -bipyrazoles diastereomers 7 and 8.

## **Applications of Bipyrazole Derivatives**

**Abstract:** Numerous bipyrazole-based metal-organic frameworks (MOF) were synthesized *via* mixing a number of bipyrazole ligands with several transition-metal cations, and the obtained MOF represented interesting applications in the field of material science and pharmaceuticals due to their high degree of crystallinity and internal porosity. There are photo-luminescence, sensing, gas separations, electrical conductivity, and energy storage, among those interesting applications.

**Keywords:** Bipyrazoles, Energetic organic materials, Gas separation, MOF, Nitropyrazoles, OLED.

#### **1. INTRODUCTION**

Recently, bipyrazole-based *metal coordination compounds* displayed interesting applications in pharmaceuticals and in material science. For example, gold(III) and ruthenium(II) complexes of bipyrazoles were proved to be anticancer agents [1, 2], and copper(I) complexes had excellent antibacterial activity [3], whereas gold(III), platinum(II), osmium(II) and copper(I) complexes were involved in the fabrication of luminescence Organic Light-Emitting Diodes (OLED) and laser materials [4 - 7]. Bipyrazole ligands coordinate up to four different metal centers to give three-dimensional structures known as metal–organic frameworks (MOFs). Such MOFs had promising wide applications in drug delivery, sensing, gas separations, electrical conductivity, and energy storage due to their high degree of crystallinity and internal porosity [8, 9]. Bipyrazoles (especially Bippyphos) played an important role as ligands for palladium-catalyzed cross-coupling reactions of aryl halides [10 - 13].

#### 2. APPLICATIONS OF BIPYRAZOLE DERIVATIVES

#### 2.1. Bipyrazoles as Ligands

The 3,3'-bipyrazole-based Pd(II)-complex **1** was synthesized and reported as an efficient precatalyst for Suzuki-Miyaura C-C cross-coupling reactions of aryl halides with arylboronic acids in aqueous media [14].

Kamal M. Dawood and Ashraf A. Abbas All rights reserved-© 2022 Bentham Science Publishers **Applications** 



5-(Di-*tert*-butylphosphino)-1',3',5'-triphenyl-1'H-[1,4']bipyrazole (Bippyphos) (2) was reported as an efficient co-catalyst in the palladium-catalyzed hydroxylation of several (hetero)aryl halides 3 under mild conditions as well as in the synthesis of substituted benzofurans and related heteroaromatic derivatives [11] (Scheme 1).



Scheme (1). Synthesis of hydroxyl compounds 4 and substituted benzofurans 6.

The bipyrazole derivatives (bippyphos) **2** were applied as efficient ligands in the palladium-catalyzed C-O and C-N cross-coupling reactions of aryl halides with primary alcohols and with urea derivatives, respectively [12, 13, 15 - 17].



Dawood and Abbas

Polycondensation of 5,5'-dimethyl-3-chloromethyl-1,3'-bipyrazole 7 was achieved in refluxing benzene in the presence of 50% NaOH solution and led to the formation of the polypyrazolic macrocycle 8 in 75% yield (Scheme 2). The polypyrazolic macrocycles showed excellent complexing properties as ligands with the alkali metal cations [18].



Scheme (2). Synthesis of the polypyrazolic macrocycle 8.

The immobilized bipyrazole **9** on the surface of epoxy-silica presented good thermal stability based on the thermogravimetric analysis, and it had good binding and adsorption abilities for  $Hg^{2+}$ ,  $Cd^{2+}$ ,  $Pb^{2+}$ ,  $Zn^{2+}$ ,  $K^+$ ,  $Na^+$  and  $Li^+$  cations [19].



#### 2.2. Bipyrazoles in Synthesis of Polybipyrazoles

Dehalogenative polycondensation of 3,3'-dichloro-5,5'-bipyrazoles **10** using a mixture of Ni(cod)<sub>2</sub> and 2,2'-bipyridine in DMF at 60°C resulted in the formation of poly(5,5'-bipyrazole-3,3'-diyl) derivatives **11** (Scheme **3**). The obtained polymers were characterized by their high thermal stability and electrochemical

#### SUBJECT INDEX

#### A

Acetates 37, 49, 79, 84, 86, 125 methyl hydrazine 79 Acetic acid 10, 66, 67, 71, 79, 81, 84, 86, 90 refluxing 81 Acetone 14, 37, 70, 77 refluxing 14 Acetophenone derivatives 67, 68, 73, 74, 75 Acetylacetone 4, 6, 106 Acetylenecarboxylates 25 Acetylenic ketones 37 Acid(s) 10, 45, 46, 47, 49, 25, 62, 67, 79, 81, 82, 84, 91, 105, 108, 110, 114, 125, 126, 127, 134, 136 arvlboronic 114 ascorbic 91 biphenyldicarboxylic 125 chloroacetic 84 dehydroacetic 79, 81, 82 diisophthalic 125, 126 formic 67 fumaric 134 fused-ring aromatic multicarboxylic 127 heating dehydroacetic 82 hydrochloric 62 hydrocyanic 25 isophthalic 125 maleic 134 nitric 10, 46, 47, 49, 110 nitrous 105 oxy-bis-benzoic 134 phenylboronic 45 phosphoric 110 sebacic 136 suberic 136 sulfuric 46 sulphuric 82 trans-cyclohexane-dicarboxylic 134 trifluoroacetic 108 Acidic hydrolysis 48

Activity 22, 23, 51, 58, 101, 114, 117, 123, 132 cytotoxic 132 electrochemical 22 Anticancer 57, 58, 101, 114, 121 agents 58, 114 Antidiabetic activities 2 Antimalarial activities 57 Arboxylates 41 Aromatic 57, 74, 88 aldehydes 26, 29, 39, 41, 57, 74, 88, 91, 127, 128, 129 pyrazolylpyrazoline skeleton 57

#### B

Benzylbromide 35 Biheterocyclic systems accounting 122 Bipyrazole-fused heterocyclic systems 26 Bipyrazoles, -Bipyrazole Derivatives 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51 Chemistry of 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51 Bipyrazoles 1, 2, 17, 22, 24, 51, 57, 58, 100, 101, 110, 116 in synthesis of Polybipyrazoles 116 systems 1, 2, 17, 22, 24, 51, 57, 58, 100, 101, 110 Bipyrazoline derivatives 33, 37, 38, 39, 40, 41,48 Bis-hydrazonoyl chlorides 25, 28 Bis-hydroxymethyl-bis-bipyrazole product 5 Bleaching earth clay (BEC) 84

#### С

Carbon 48, 124, 129, 131 anionic 48 dioxide 131 monoxide 124 Catalytic activity 22, 51, 123

Kamal M. Dawood and Ashraf A. Abbas All rights reserved-© 2022 Bentham Science Publishers

Catalyzed 1, 2, 22, 45, 51, 72, 91, 102, 114, 115.123 hydrogenation reactions 22, 51, 123 reaction 72 Chalcone conjugates 64 Chemisorption 124 Conditions 2, 10, 24, 27, 28, 44, 45, 48, 59, 60, 65, 70, 75, 76, 115, 123, 124, 129, 134, 135 conventional thermal 60 hvdrothermal 134 photolysis 32 solvent free 29 solvothermal 125, 130, 135 ultrasonic 28 Corrosion Inhibitors 120 Coumarinylpropenone 70 Coupling reactions 1, 2, 22, 57, 114, 115 Cross-coupling reactions 1, 2, 22, 57, 114, 115 catalyzed 91 palladium-catalyzed 114 Cyclization 6, 7, 8, 46, 85, 103 intramolecular 6, 7, 8 Cycloaddition process 32, 59 Cycloaddition reactions 22, 24, 57, 59, 60 smooth regioselective 105 Cyclocondensation 1, 6, 8, 22, 34, 39, 40, 51, 57, 63, 66, 67, 70, 77, 79, 91, 100

#### D

Dehalogenative polycondensation 116 Dehydrogenation 40, 50, 61, 73 oxidative 50 process 73 Derivatives 7, 8, 16, 26, 69, 73, 75, 108, 115, 118 acetylcoumarin 75 acrylonitrile 8 aniline 26, 37 heteroaromatic 115 hydrazino-pyrazole 7 polynitro-bipyrazole 118 propanedione 16 pyrazolyl-chalcone 69 pyrazolylpyrazoline 73 pyridazine 108 Dichloromethane 9, 14, 15, 31, 37, 73 Difunctional compounds 1, 17, 22 Dihydroxydicarbonyl building units 1, 22 Dimerization reactions, homocoupling 110 Dimethoxyethane 90 Dimethyl acetylenedicarboxylate 25 Diseases 2, 17, 80, 101, 121 central nervous system 80 gastrointestinal 101, 121

#### Е

Electrochemical 8, 22, 104, 116, 133 chlorination 8 oxidative coupling 104 process 133 Electrophilic substitution reactions 6 Emission 127, 129, 131, 132, 134, 136 interesting solid-state fluorescent 134 Energetic 22, 52, 101, 114, 118, 119, 120 nitrogen heterocyclic material, green 120 organic materials 114 properties 118 Energetic materials 117, 119 high-temperature 117 Energy 101, 114, 119, 120, 130, 132, 137 density oxygen-carrier material, high 120 storage materials 137 Enzymatic inhibitions 121 Esters 26, 29, 37, 79, 99, 102, 103 bipyrazole 4, 79 dicarboxylate 90, 103, 128 pyrazolylboronic 57, 90, 102

#### F

Fluorescence, green 135 Fluorescent sensors 123 Framework topology 129 Friction sensitivities (FS) 117, 118 Functions 48, 57, 91, 100, 105, 129

#### Dawood and Abbas

#### Subject Index

cyano 48 Fused-ring system 48

#### G

Gas separation 101, 114, 136

#### Η

Halopyrazoles 51, 57 Heat, insensitive 117 Heating 27, 28, 35, 39, 65, 66, 67, 68, 69, 70, 74, 76, 77, 79, 80, 85, 106 conventional 27, 28, 35, 76 Heating mode, conventional thermal 27 Herbicidal activities 2 Heterocycles 1, 2, 57, 86, 100, 108 bipyrazole 100 three-ring fused 86 Heterocyclization 70 Heterogeneous 101, 122, 133 catalysts 101, 122 lyophobic system (HLS) 133 High energetic density materials (HEDM) 118 Homocoupling reactions 100 Hydrazine 14, 39, 79, 81, 89 derivatives 14, 81 hydrochloride 39, 79, 89 Hydrazinloysis 79 Hydrazinolysis 37 Hydrazonoyl halides 17, 100 pyrazole-based 17 Hydrogen 24, 61, 104 cyanide 24, 61 peroxide 104 Hydrothermal reaction 127 of cadmium sulfate octahydrate 127

#### I

Industrial applications 2, 22, 51, 101, 111 agro-chemical 2 Inhibitors 58, 120 effective enzyme 58 Chemistry of Bipyrazoles: Synthesis and Applications 147

Inhibitory activities 2, 17, 121 carbonic anhydrase 58

#### J

Janus kinase 58, 101

#### K

Knoevenagel condensation 88

#### L

Layered nickel-based MOF material 133 Ligands 2, 51, 114, 116, 123, 124, 128, 130, 131, 135 auxiliary 135 bipyrazole 51, 114, 128, 131 bipyrazole-based 124 conjugated multidentate 130 neutral bidentate 122 Liquid-liquid phase transfer catalysis 106 Lithium aluminium hydride 4, 5 Luminescence 114, 124, 126, 129 organic light-emitting diodes 114 solid-state 129 Luminescent property 127

#### Μ

Magnetic resonance imaging (MRI) 101, 111, 121 Metal 45, 101, 114, 122, 123, 124, 125, 126, 128, 129, 130, 131, 132, 133, 134, 136 catalyzed C-H activation reactions 45 ligand bonding interaction 132 ligand charge transition (MLCT) 129 organic frameworks (MOFs) 101, 114, 122, 123, 125, 126, 128, 130, 134, 136 Microwave irradiation 9, 11, 13, 29, 59, 60, 70, 74, 76 technique 59, 76 Microwave radiation 59

#### Ν

Negishi reaction conditions 45 Nitrated bipyrazole derivatives 117 NMR 41, 59, 90, 102 analysis 59 spectral data 41, 90, 102

#### 0

Organic light-emitting diode (OLED) 23, 114, 132 Oxidative addition 46 Oxidizing agents 124 Oxygen 101, 120, 121, 123, 124, 128, 135 atmospheric 123 atoms 128 rich high energetic material 120

#### Р

Palladium 2, 22, 50, 57, 58, 100, 101, 111, 114, 115 catalysts 57, 100 catalyzed hydroxylation 115 Paramagnetic Contrast Agent 101, 121 Parkinson's disease 2 Pathways 1, 22, 25, 27, 31, 42, 51, 62, 71, 79, 103 cycloaddition 27 mechanistic 42 radical 103 ring-closing 79 synthetic 22, 51 Photodecomposition 129 Photoluminescence 134, 135, 136 Polyfunctionalized furan derivatives 108 Polypyrazolic macrocycles 116 Properties 111, 121, 126, 127 hydrogen-bonding 121 photocatalytic 126 solid state emission 127 Pyrazolylchalcones 63, 66, 67, 74

Pyrazolyl-enamine aldehydes 88 Pyrazolylpyrazolines 57, 69, 73, 91

#### R

Racemic product 102 Reaction pathway 31, 62

#### S

Single-crystal 27, 136 analyses 136 X-ray analysis 27 Solvothermal reaction 125, 127, 129, 133 of Cd 127 Solvothermal synthesis 129 Spacers 22, 129, 130 nitro-functionalized 130 Supramolecular 134, 135, 136 networks 134 solids 136 Suzuki 22, 45, 90, 114 cross-coupling reaction 90 Miyaura C-C cross-coupling reactions 22, 114 reaction 45 Synthesis 2, 115, 116, 124 of bipyrazole systems 2 of copper 124 of hydroxyl compounds 115 of Polybipyrazoles 116

#### Т

Tautomeric forms 57, 100 Temperatures, refluxing 42, 63 Tert-butyl 2, 48 hypochlorite 48 peroxide 2 Tetranitrobipyrazoles 119 Thermal heating 27, 28, 59, 60, 76 conventional 28

#### Dawood and Abbas

#### Subject Index

Thermal stability 22, 52, 116, 117, 118, 129, 130, 134 preserved 129 Thermogravimetric analysis 116 THF 4, 13, 35, 39, 45, 90 refluxing 35 solution 45 Thiochroman 27 Thiosemicarbazide 64, 65, 66, 82, 83, 84 TMBP 123, 125, 126, 127, 128, 129, 131, 133, 134, 135, 136 frameworks 133 ligand 127 Triphenylphosphane 51, 123 Triphenylphosphine 48

#### U

Ultramicroporous diamondoid metal 123 Ultrasound 76 UV 124, 125, 126, 129 irradiation 125, 126 light 129 radiation 124

#### V

Valence ground states 130 Variable-temperature X-ray 129 Vilsmeier reaction 109

#### W

Water 10, 17, 31, 37, 39, 42, 46, 69, 79, 82, 83, 85, 90, 102, 126, 133, 134, 136 bromine 69 polluted 126

#### Z

Zn-based metal 129



#### Kamal M. Dawood

Kamal M. Dawood has got his Ph.D. from Cairo University (1995). He was awarded UNESCO and JSPS Fellowships (1999-2002) with Professor Fuchigami (TIT, Japan). He was also awarded the Alexander von Humboldt Fellowship at Hanover University and TU-Dresden, Germany, during 2004-2012. He was appointed as a Full Professor at Cairo University in May 2007. He received a number of awards from Cairo University, including the Chemistry Award in 2002, the Academic Excellence Award in 2012, the Appreciation Award in 2017, as well as the State Award in Chemistry in 2007. He worked as a Professor at Kuwait University (2013-2017) and published 140 papers and reviews in distinguished journals with about 3000 citations and h-index 29.



Ashraf A. Abbas

Ashraf A. Abbas has been a Professor of organic chemistry at Cairo University since 2009. He obtained his Ph.D. in 1997. He was awarded a DAAD fellowship at Fakultat fur Chemie, Universitat of Konstanz (Germany), in 1996, to finalize his Ph.D. and a UNESCO fellowship at TIT, Japan, 2001. He was awarded the prize of Dr. M. Abdel Salam (2001) for young scientists, the Cairo University encouragement award in 2004, the TWAS prize for young scientists in 2004, which was provided by ICTP-Strada, Trieste, Italy, and the State Award in Chemistry, 2005. He published many papers in the field of macrocycles and bis-heterocycles.