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FOREWORD 

 

In the past few decades, fractional derivatives and integrals have been recognized 

as powerful modelling and simulation tools for engineering, physics, economy 

and other application areas. Many physical laws are expressed more accurately in 

terms of differential equations of arbitrary order. The fractional derivatives and 

integrals and their potential uses have gained a great importance, mainly since 

they have become powerful instruments with more accurate, efficient and 

successful results in mathematical modelling of several complex phenomena in 

numerous seemingly diverse and widespread fields of science, especially 

engineering, finance and biology. As the fractional dynamical systems grow, 

mature and develop, it is very prominent to focus on the most promising novel 

directions that were worked out based on the novel methods and schemes handed 

over recently in the field.  

The key objective of this book is to focus on recent advancements and future 

challenges on the basic foundation and applications of the fractional derivatives 

and integrals in dynamical systems.  

This edited book received a number of submissions, out of which 10 high-quality 

chapters were accepted. The chapters of this book have a large variety of 

interesting and relevant subjects, namely, fractional partial differential equations, 

chaotic systems and control, heat conduction, numerical algorithms, complexity 

and fractional calculus with power law, exponential decay law and Mittag-Leffler 

non-singular kernel. 

  



ii  

We congratulate the Editors, Dr. Mehmet Yavuz and Dr. Necati Özdemir, who 

were able to collect a variety of topics of relevance to the reader and we are sure 

that this book will be helpful to scientists doing research in different fields of 

fractional calculus. 
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PREFACE 

The investigation of fractional integrals and fractional derivatives has a long 

history, and they have many real-world applications because of their properties of 

interpolation between operators of integer order. This field has covered the 

classical fractional operators such as Riemann–Liouville, Weyl, Caputo, 

Grunwald–Letnikov, and so on. Also, especially in the last two decades, many 

new fractional operators have appeared, often defined using integrals with special 

functions in the kernel as well as their extended or multivariable forms. These 

have been intensively studied because they can also be useful in modelling and 

analysing real-world processes, because of their different properties and 

behaviours, which are comparable to those of the classical operators. 

This book contains ten chapters in three sections. The first section, Chaotic 

Systems and Control, contains three chapters. In Chapter 1, Sene proposed a 

numerical procedure and its applications to a fractional-order chaotic system 

represented with the Caputo fractional derivative. In Chapter 2, Okundalaye et al. 

gave a new multistage optimal homotopy asymptotic method for solutions to a 

couple of fractional optimal control problems.  In Chapter 3, Farman et al. studied 

a complex chaotic fractional-order financial system in price exponent with control 

and modelling.   

The second part of the book, Heat Conduction, contains two chapters. In Chapter 

4, Hristov proposed an attempt to demonstrate that the Duhamel theorem 

applicable for time-dependent boundary conditions (or time-dependent source 

terms) of heat conduction in a finite domain and the use of the Fourier method of 

separation of variable (superposition version) naturally leads to appearance of the 

Caputo–Fabrizio operators in the solution. In Chapter 5, Avcı and İskender Eroğlu 
considered the oscillatory heat transfer due to the Cattaneo–Hristov model on the 

real line modelled by a fractional-order derivative with a non-singular kernel. 

The third section of the book, Computational Methods and Their Illustrative 

Applications, contains five chapters related to different types of real-life 

problems. In Chapter 6, Ghoreishi et al. applied the optimal homotopy analysis 

method for a nonlinear fractional-order model to HTLV-1 infection of CD4+ T-

cells. In Chapter 7, Durur et al. investigated the behavior analysis and asymptotic 

stability of the traveling wave solution of the Kaup-Kupershmidt equation with 

the conformable operator. In Chapter 8, Baishya et al. took into account the 

Caputo fractional order derivative in the mathematical analysis of a rumor-

spreading model and presented interesting numerical results. In Chapter 9, 
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Veeresha et al. studied a unified approach for the fractional system of equations 

arising in the biochemical reaction without a singular kernel. In Chapter 10, Bora 

et al. investigated the hydro-morphodynamic effects induced by a non-powered 

floating object navigating in an approach channel using the CFD (Computational 

Fluid Dynamics) process.  

We are very much thankful to all the contributors to this book for their valuable 

and productive works. The foreword for this book has been written by Prof. 

Dumitru Baleanu and Prof. Jordan Hristov. We would like to express our sincere 

gratitude for their guidance and support. 

We are extremely grateful to Mrs. Humaira Hashmi (Editorial Manager 

Publications) and Mrs. Fariya Zulfiqar (Manager Publications) of Bentham 

Science Publishers who helped us in the publication process. We are also 

extending our thanks to Bentham Science Publishers for publishing this book. 

We wish that this book will be especially useful to scientists doing research in the 

field of fractional calculus and to researchers at graduate level in this field.  

Mehmet Yavuz 

Department of Mathematics and Computer Sciences 

Necmettin Erbakan University 

Konya 42090 

Turkey 

 

& 

 

Necati Özdemir 

Department of Mathematics 

Balıkesir University 
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Turkey 
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CHAPTER 1 

Numerical Procedure and its Applications to the 

Fractional-Order Chaotic System Represented with 

the Caputo Derivative 

Ndolane Sene1*  

1Section Mathematics and Statistics, Institut des Politiques Publiques, Cheikh Anta Diop University, 

Dakar Fann, Senegal 

Abstract: This chapter focuses on a numerical procedure and its application to a 

fractional-order chaotic system. The numerical scheme will discuss the Lyapunov 

exponents for the considered model and characterize the chaos’s nature. We will also 

use the numerical scheme to depict the phase portraits of the proposed fractional-order 

chaotic system and the bifurcation maps. Note that the bifurcation maps are used to 

characterize the influence of the different parameters of our considered fractional 

model. The impact of the initial conditions and the coexisting attractors will also be 

analyzed. With the coexistence, the new types of attractors will be discovered for our 

considered model. To confirm the investigations in this chapter, the proposed model 

will be applied to the electrical modeling. Therefore, the circuit schematic of the 

considered fractional model will be implemented in real-world problems. And we 

notice good agreement between the theoretical results and the results obtained after 

Multisim simulations. The stability of the equilibrium points of the presented model 

will also be focused on details and will permit us to delimit the chaotic region in 

general. 

Keywords: Attractors, Bifurcation maps, Chaotic systems, Lyapunov exponents, 

Stability analysis. 

INTRODUCTION 

 

This chapter focuses on chaos theory in the context of fractional calculus. There 

exist many real-world applications of chaos theory in modeling electrical circuits 

[1, 2], engineering sciences, modeling electronics phenomena and others [4, 5]. 

Many differential equations admitting chaotic behaviors and hyperchaotic 

behaviors exist in two dimensions, three dimensions, four dimensions, five 
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dimensions, and others dimensions. Many of them are described by the integer-

order derivative. This chapter will introduce the fractional operators in the modeling 

of a class of chaotic systems. The fractional calculus continues its expansion, with 

many discussions about these applications of the derivative in real-life problems. 

Many address the interpretations of the fractional operators, but the consensus is 

not unanimous. Many derivatives exist as the old operators; we have the Caputo 

derivative [6, 7] and the Riemann-Liouville derivative [6, 7], and many others. We 

also have recent fractional operators with new types of kernels as the Atangana-

Baleanu derivative, the Caputo-Fabrizio derivative, conformable derivative, and 

others [11-17]. For recent developments of fractional calculus and fractional 

operators applications, the readers can look at the following papers for 

examples[11, 18-24]. 

LITERATURE REVIEW IN CHAOS 
 

 Modeling chaotic and hyperchaotic systems with fractional operators in fractional 

calculus was first proposed by Petras in studies [25, 26]. The literature of chaotic 

and hyperchaotic systems with integer derivatives and fractional derivatives is vast. 

In this part, we recall some of them. Petras studies various classes of fractional-

order chaotic systems described by the Caputo derivative, the stability of the 

equilibrium points of the chaotic systems is also presented in its book [25]. An 

algorithm to obtain the Lyapunov exponents in the context of fractional calculus by 

Matlab software has been presented by Danca and his co-author [27]. Ren and co-

authors presented a new chaotic system flow with the presence of a hidden attractor; 

this new system is known to belong to the jerk systems with no equilibrium points 

[28]. Rajagopal et al. presented the so-called chameleon fractional chaotic system 

[29]. Vaidyanathan and the co-authors presented a hyperchaotic system with five 

dimensions [2]. The authors also presented the circuit schematic of their model, and 

the results are represented in oscilloscopes. Pham et al. presented the coexistence 

attractors of a hidden chaotic system with no-equilibrium points [30]. The authors 

presented a new class of chaotic systems and developed some properties related to 

their presented novel model [31]. The authors developed control and 

synchronization of the fractional chaotic system using an active controller [32]. 

Diouf et al. proposed the phase portraits and bifurcation maps of the three-

dimensional financial chaotic differential equation using a numerical scheme in the 

context of fractional calculus [33]. Sene used Caputo derivative to model financial 

model in four-dimensional space [34]. The system studied is hyperchaotic but 

sometimes with one positive Lyapunov exponent and sometimes with two positive 

Lyapunov exponents. The properties related to the Lyapunov exponents in 

fractional context are well detailed in this work. Sene et al. proposed an 
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investigation related to chaotic and hyperchaotic systems described by the Caputo 

derivative [35]. They studied the proposed system the qualitative properties using 

the Lyapunov exponents and phase portraits. Sene analyzed the class of fractional-

order chaotic system described by the Caputo derivative using bifurcation and 

Lyapunov exponents [36]. See also the study [37] for more investigations. 

MOTIVATIONS AND NOVELTIES 

 

 Modeling fractional-order chaotic systems will be the main innovation of this 

chapter. The chaotic system will be represented using the Caputo derivative. To 

obtain the phase portrait, discretization, including the discretization of the 

Riemann-Liouville integral and the analytical solution, will be used. The fractional-

order will generate different types of attractors, and the Lyapunov exponents will 

be used to classify them. The Lyapunov exponents in the context of the fractional 

derivatives, as proposed by Danca [27], will be illustrated. Note that one positive 

Lyapunov exponent means the existence of chaotic behaviors in general. The 

impact of the initial conditions, the coexisting attractors will be analyzed, and the 

variation of the proposed model’s parameters will be illustrated using the 

bifurcation maps. The stability analysis will delimit the interval under which the 

chaotic behaviors exist when we use the Caputo derivative. Many other qualitative 

properties of the dynamic under investigations will be presented, illustrated, and 

discussed as possible in this chapter. 

FRACTIONAL OPERATORS AND DERIVATIVES 

 Many operators exist in fractional calculus with and without singular kernel. In this 

chapter, we try to recall two of them which will be of great interest to us for our 

investigation. Caputo, Riemann, and Liouville propose the fractional derivatives 

most used in fractional calculus for decades. We defined the fractional integral 

before these derivatives, know as the Riemann-Liouville derivative, as the 

following definition. 

The representation of the Riemann-Liouville integral of the function 𝑧 is described 

in the following formula  

 

 where Γ(. . . )  defines the Gamma Euler function and and the order 𝛼 is imposed to 

respect the condition 𝛼 > 0 [6, 7]. The fractional integral operator plays an essential 

role in discretization. Its discretized form is well known in the literature and can be 

(Iαz) (t) = 1
Γ(α)

∫ t

0
(t − s)α−1

z(s)ds,
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CHAPTER 2 

A New Method of Multistage Optimal Homotopy 

Asymptotic Method for Solution of Fractional 

Optimal Control Problem 
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Abstract: This paper deals with a recent approximate analytical approach of the 

multistage optimal homotopy asymptotic method (MOHAM) for fractional optimal 

control problems (FOCPs). In this paper, FOCPs are developed in terms of a 

conformable derivative operator (CDO) sense. It is validated that the right CDO 

appears naturally in the formulation even when the system dynamics are described 

with the left CDO only. The CDO is employed to enlarge the stability region of the 

dynamical systems of the optimal control problems (OCPs). The necessary and 

transversal conditions are achieved using a Hamiltonian technique. The results 

demonstrated that as the fractional-order solution derivative tends to integer-order 1, 

the formulations lead to integer-order system solutions. Numerical results and a 

comparison with the exact solution and other approximate analytical solutions in 

fractional order are given to validate the efficiency of the MOHAM. Some numerical 

examples are included to demonstrate the effectiveness and applicability of the new 

technique. 

Keywords: Approximate analytical solution, Convergence analysis, Conformable 

derivative operator, Fractional calculus, Fractional Hamiltonian approach, 

Fractional optimal control problems. 

INTRODUCTION 
 

The global definition of an optimal control problems depends on the minimization 



30    Current Developments in Mathematical Sciences, Vol. 3 Okundalaye et al. 

of an objective function of the state and control inputs of the system over a set of 

relevant control functions. The OCPs usually emerge in diverse areas of applied 

science, and well-founded studies have been done in the classical derivatives 

dynamic systems.  

A non-linear constrained OCPs can be of various types, relying on the conditions 

constrained on the final time and state. It can be grouped as fixed final state-fixed 

final time, free final state-fixed final time, fixed final state-free final time, and free 

final state-free final time. Most computing techniques for the solution of OCPs 

conveniently solved the unconstrained problem, but inequality constraints often 

resulted in both exact and numerical computational difficulties. In control, the state-

space illustrations are an effective approach for stability analysis and OCPs 

formulation. Fractional calculus (FC) is the generalization of traditional calculus 

and has drawn the attention of several authors in the areas of applied science to 

described more precisely the dynamics of many systems using fractional calculus. 

It has been divulged in the literature that systems represented using FC give more 

interesting behaviour [1-5]. Also, it has been demonstrated that the substances with 

memory, genetic properties, heat conduction, and gas diffusion can be modeled 

more accurately with FC [6-9]. Many definitions of fractional-order derivative 

operator (FODO) can be seen [10-16]. The Riemann-Liouville (RL) derivative 

operator is not consistently usable for modeling physical systems because the RL 

solution requires unnatural initial conditions [17-19]. In contrast, the Caputo 

fractional derivative operator (CFDO) accepts initial conditions like the integer-

order systems. Thus, CFDO is good for modeling physical systems [20-23], 

epidemiological analysis of COVID-19 [24], discretization method for an expanded 

family of distributions [25], fractional-order COVID-19 epidemic model [26], the 

transmission of COVID-19 dynamic system [27], fractional Burger–Fisher 

equations [28], time-fractional Burgers-Coupled equations [29-31], and time-

fractional Fisher’s equations [32, 33]. The fractional-order derivative operators 

have been applied to many problems in the area of OCPs. We refer the researchers 

who are interested in the theory and applications of FC to these books [34-39] with 

some papers on FOCPs [40-43] . The FOCPs of several cases have been constructed 

and considered using various variations of FC: Riemann-Liouvile for FOCPs  [44, 

45], Mittag-Leffler for FOCPs [46] Caputo for FOCPs [47], and Atangana-Baleanu 

for FOCPs [48]. Agrawal gave a general formulation and solution scheme for a 

class of FOCPs in terms of the RL [49]. Recently, fractional conservation laws for 

FOCPs with RL fractional derivatives (RLFDs) were studied [50], FOCPs in 

Caputo sense were addressed [51], one state and one control variable, and one 

fractional state equations [52], and Hamiltonian equations for fractional variational 

problems [53]. The FOCPs are OCPs in which the differential equations (DEs) 
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governing the dynamics system exhibit at least one FODO [54]. Authors in [55], 

gave a pseudo-state-space-based FOCPs formulation and a solution scheme. Fixed 

and free final-time FOCPs are considered in the study [56], second-order necessary 

optimality condition for FOCPs in the Caputo sense [57], and FOCPs of an HIV-

immune system in terms of the Caputo sense [58]. Recent approximate analytical 

methods (AAM) are: modified Adomian decomposition method for (FOCPs) [59], 

variational iteration method for optimal solutions FOCPs [60], conformable 

fractional optimal control problem of heat conduction equations using Laplace and 

finite Fourier sine transforms [61], spectral Galerkin approximation [62], new 

approximate-analytical solutions for PDEs [63], transcription methods for FOCPs 

[64], but the methods mentioned above lack convergence criteria and interval of 

convergent. 

In 1992, Liao proposed the homotopy analysis method (HAM), independent of any 

small or large physical parameters [65]. Homotopy methods are robust 

mathematical tools for obtaining a solution to many non-linear problems. Contrary 

to all other approximate analytic methods, it gives us a convenient means to 

guarantee the convergence of the series solution of non-linear problems by putting 

in an auxiliary parameter, called the convergence-control parameter (CCP), and 

offers a solution to this problem where the exact solution is not available. Using 

this parameter, we can easily control and possibly extend the convergence region 

of the solution obtained; this merit makes HAM an excellent method for applied 

mathematicians [66]. It has been verified that the HAM solution with this CCP is a 

Taylor series expansion of the analytical solution at some point [67]. In 2003, the 

elementary concepts of HAM and some applications largely related to non-linear 

ODEs were described systematically by the author in the book “Beyond 

Perturbation” [68]. The HAM has attracted many researchers in nearly a score of 

nations. It has been intensely employed to resolve many non-linear problems in a 

scientific discipline, finance, and technology [69] for solving the non-linear 

problem, which was later advanced to OHAM for non-integer order [70], new 

fractional homotopy method for OCPs [71], optimal control of a constrained 

fractionally damped elastic beam [72], and comparisons of OHAM [73]. But 

MOHAM has never been used to solve FOCPs, which drives this research work. 

The present work aims to find the approximate analytical solutions for FOCPs using 

a new novel technique called MOHAM. Our focus in this paper is to widen the 

application of MOHAM to obtain accurate solution of FOCPs. We provide answers 

to convergence criteria for accurate optimal solutions, the convergence of series 

solutions, and the solution using MOHAM with an optimization technique of the 

Galerkin method. The merit of this paper is that CDO is employed to enlarge the 

stability region of the dynamical. The scope covers the limitations in approximate 
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Abstract: The present chapter proposes modeling of complex fractional-order chaotic 

ifnancial system with control. Here, we have added critical minimum interest rate ‘d’ 
as a new parameter to get a novel stable ifnancial model. The fractional derivatives.
are taken in Caputo and Caputo-Fabrizio sense for the proposed ifnance system.�
Dynamical models in ifnancial system with complicated behavior provide a new.
perspective as result of trends and actual behavior of internal structure of the ifnancial.
system. A theoretical stabilization of the equilibria, as well as the numerical 

simulations, are obtained. Furthermore, with sensitivity analysis, a certain threshold 

estimation of the basic reproductive number has been made. Also, the stability 

analysis of the model, together with uniqueness of the special solutions is provided. 

The concept of controllability and observability for the linearized control model is 

used for feedback control. The solution of the proposed fractional-order model has 

been procured by employing different numerical techniques with comparison among 

the solutions. The convergence analysis is carried out for the accuracy of the applied 

scheme. Finally, some numerical simulations are given for three fractional-order 

chaotic systems to verify the efectiveness for the obtained results. The fractal, 

stochastic processes and prediction are used in particular mechanism of its application 

to the macro and micro processes. 

Keywords: Complex chaotic system, Caputo derivative, Caputo-Fabrizio 

derivative, Dynamical control, Fixed point theorem, Fractional-order ifnance.
system, Stability analysis. 
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The mathematical behavior of the fractional order system is studied. If input on the 

system is influenced according to time, only then it is called static system. If the 

current and past input on the system is influenced, then it is called dynamical 

system. To gain the desired doutput and adjust system input, a controller is used 

which is considered a system named as a controlled system. The controller is said 

to be a closed-loop controller if the controlled output on system directly depends 

on controller inputs otherwise, it is said to be an open-loop controller [3]. 

INTRODUCTION 

 

The financial system has two classes which are called Microeconomics and 

Macroeconomics. Microe- conomics is an individual’s study, business decision and 

Macroeconomics is an extensive study. Consequently, the financial systems works 

at particular, domestic and international level. In the financial system, money, credit 

and finance are used as a media of exchange. Financial and economic systems are 

getting harder to understand and economic growth varies from low to high financial 

markets. The process of eco- nomic development and growth is more complex on 

the basis of multiple variables. There are non-linear factors like interest rate, good’s 

price, investment demands and stock. In Economics, mathematicians started to 

apply chaos theory [1, 2] during the last decades of the 20th century. 

The oldest mathematical tool which provides attractive research in all kinds of fields 

[4] is fractional calculus. Fractional calculus plays the main role and has many 

benefits as compared to integer calculus that narrates the memory and hereditary 

characteristics of different procedures and materials [5]. Financial variables are 

appropriate to use fractional modelling, which narrates the actual behavior of the 

financial system and possesses long memories (actual behavior of the financial 

system which possesses long memories; stock market prices, exchanges rates and 

interest rates are considered to possess long memories with very influential 

behavior to initial prices or values and some chaotic attractors (28)). Chen proposed 

a fractional order financial system, which narrates the actual dynamical behavior, 

studied the period-doubling and identified intermittency routes to chaos [6]. 

Financial system is studied by the chaos control method for slide mode and 

feedback control [7, 8]. The numerical techniques are used to solve such complex 

financial systems as exact solution cannot be found easily, the most used technique 

to solve fractional differential equations is the GABMM [9]. Some analytical 

methods to solve nonlinear differential equations are VIM, HPM, ADM and 

homotopy analysis method [10-12]. 
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In this chapter, to develop the system of complex nonlinear differential equations, 

we apply fractional parameters using the Caputo and Caputo Fabrizio derivatives 

method. Dynamical models of the financial system for complicated behavior are 

checked from a new perspective as result of trends and actual behavior of internal 

structure of the financial system. The stabilization of equilibrium is obtained by 

both theoretical analysis and simulation results. The linearized systems of 

controllability and observability are designed for the close loop of automatic 

control. 

MATERIALS AND METHOD 

The subject of Mathematical research is fractional calculus which is the result of 

integral value exponents from the traditional definition of integral calculus and 

derivative operations as fractional exponents [16-23]. 

Definition 2.1. For a function 𝑔: ℜ+  →  ℜ, then the fractional integral of order 𝛽 >
0 is given by 

𝐼𝑡
𝛽

(𝑔(𝑡)) =
1

𝛾(𝛽)
∫(𝑡 − 𝑧)𝛽−1𝑔(𝑧)𝑑𝑧,

𝑡

0

 

where 𝛾 shows the Gamma function and 𝛽 is the fractional order parameter. 

Definition 2.2 For a function 𝑔 ∈ 𝐶𝑛, then the Caputo derivative of order 𝛽 > 0 is 

defined by [9] 

𝐷𝐶 𝑡
𝛽

(𝑔(𝑡)) = 𝐼𝑛−𝛽𝐷𝑛𝑔(𝑡)
1

𝛾(𝑛 − 𝛽)
∫

𝑔𝑛(𝑧)

(𝑡 − 𝑧)𝛽+𝑛−1
𝑑𝑧

𝑡

0

, 

Since in recent years, fractional calculus has been an important gadget to describe 

the dynamical behaviour of different physical systems [11]. In recent years, 

researchers have taken interest and attention to fractional calculus in different 

aspects under consideration for research of the said subject [13, 14]. In the last 

decade, derivatives and integrals of fractional orders had notable development as 

revealed by several monographs dedicated to it, studied differential-difference 

equation of fractional order [13-15]. 
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CHAPTER 4 
 

The Duhamel Method in Transient Heat 

Conduction: A Rendezvous of Classics and Modern 

Fractional Calculus 
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1Department of Chemical Engineering, University of Chemical Technology and Metallurgy, Sofia, 
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Abstract: This chapter presents an attempt to demonstrate that the Duhamel theorem 

applicable for time-dependent boundary conditions (or time-dependent source terms) 

of heat conduction in a finite domain and the use of the Fourier method of separation 

of variable (superposition version) naturally lead to appearance of the Caputo- 

Fabrizio operators in the solution. The fractional orders of the emerging series of 

Caputo-Fabrizio operators are directly related to the eigenvalues determined by the 

Fourier’s method. The general expression of the solution in terms of Caputo-Fabrizio 

operators has been developed followed by four examples. 

 

Keywords: Caputo-Fabrizio derivative, Duhamel theorem, Heat conduction. 
 

INTRODUCTION 

 

The chapter is especially devoted to the idea of demonstrating how the classical 

methods in analytical heat transfer (diffusion) meet the modern fractional operators. 

The target is the well-known Duhamel’s method allowing the transient heat 

diffusion problem with time-dependent boundary conditions to be presented as a 

convolution integral (see in the sequel). The general form of the Caputo-type 

fractional operator can be expressed as 
 

 

 

where 𝑀(𝛼)/𝑁(𝛼) is a normalization function and 𝑅(𝛼, 𝑡 − 𝑟) is the relaxation 
function (memory kernel). 
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From this general definition, we may briefly present two general members of this 

group. 
 

Caputo derivative [1] 
 

 

 

with a singular (power-law) memory kernel, 𝑀 = 1 and 𝑁(𝛼) = Γ(1 − 𝛼) 
 

and Caputo-Fabrizio fractional operator [2] 
 

 

 

with a non-singular (regular) memory kernel where 𝑁(𝛼) = 1 − 𝛼, while the 

function 𝑀(𝛼) satisfies the conditions 𝑀(0) = 𝑀(1) = 1. 
 

From this position, we try to show that many solutions to transient problems 

developed by Duhamel’s method can be presented in terms of the Caputo-Fabrizio 

fractional operator by applying classical solution methods, such as the Fourier’s 

separation of variables. 
 

The Main Focus of this Chapter 
 

The modern treatments in fractional calculus try to make the fractional operators 

useful and versatile tools for solving real-world problems. Nowadays, there are too 

many controversial opinions about the adequate applications of fractional operators 

with different memory kernels. This requires the development of examples where 

it is possible clearly and on the basis of well-known methods of solutions to show 

that the availability of the new fractional operators, especially that of Caputo- 

Fabrizio, is natural. The main focus of this chapter is on the basis of classical 

solutions available in many textbooks on heat transfer to demonstrate that by 

applying the Duhamel’s method and the method of separation of variables, the 

Caputo-Fabrizio operators appears naturally: precisely, solutions as series of 

operators with fractional parameters depending on the eigenvalues of the auxiliary 

transient problem. 

CDα
t f(t) =

1

Γ(1− α)

∫ t

0

1

(t− τ)α
df(τ)

dτ
dτ, 0 < α ≤ 1,

CFDα
t f(t) =

M(α)

1− α

∫ t

0

exp

[
− α

1− α
(t− τ)

]
df(τ)

dτ
dτ, 0 < α ≤ 1
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TRANSIENT HEAT CONDUCTION AS A PRINCIPLE PROBLEM 
 

Let us consider the classical heat conduction problem with constant heat diffusivity 
 

 (1) 

 

formulated in a finite domain (1-D slab), 0 ≤ 𝑥 ≤ 𝐿 under homogenous initial and 

time-dependent boundary condition at 𝑥 = 0, namely 

(2) 
 

The solution of this problem needs application of the Duhamel method briefly 

presented next. 
 

Duhamel’s Method 
 

In one dimensional case, with zero initial conditions, which are the mandatory 

conditions of the Duhamel theorem [3], in a finite domain and Cartesian 

coordinates, the models is (1) with boundary and initial conditions (2). 
 

The application of the Duhamel method needs a solution of an auxiliary problem 

where the model (1) has to be solved with a unit step change at the 𝑥 = 0 (Dirichlet 

problem) ((𝑡) = 𝑈(𝑡), 𝑈(𝑡) = 0 for 𝑡 < 0 and 𝑈(𝑡) = 1 for 𝑡 ≥ 0), namely 

 

Therefore, we may formulate the auxiliary problem as 

(3) 

 

with with boundary and initial conditions 
 

(4) 
 

In order to solve the original problem (1)-(2) the solution can be presented in the 

form, within a limited time interval 0 ≤ 𝑡 ≤ 𝑟1, by applying the solution of the 

auxiliary problem (3)-(4), in a general form 

∂T

∂t
= a

∂2T

∂x2

T (x, 0) = 0, T (0, t) = Q (t) , T (L, t) = 0.

T (0, t) = U (t) , T (L, t) = 0, T (x, 0) = 0

∂R

∂t
= a

∂2R

∂x2
, 0 < x < L

R (0, t) = 1, R (L, t) = 0, R (x, 0) = 0

T (x, t) ≡ Q (0)R (x, t)
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Abstract: This chapter aims to discuss the analytical solutions for heat waves 

observed in Cattaneo-Hristov heat conduction modelled with Caputo-Fabrizio 

fractional derivative. This operator includes a non-singular exponential kernel and 

also requires physically interpretable initial conditions for its Laplace transform 

property. These provide significant advantages to obtain analytical solutions. Two 

different types of harmonic heat sources are assumed to elicit heat waves. The 

analytical solutions are obtained by applying Laplace transform with respect to the 

time variable and the exponential Fourier transform with respect to spatial coordinate. 

The temperature curves for varying values of the fractional parameter, angular 

frequency, and the velocity of the moving heat source are drawn using MATLAB. 

Keywords: Caputo-Fabrizio fractional derivative, Cattaneo-Hristov heat diffusion 

model, Exponential fading memory, Fourier transform, Harmonic source effect, 

Laplace transform, Oscillatory heat transfer. 

INTRODUCTION 

 

The diffusion phenomenon describes the movement of various materials in nature, 

such as molecules, heat, liquids and atoms. Physically, this movement occurs from 

a higher concentration region to a lower concentration region. Also, it is based on 

the relationship between flux and concentration gradient.  

The chance in this relation determines the type of diffusion model. In the classical 

theory of diffusion, Fick’s diffusion model is a parabolic-type partial differential 

equation [1-4]: 

2

2
,

T T

t x
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where   denotes the diffusion (or thermal conductivity) coefficient. This model 

corresponds to the heat conduction equation constructed on the Fourier’s law. 
Analytical solution of the diffusion (or heat) model is a Gaussian function which 

implies the infinite speeds of diffused particles: 

 
 

2

1 2

1
, exp .

44

x
T x t

tt 

 
  

 
 

This is called as casuality problem and is, unfortunately an unphysical concept for 

many diffusion processes on different scales [5]. To overcome this weakness, 

generalizations of the constitutive laws for diffusion processes and the resulting 

partial differential equations have been studied [6].   

In the generalized theory of heat diffusion, Cattaneo’s law between heat flux and 
temperature gradient is in the following form [7,8]: 

0 grad ,
q

q k T
t




  


 

where 
0  is the relaxation time. Its corresponding heat diffusion model for rigid 

heat conductors given by 

2

0 2
,

T T
a T

t t


 
  

 
 

in which 
0a   represents the propagation speed of heat waves, is one of the 

generalized models frequently studied in thermal sciences. The heat waves arising 

from this model were called “second sound” [9]. The emergence of this concept 

has revealed that wave phenomenon is not only specific to the hyperbolic type 

partial differential equations. This awareness has aroused great interest among 

researchers, and it has led to the discovery of unnoticeable waves in parabolic-type 

diffusion processes [10-13].  

All generalized diffusion models in classical theory are defined by integer-order 

derivatives based on the local description. However, it has been observed that 

locally generalized models are insufficient to describe the anomalous diffusion 

phenomenon noticed in many processes in nature. Fractional operators gain 

importance in eliminating this inadequacy. These operators very realistically 
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describe the properties of memory and inheritance in many processes, thanks to 

their non-local definitions.  

Heat conduction is one of the physical processes in which fractional operators are 

used most effectively. For example, the time non-local relation between heat flux 

and temperature gradient was first offered in the following concept by the long-tail 

power kernel [14-16]: 

 
 

   

 
   

1

0

2

0

grad ,  0 1,

grad ,  1 2,
1

t

t

k
t T d

t
q t

k
t T d





   


   






 
   
 

 
   
  





 

where   is the Euler’s gamma function. This relation reveals the time-fractional 

heat conduction equation as follows: 

,  0 2,
T

a T
t







   


  (1) 

where 
t








 denotes the Caputo fractional derivative. Eq.(1) is also known as 

“diffusion-wave equation” depending the variation of fractional order  . Similarly, 

the anomalous behaviors in particle jumps reveal the space or space-time fractional 

diffusion equations modeled with Riesz, Weyl, or fractional Laplacian operators. 

These models have been studied many times, both mathematically and physically 

[17,18]. 

Another non-local relation incorporating the heat flux with its history was 

considered by [7] as 

     , , , .

t

q x t R x t T x t d 


     

Assuming  ,R x t  as the Jeffrey’s time-dependent kernel function 

   exp ,R t t s       where   is the relaxation time, yielded an integro-

differential heat equation [7]: 



124 Current Developments in Mathematical Sciences, 2022, Vol. 3, 124-161  

Mehmet Yavuz and Necati Özdemir (Eds) 

All rights reserved-© 2022 Bentham Science Publishers 

CHAPTER 6 

Optimal Homotopy Analysis of a Nonlinear 
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CD4+ T-Cells 

Mohammad Ghoreishi1, Parvaiz Ahmad Naik2,* and Mehmet Yavuz3 

1School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia 

2School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. 

China 

3Department of Mathematics and Computer Sciences, Necmettin Erbakan University, Konya 42090, 

Turkey 

Abstract: In this chapter, a series solution of a nonlinear fractional-order 

mathematical model of human T-cells lymphotropic virus-1 (HTLV-1) infection of 

CD4+ T-cells is obtained by using a strong and capable technique so-called Homotopy 

Analysis Method (HAM). The proposed model is a system of nonlinear ordinary 

differential equations that divides CD4+ T-cells into four components: uninfected 

cells, latently infected cells, actively infected cells and leukemia cells. The fractional 

model is more general than the classical one, as in the fractional model, the next state 

depends not only upon its current state but also upon all of its historical states. The 

homotopy analysis method (HAM) is applied for a strongly nonlinear fractional-order 

system as it utilizes a simple method to adjust and control the convergence region of 

the infinite series solution by using an auxiliary parameter and allows to obtain a one-

parametric family of explicit series solutions. By using the homotopy series solutions, 

firstly, several 𝛽-curves are plotted to demonstrate the regions of convergence, then 

the square residual errors are obtained for different values of these regions. Secondly, 

the numerical solutions are presented to show the accuracy of the applied homotopy 

analysis method. In this chapter, a detailed proof of the convergence of this method 

for nonlinear fractional-order model of HTLV-1 infection of CD4+ T-cells is also 

given. The results indicate that the HAM is accurate and capable to obtain an accurate 

approximate analytical solution for HTLV-1 infection of CD4+ T-cells. 

Keywords: Human T-cells lymphotropic virus-1 (HTLV-1) infection of CD4+ T-

cells, Homotopy analysis method, ℏ-curve, 𝛽-curves, Convergence-control 

parameter, Least square. 
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INTRODUCTION 

Human T-cells lymphotropic virus-I (HTLV-1) infection of CD4+ T-cells (HLTV-

1) was first discovered in 1980. The first human retrovirus, many epidemiologists, 

mathematicians and biologists are interested in investigating this virus due to 

several biological characteristics [1-2]: 

1. This retrovirus shows relationship between viruses and cancer, 

2. The association of HTLV-1 with a disease similar to multiple sclerosis (MS) 

created an opportunity to study the mechanisms that lead to the disease, 

3. Its identification facilitated the discovery and isolation of the human 

immunodeficiency virus (HIV) [3-6], which caused a global epidemic of acquired 

immune deficiency syndrome (AIDS) [2]. 

According to the study [7], HTLV-1 is a single-stranded RNA retrovirus with 

reverse transcriptase activity that leads to a DNA copy of the viral genome. The 

viral DNA copy is then integrated into the DNA of the host genome. After 

integration, the viral DNA can latently persist within a T-cell for a long time. The 

latent infected T-cells contain the viral DNA but are not producing it, and they 

cannot cause new infections of susceptible cells. Stimulation of the latent infected 

CD4+ T-cells by antigen can initiate activation of the infected cells. Actively 

infected T-cells can produce virus and can cause new infections of susceptible T-

cells. Actively infected T-cells may then convert to adult T-cells leukemia (ATL) 

through certain mechanisms which are not yet known. Like HIV, HTLV-1 targets 

CD4+ T-cells, the most abundant white cells in the immune system, decreasing the 

body’s ability to fight infection. 

In 1999, Stilianakis and Seydel [8] proposed a system of nonlinear differential 

equations that divides CD4+ T-cells into four compartments as follows: 

1. Uninfected CD4+ T-cells,  

2.  Latently infected cells, 

3. Actively infected cells,  

4. Leukemia cells. 
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Let 𝑇(𝑡), 𝑇𝐿(𝑡), 𝑇𝐴(𝑡) and 𝑇𝑀(𝑡) represent the concentration of healthy CD4+ T-

cells at time 𝑡, latently infected cells, actively infected cells and leukemia cells, 

respectively. This model is formulated as follows 

               

𝒅𝑻

𝒅𝒕
= 𝜦 − 𝝁𝑻𝑻 − 𝒌𝑻𝑨𝑻,

𝒅𝑻𝑳

𝒅𝒕
= 𝒌𝑻𝑨𝑻 − (𝝁𝑳 + 𝜶𝑳)𝑻𝑳,

𝒅𝑻𝑨

𝒅𝒕
= 𝜶𝑳𝑻𝑳 − (𝝁𝑨 + 𝝆)𝑻𝑨,

𝒅𝑻𝑴

𝒅𝒕
= 𝝆𝑻𝑨 + 𝜷𝑻𝑴 (𝟏 −

𝑻𝑴

𝑻𝑴𝒎𝒂𝒙

) − 𝝁𝑴𝑻𝑴.

                                  (1) 

Table 1 summarizes the meaning of parameters and variables. Wang et al. [9] have 

investigated the global dynamics of system (1). Song and Li [7] investigated the 

dynamics behavior of the following model 

             

𝒅𝑻

𝒅𝒕
= 𝜦 − 𝝁𝑻𝑻 − 𝒌

𝑻𝑨

𝟏+𝜶𝟏𝑻𝑨
𝑻,

𝒅𝑻𝑳

𝒅𝒕
= 𝒌

𝑻𝑨

𝟏+𝜶𝟏𝑻𝑨
𝑻 − (𝝁𝑳 + 𝜶𝑳)𝑻𝑳,

𝒅𝑻𝑨

𝒅𝒕
= 𝜶𝑳𝑻𝑳 − (𝝁𝑨 + 𝝆)𝑻𝑨,

𝒅𝑻𝑴

𝒅𝒕
= 𝝆𝑻𝑨 + 𝜷𝑻𝑴 (𝟏 −

𝑻𝑴

𝑻𝑴𝒎𝒂𝒙

) − 𝝁𝑴𝑻𝑴.

                                   (2) 

Table 1. List of variables and parameters (modified from [2]). 

 

Parameters and 

Variables 

 

Meaning 

Dependent variables 

𝑇 Uninfected CD4+ T-cells population concentration 

𝑇𝐿 Latently infected CD4+ T-cells concentration 

𝑇𝐴 Activity infected CD4+ T-cells concentration 

𝑇𝑀 Leukemic CD4+ T-cells concentration 

Parameters and constants 

 

𝜇𝑻 Natural death rate of CD4+ T-cells concentration 

𝜇𝐿 Blanket death rate of latently infected CD4+ T-cells 



162 Current Developments in Mathematical Sciences, 2022, Vol. 3, 162-185  

*Corresponding author Asıf Yokuş: Department of Mathematics, Faculty of Science, Firat University, Elazig

23100, Turkey; E-mail: asfyokus@yahoo.com 

Mehmet Yavuz & Necati Özdemir (Eds.) 

All rights reserved-© 2022 Bentham Science Publishers 

 

  
  

CHAPTER 7 

Behavior Analysis and Asymptotic Stability of the 

Traveling Wave Solution of the Kaup-Kupershmidt 

Equation for Conformable Derivative 

Hülya Durur1, Asıf Yokuş2* and Mehmet Yavuz3 

1Department of Computer Engineering, Faculty of Engineering, Ardahan University, Ardahan 

75000, Turkey 

2Department of Mathematics, Faculty of Science, Firat University, Elazig 23100, Turkey 

3Department of Mathematics and Computer Sciences, Necmettin Erbakan University, 42090 Konya, 

Turkey 
 

Abstract: This article suggests solving the traveling wave solutions of the time-

fractional Kaup-Kupershmidt (KK) equation via 1/ G -expansion and sub-equation 

methods. Non-local fractional derivatives have some advantages over local fractional 

derivatives. The most important of these advantages are the chain rule and the Leibniz 

rule. The conformable derivative, which has a local fractional derivative feature, is 

taken into account in this study. Different types of traveling wave solutions of the 

time-fractional KK equation have been produced by using the important benefits of 

the time-dependent conformable derivative operator. These wave types are dark, 

singular, rational, trigonometric and hyperbolic type solitons. 2D, 3D and contour 

graphics are presented by giving arbitrary values to the constants in the solutions 

produced by analytical methods. These presented graphs represent the shape of the 

standing wave at any given moment. Besides, the advantages and disadvantages of 

the two analytical methods are discussed and presented in the result and discussion 

section. In addition, wave behavior analysis for different velocity values of the dark 

soliton produced by the analytical method is analyzed by simulation. The conditional 

convergence and asymptotic stability of the dark soliton discussed are analyzed. 

Computer software is also used in operations such as drawing graphs, complex 

operations, and solving algebraic equation systems. 

Keywords: 1/ G -expansion method, Asymptotic stability, Conformable derivative, 

Sub-equation method, Time-fractional Kaup-Kupershmidt equation. 
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INTRODUCTION 

 

Recently, a number of works on nonlinear partial differential equations (NLPDEs) 

have been raised, as they may be employed in many disciplines, including 

engineering, physical, chemical and biological sciences. Most of these works have 

focused on attaining analytical solutions for fractional PDEs. However, fractional 

derivative definitions such as Caputo and Riemann-Liouville, are not always 

capable of reaching analytic solutions, for they do not meet some basic principles 

of known integer order derivatives. Some fractional derivatives are impossible to 

solve with these definitions. 

Though the fractional derivative originated in the 17th century, interest in this 

subject has increased in recent years, and many studies have been made on this 

subject. This is because physical systems are often referred to as fractional 

derivatives. In the literature, several studies related to fractional derivatives, has 

continued to increase. Various fractional derivative definitions have been made 

from the 1730s to this time. Recently, Khalil et al. presented a simple, 

understandable and intriguing definition of the fractional derivative called the 

congruent fractional derivative [1]. 

Definition: For 0t    and  0,1 , an   -th order “conformable derivative” of a 
function is defined by (Khalil et al. 2014) as 

 
   1

( ) lim
f t t f t

T f t














 
 , 

for  : 0,f R  . 

Theorem: Let  0,1 , 0t   and ,g f be  differentiable functions. Then 
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f) If f  is a differentiable function, then 1( )( )
df

T f t t
dt





 . 

Kaup has proposed first the significant diffuse classical KK equation [2] and was 

later presented by Kupershmidt [3]. This paper is about the investigation of the KK 

equation. The KK equation is used to study the operation of behavioral capillary 

gravitational waves and nonlinear scattered waves. 

The fifth order NLPDE is as follows: 

  2, 0,t xxx x xx x xxxxxD u x t ruu bpu u cu u u       (1) 

where c, b and r are real constants, 0 1   which is the parameter representing 

the order of fractional time derivative. We write Eq. (1) for c=45, b=-15 and r=-

15, in the form below [4] 

  2, 15 15 45 0.t xxx x xx x xxxxxD u x t uu pu u u u u     
     

                   (2) 

Recently, great research based on the work of the classic KK equation have been 

done. The classical KK equation is integrable at p = 5/2 [5] and is known to have 

bilinear representations [4].  

As a result of the effects of surface tension on phase velocity, a capillary wave is 

formed that travels along the phase boundary of a liquid. Besides, a longer 

wavelength occurring on the surface of the fluid will cause the formation of gravity-

capillary waves that are affected by both the surface tension and the effect of gravity 

and the fluid property. As is known, the modeling of physical events is done with 

differential equations. Obviously, solutions of differential equations play an 

important role in illuminating physical phenomena. In this study, we consider the 

time-fractional KK equation, which is used in the modeling of capillary waves and 

gravity capillary waves, which have an important place physically. If the constants 

in the solutions we have presented gain physical meaning, it will be much more 

valuable. 

There are many studies in the literature regarding the time-fractional KK equation. 

For example; the time-fractional KK equation has been solved via 2-D Legendre 

multiwavelet method [6], Lie point symmetries of the time-fractional KK equation 

are found and its invariant solutions are determined with the help of infinitesimal 

generators [7], with the help of extended G G -expansion and improved G G -
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Abstract: Rumor spreading is a trivial social practice, which has a long history of 

affecting society both in a positive and negative way, and modelling of transmission 

of rumors has been an attractive area for social and, of late, for physical scientists. In 

this chapter, we have modified the rumor-spreading model by incorporating fractional 

derivatives in the Caputo sense. To analyze the spread of rumors in social as well as 

virtual networks, we have considered four populations, namely, ignorant, spreader, 

recaller, and stifler. The existence and uniqueness, and boundedness of the solutions 

of the present model have been exhibited theoretically. Numerically, we have 

experimented with the effect of fractional derivatives and the density of one 

population on the other population by demonstrating the impact of rumor spread with 

the change of various parameters. 

Keywords: Adams-Bashforth-Moulton method, Caputo fractional derivative, 

Mathematical model, Rumor spreading. 

INTRODUCTION 

While there are lots of happenings that entertain us for the relaxation of our lives in 

this world, it is unfortunately a part of human nature to constantly prefer a chunk 

more. As a result, we tend to consider events that can be genuinely now no longer 

true. Sometimes we do it collectively for a few activities, that refer to an object, 

event, or subject matter of public attention and that is how rumors start. Rumors 

have existed as a large model of social verbal exchange and a trivial social 

phenomenon throughout human evolutionary history. 
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People spread rumors for a variety of reasons, including raising awareness, 

slandering others, creating momentum, diverting attention, and inciting panic. Due 

to the speedy advancement in various online platforms such as Facebook, Twitter, 

WhatsApp, etc., the spread of rumors moves from verbal to digital, and as a result, 

their transmission becomes faster than ever before. Rumors may thrill us, scare us 

or entertain us temporarily or for a long period. Many hearsay stories about some 

great personalities who failed in mathematics give us hope that bouncing back may 

happen with us also. All-time fascinating stories about alien life, confirm that we 

are not alone in this universe. Rumors about celebrities, politicians, and scientific, 

financial, and social happenings change our way of looking at events/personality. 

Presently, a huge racket of rumor industry is running surrounding the happenings 

of Covid-19 news. These misinformed and misguiding stories harm nations, and 

they affect the measures implemented to control the situations. Many bloggers are 

running their business based on rumors only. Websites like www.snopes.com, 

www.thecut.com, www.cisa.gov, www.factcheck.org etc. are some websites, 

which check the factuality of rumors. With the advent of the internet, rumors are 

now shared via instant messengers, emails, or publishing blogs. Till the late 

nineties, studies of the impact of rumors were the areas for only social scientists. 

Kimmel, in his book “Rumors and Rumor Control,” has discussed the 
understanding and controlling of rumors [1]. But, of late, mathematicians and 

computer scientists have shown remarkable interest in modelling the transmission 

of rumors in their research works. Despite an interesting similarity between rumor 

spreading and the epidemic model [2, 3], rumor spreading dynamics have received 

less attention than epidemic spreading. Daley and Kendall were the first to 

investigate the issue of rumor transmission and established the DK model [4-6], 

where they looked into the subject of rumors by splitting the people into three 

groups: ignorants, spreaders, and stiflers, which corresponded respectively to those 

who were unaware of the rumor, those who had heard the rumor and aggressively 

disseminated it, and those who had heard the rumor but had stopped spreading it. 

The Maki-Thompson (MK) model appeared next, as one of the DK model’s 
modifications [7]. The rumor spreading was performed via direct contacts of the 

spreaders with others in the MK model, which has been extensively utilized for 

quantitative studies of rumor spreading [8-10]. In the study [11], Zhao et al. 

considered the case of online blogging and analyzed the rumor spread with 

consideration of the forgetting mechanism. The author has presented a model to 

analyze the impact of rumors on market [12]. Based on the fulfillment of two 

specific criteria simultaneously for a rumor to surely invade, Galam has used a 

majority rule reaction-diffusion dynamics to model rumor [13]. More information 

on rumor spreading model can be found in [14-22] and in the references therein. 
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Fractional calculus, being one of the most happening areas of research in recent 

times, has become an exciting trend for scientists, mathematicians, and engineers 

to explore their areas of study in a fractional sense. This is due to the potentiality of 

the fractional derivatives to portray the natural and man-made complex phenomena 

more realistically. The invention of fractional calculus takes us way back to the year 

1695, when L’Hopital asked Leibniz about the possibility that n could be something 

other than an integer in (𝑑𝑛𝑓)/(𝑑𝑡𝑛). The search for an operator that continuously 

transforms f into its nth derivative or anti-derivative opens the door to a vast area 

of studies called fractional calculus. Many fractional derivatives such as Caputo, 
Gru ̈nwald Letnikov, Riemann-Liouville, Jumarie, Caputo-Fabrizio, Atangana-

Baleanu are inverted thereafter and their theories are explored in a wide range [23-

26]. The fascinating results obtained by analyzing the physical model by 

incorporating various fractional derivatives in the field of science and technology 

can be observed in some work presented in [27-33]. The author has analyzed 

Noyes–Field model for the nonlinear Belousov–Zhabotinsky reaction by 

incorporating fractional derivative [34]. In the studies [35, 36], authors have 

presented new existence results of fractional integro-differential equations in 

Atangana–Baleanu sense. Some very interesting works on non-singular fractional 

derivatives can be found in [37-39]. Mirzazadeh et al. [40], examined a sixth-order 

dispersive (3+1)-dimensional nonlinear time-fractional Schrödinger equation with 

cubic-quintic-septic nonlinearities. Nisar et al. [41], considered nonlinear Hilfer 

neutral fractional derivatives with a non-dense domain and analyzed controllability 

results. Some interesting results are derived by authors [42-54] using numerical and 

modified schemes. Iyiola et al. [55], in their work, have analyzed a generalized 

Chagas vectors re-infestation model of fractional order type and presented some 

interesting findings. Moreover, [56-62] are also interesting papers presenting 

illustrative applications of fractional order modeling. 

Even though the rumor spreading model is an analogy to the epidemic model, a 

widely studied model in the literature of mathematical epidemiology, till date, no 

research work can be observed where these models are treated in a fractional 

derivative sense. Fractional-order derivative, being the generalization of the 

integer-order derivative, is capable of demonstrating better results in modeling real 

phenomena and due to this reason, in this chapter, we plan to study the burning 

topic like rumor spread in social as well as virtual networks in the frameworks of 

fractional derivatives. To model the rumor spread, the populace is classified into 

four classes in this chapter: ignorants, spreaders, recallers, and stiflers and analyzed 

the model both theoretically and numerically. Fractional derivative is considered in 

the Caputo sense. The impact of a fractional derivative is observed, while 

experimenting with the evolution of densities of various groups under the influence 
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Abstract: The pivotal aim of the present work is to find the solution for the fractional 

system of equations arising in the biochemical reaction using 𝑞-homotopy analysis 

transform method (𝑞-HATM). The hired scheme technique unification of Laplace 

transform with 𝑞-homotopy analysis method, and fractional derivative defined with 

Caputo-Fabrizio (CF) operator. To validate and illustrate the competence of the future 

method, we examined the model in terms of fractional order. The fixed-point theorem 

hired to demonstrates the existence and uniqueness. Moreover, the physical nature of 

achieved solutions has been captured in terms of plots for different order. The 

obtained results elucidate that the considered algorithm is easy to implement, highly 

methodical, and very effective as well as accurate to analyse the nature of nonlinear 

differential equations of fractional order arising in the connected areas of science and 

engineering. 

Keywords: Biochemical reaction, Caputo-Fabrizio derivative, Enzyme kinetics, 

Mathematical model, Homotopy analysis method, Laplace transform. 

INTRODUCTION 

The concept of Fractional calculus (FC) was initiated in Newton’s time. 
Nevertheless, it fascinated the attention of many authors recently. The concept of 

classical or integer-order is associated with power law, and it has a wide range of 
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applications and admits numerous properties. However, mankind always looks for 

the invocation and modification for betterment to lead life systematically and 

happily. Recently, scientists and mathematicians notice that, the classical concept 

is not able to capture memory and hereditary-based consequences, and then they 

suggested with some essential results that the concept of FC is suitable for these 

types of studies. Moreover, the classical concept is a subset of FC, and we can be 

able to capture the behaviour of the corresponding system for classical values as a 

particular case. The main reason for the researchers attracted towards the study of 

FC is the open problems (including physical and geometrical interpretation of the 

concept), basic rules admitted by classical concept to extend the results and many 

others. Many researchers present their own notions and viewpoints with novel 

concepts in different forms [1-6].  

Studying the biochemical models with the mathematical system is always a venue 

for innovation and development to understand and predict the corresponding 

complex behaviour of phenomena. Particularly, in biochemical systems, enzyme 

kinetics have been effectively exemplified with the aid of a system of ordinary 

differential equations [7-9]. The system was constructed uniquely on reactions that 

were deprived of spatial dependency of the several concentrations. Here, we 

consider the system studied by authors in the study [10, 11], and the corresponding 

enzyme reaction model is presented with enzyme 𝐸, substrate 𝑆, and product 𝑃 as 

[12]  

 
 

(1) 

where 𝛽1, 𝛽−1 and 𝛽2 are positive rate constants for each reaction. Here, 𝐸𝑆 the 

enzyme-substrate intermediate complex. Now, the reactants concentration is 

presented as follows for Eq. (1)  𝑠 = [𝑆], 𝑐 = [𝐶], 𝑝 = [𝑃], 𝑒 = [𝐸]. Then 

employing the law of mass action, we have [10-12] system with associated 

conditions  

 𝑑𝑠

𝑑𝑡
= −𝛽1𝑒𝑠 + 𝛽−1𝑐,    𝑠(0) = 𝑠0, 

𝑑𝑒

𝑑𝑡
= −𝛽1𝑒𝑠 + (𝑘−1 + 𝑘2)𝑐,     𝑒(0) = 𝑒0, 

(2) 

 

 𝐸 + 𝑆                  𝐸𝑆                   𝐸 + 𝑃       
𝛽1  𝛽2 

𝛽−1 
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𝑑𝑐

𝑑𝑡
= 𝑘1𝑒𝑠 − (𝑘−1 + 𝑘2)𝑐,   𝑐(0) = 𝑐0, 

𝑑𝑝

𝑑𝑡
= 𝑘2𝑐,     𝑝(0) = 𝑝0. 

By the assist of Eq. (2), authors in [12] derived the following system  

 𝑑𝒫(𝑡)

𝑑𝑡
= −𝛼𝒫 + 𝛼(𝒫 + 𝛽 − 𝜀)𝒬, 

𝑑𝒬(𝑡)

𝑑𝑡
= 𝒫 − (𝒫 + 𝛽)𝒬, 

𝑑𝒮(𝑡)

𝑑𝑡
= 𝜀𝒬. 

(3) 

The projected system is analyzed by many researchers to illustrate their viewpoints 

using numerical schemes. For instance, variational iteration scheme [10], 

multistage homotopy analysis algorithm, Adomian decomposition [13] and 

multistage homotopy-perturbation techniques [14] and others. 

The fractional-order derivatives are familiarized by Leibnitz soon after the classical 

concept. As compared to classical calculus, it was soon discovered that fractional 

calculus (FC) is more suitable capturing complex phenomena [15-25]. The FC 

considered is the essential apparatus to illustrate the chemical and biological 

phenomena. Most of the mathematical models demonstrate the non-local 

distributed effects, hereditary properties and system memory. These properties are 

necessary to describe the above-cited phenomena. The pivotal aim of generalizing 

the integer to fractional order is to capture consequences related to non-locality, 

long-range memory and time-based properties and also anomalous diffusion 

aspects [26-31]. Most familiarly hired operators to analyze many models are 

Riemann, Liouville, Caputo, Fabrizio and others [1-6, 32, 33]. In this connection, 

Caputo and Fabrizio in 2015 overcome the many limitations raised by many 

mathematicians to generalize complex models, and then many scholars hired to 

present simulating consequences. It has been proved by many researchers that, the 

CF fractional operator has great results compared to other fractional operators. 

In the present work, we consider the fractional-order system in order to include all 

the above-described consequences into the system cited in Eq. (3) and which as 

follows 
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Abstract: Transversal and diverging waves, return flows, propeller induced jet flows, 

and other hydrodynamic effects induced by a floating object may cause significant 

movement and/or suspension of bottom and bank sediments in the marine 

environment, especially in approach channels. Using the CFD (Computational Fluid 

Dynamics) process, the hydro-morphodynamic effects induced by a non-powered 

floating object navigating in an approach channel are investigated in this study. The 

approach channel dimensions depth, width, and channel slope are determined 

according to PIANC (2014) [1]. The floating object locations and velocities are used 

in nine different scenarios. In these cases, the floating object is 0.90, 1.10, and 1.30 

meters from the bottom of the approach channel, respectively. According to the 

findings, when the floating object is located nearest to the bottom and its speed is 

fastest, there is a significant amount of sediment suspension and sediment movement 

in the channel slope, which is mostly attributed to super-critical return flows. When 

the floating object is farthest from the channel bottom and the floating object speed is 

lowest, however, there is a noticeable reduction in the acceleration and suspension of 

the sediment. As a result, the velocity and location of the floating object, channel 

slope, the kinematics of ship-generated waves, and particularly the return flows are 

found to have a significant impact on sediment movement and suspension. 

Keywords: CFD, Floating object, Hydrodynamic, Morphodynamic, Sediment 

suspension, Sediment transport. 

INTRODUCTION 

Waterborne commerce has increased continuously over the last decades and this 

situation has led to an increase in ship dimensions and ship numbers. Because of 
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the increasing ship sizes and the number of ships, safe navigation and economical 

requirements have gained great importance. In order to ensure safe navigation in 

the approach channel, the channel must be wide and deep enough for vessel traffic, 

but it is not so deep or large as to require excessive dredging. Therefore, vessel or 

floating object-induced sediment transport must be well studied in the design phase 

of the approach channel.   

Floating objects navigating in a natural or an artificial approach channel, in rivers 

or inland waterways cause several hydrodynamic disturbances in the form of waves 

and currents. Floating objects generate two main types of waves, namely primary 

(drawdown) and secondary waves [2]. The primary wave system consists of 

significant water level depression along the hull of the floating object and return 

flow. The primary wave system is dominant where floating object induced the 

cross-sectional blockage is significant [3]. Secondary waves are gravity waves 

generated by pressure peaks along the floating objects and these waves are short 

waves. The secondary waves are dominant in canals for ocean-going floating object 

and on most rivers, where the blockage factors of the floating object are usually 

very low [4].  

In previous, many researchers have worked on ship-generated waves [5-7]. These 

studies show that there is a relationship between wave height and ship type, draught, 

speed, and distance to the banks. Ship-generated waves cause intensive sediment 

resuspension and sediment transport in the approach channel. These actions are so 

important that Houser (2011) found that the vessel-generated wakes (including 

drawdown and surge waves) have much more effects on sediment resuspension 

than wind waves and suspended sediment concentration (SSC) increases with the 

increment of turbulent kinetic energy (TKE) of the supercritical pilot-boat wakes 

[8]. 

Floating object-induced hydrodynamic effects such as water level drawdown, 

transversal, and diverging waves, return flows, propeller jet flows, etc., lead to bank 

erosion, sediment resuspension, and environmental impact on plankton, fish, plants, 

etc. Rapaglia et al., (2011) measured water velocity, water depth, and sediment 

concentration on the shoals alongside the shipping channel after the passage of forty 

vessels. They found that higher return velocities and ten vessel-induced wakes led 

to SSC concentration above 400 mg/L, which is 30 times higher than the average 

background concentration [9]. Ji et al., (2014) investigated that ship induced 

suspended particulate matter (SPM) concentration navigating in an approach 

channel with and without a propeller [10]. Schroevers et al. (2015) carried out a 1/1 

scale physical experiment using a heavy loaded barge to observe the canal bottom 
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stability in the 36 km long Juliana Canal in the south of the Netherlands. During 

each passage of the barge, the flow velocities under the ship and the bed change 

were measured. They found that the amount of erosion in the middle of the channel 

reached 1 cm at each 10 passages of the barge and 6 cm erosion value in total at the 

end of the experiment (60 passages) [11]. McConchie and Toleman (2003) 

investigated boat wakes-induced riverbank erosion. They measured wake wave 

characteristics and suspended sediment concentration at several sites, and they 

found that boat wakes 2-80 times larger than background wind-generated waves. 

So, boat-generated waves are more erosive than wind-generated waves in riverine 

environments, particularly where fetch lengths are restricted [12]. 

Also, several studies have been carried out on various parameters such as water 

depth, turbulence energy, ship type, ship velocity, eddies, etc., that may affect 

sediment resuspension. Smaoui et al., (2011) investigated the quantitatively and 

relatively accurate relationship between sediment transport and boat traffic via a 

one-dimensional vertical model [13].  

Some researchers have studied ship-induced current with the help of physical 

experiments [14 - 17]. Maynord (2000) investigated the physical forces under the 

ship to determine ship-induced sediment transport and sediment suspension. 

Lenselink (2011) studied loaded barges and investigated the velocity profile under 

the barge and its effect on the seabed [14]. In this study, the hydro-morphodynamic 

effects caused by a non-powered floating object navigating in an approach channel 

are investigated using a 3-D numerical model. 

MATERIALS AND METHODS 

Numerical Model 

FLOW-3D software was used in this analysis to build a 3D hydro-morphodynamic 

numerical model. Flow Science, Inc. created FLOW-3D, a commercial software 

kit. Flow-3D uses a finite volume approach to solve the continuity equation (Eq. 

(1)) and the unsteady Reynolds-averaged Navier-Stokes equations governing fluid 

motion (Eq. (2)) [18]. 

𝜕

𝜕𝑋𝑖
𝑈𝑖𝐴𝑖 = 0,                                  (1) 

𝜕𝑈𝑖
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1
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) = −

1

𝜌

𝜕𝑃

𝜕𝑋𝑖
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