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PREFACE 

In recent years special functions have been developed and applied in a variety of 

fields, such as combinatory, astronomy, applied mathematics, physics, and 

engineering due mainly to their remarkable properties. The main purpose of this 

Special Issue is to be a forum of recently-developed theories and formulas of 

special functions with their possible applications to some other research areas. 

This Special Issue provides readers with an opportunity to develop an 

understanding of recent trends of special functions and the skills needed to apply 

advanced mathematical techniques to solve complex problems in the theory of 

partial differential equations. Subject matters are normally related to special 

functions involving   mathematical  analysis  and  its  numerous applications, as 

well as to more abstract methods in the theory of partial differential equations. 

The main objective of this book is to highlight the importance of fundamental 

results and techniques of the theory of complex analysis for PDEs, and emphasize 

articles devoted to the mathematical treatment of questions arising in physics, 

chemistry, biology, and engineering, particularly those that stress analytical 

aspects and novel problems and their solutions. 

In chapter 1, the authors investigated the Adaptive synchronization and Anti 

synchronization between fractional-order 3D autonomous chaotic systems and 

novel 3D autonomous chaotic system with quadratic exponential terms using 

modified adaptive control method with unknown parameters. 

In chapter 2, the authors improved the generalized differential transform method 

by using the generalized Taylor's formula. 

In chapter 3, the authors introduced an incomplete K2-Function.Incomplete 

hypergeometric function, incomplete hypergeometric function, incomplete 

confluent hypergeometric function, incomplete Mittag-Leffler function can be 

deduced as special cases of our findings. 

In chapter 4, the authors present some new results for the in-complete 

hypergeometric function. 

In chapter 5, the authors adopt the transcendental Bernstein series (TBS), a set of 

basis functions based on the Bernstein polynomials (BP), for approximating 

analytical functions. 

 



 ii 

 

In chapter 6, the authors find sufficient conditions under which 1F2 (a; b, c; z) 

belongsto UCV (α, β) and Sp(α, β). Here, 1F2 (a; b, c; z) is a special case of 

generalized hypergeometric function for p = 1 and q = 2. 

In chapter 7, the authors reveal that the missing link among a few crucial results in 

analysis, Abel continuity theorem, convergence theorem on (generalized) 

Dirichlet series, Paley-Wiener theorem is the Laplace transform with Stieltjes 

integration. 

In chapter 8, the authors introduce  a  hybrid family of truncated exponential-

Gould-Hopper based Genocchi polynomials by means of generating function and 

series definition. Some significant properties of these polynomials are established. 

In chapter 9, the authors derived a finite difference approximation equation from 

the discretization of the one-dimensional linear time-fractional diffusion equations 

with Caputo's time-fractional derivative. 

In chapter 10, the authors derived some important theorems like Krasnoselskii-type 

Theorems for Monotone Operators in Ordered Banach Algebra with Applications 

in Fractional Differential Equations and Inclusion. 

In chapter 11, authors studied general fractional order quadratic functional 

integral equations: Existence, properties of solutions and some of their applications. 

In chapter 12, the authors consider a nonlinear set-valued delay functional integral 

equations of Volterra-Stieltjes type. 

In chapter 13, the authors establish Saigo fractional derivatives of extended 

hypergeometric functions. Some special cases of these integrals are also derived. 

In chapter 14, the authors establish some new formulas and new results related to 

the Erdelyi-Kober fractional integral operator which was applied to the extended 

hypergeometric functions. 
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Praveen Agarwal 

Anand International College of Engineering 

India 

 

& 

 

Shilpi Jain  
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In 15 chapter, the authors investigated the kinetic model with four different 

fractional derivatives. They obtained the solutions of the models by Sumudu 

transform. They demonstrated results by some figures and prove the accuracy of 

the Sumudu transform by some theoretical results and applications. 
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CHAPTER 1 

Modified Adaptive Synchronization and Anti-

Synchronization Method for Fractional Order 

Chaotic Systems with Uncertain Parameters 

S. K. Agrawal1, Lalit Batra1, V. Mishra2,* and D. Datta3 

1 Department of Applied Sciences, Bharati Vidyapeeth’s College of Engineering, New Delhi, India  

2 Department of Mathematics, Thakur College of Engineering and Technology, Mumbai, India 

3 SRM Institute of Science and Technology, Bharathi Salai, Ramapuram, Chennai, India 

Abstract: In the present article, we have investigated the Adaptive synchronization 

and Anti-synchronization between fractional order 3D autonomous chaotic system 

and novel 3D autonomous chaotic system with quadratic exponential term using 

Modified adaptive control method with unknown parameters. The modified adaptive 

control method is very affective and more convenient in comparison to the existing 

method for the synchronization of the fractional order chaotic systems. The chaotic 

attractors and synchronization of the systems are found for fractional order time 

derivatives described in Caputo sense. Numerical simulation results which are carried 

out using Adams-Boshforth-Moulton method show that the method is reliable and 

effective for synchronization and anti-synchronization of autonomous chaotic 

systems. 

Keywords: Modified Adaptive control method, Synchronization and Anti-

Synchronization; Fractional derivative, 3D autonomous chaotic systems, Unknown 

parameters. 

1. INTRODUCTION  

Nowadays, fractional order derivative has become a popular field of research since 

fractional order system response ultimately converges to the integer order system. 

For high accuracy, fractional derivatives are used to describe the dynamics of 

systems. The attribute of fractional order systems for which they have gained 
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popularity in the investigation of dynamical systems is that they allow a greater 

degree of flexibility in the model. An integer order differential operator is a local 

operator. Whereas the fractional order differential operator is non-local in that it 

considers that the future state not only depends upon the present state but also upon 

all of the history of its previous states. For this realistic property, the usage of 

fractional order systems is becoming popular. Fractional differential equations have 

garnered a lot of attention and appreciation recently due to their ability to provide 

an exact description of different nonlinear phenomena. The advantage of fractional 

order systems is that they allow greater flexibility in the model. Another advantage 

of fractional order systems is that they possess memory and display much more 

sophisticated dynamics compared to its integral order counterpart, which is of great 

significance in secure communication and control processes. The applications of 

fractional calculus are growing rapidly. During the last few years, the applications 

can be found in the fields of science and engineering, including Fluid Mechanics 

[1, 2], Quantum Mechanics [3], Material Science [4], Viscoelasticity [5], Bioengin-

eering [6], Medicine [7], Biological models [8, 9], Cardiac Tissues [10], etc. 

Analysis of fractional order dynamical systems involving Riemann-Liouville as 

well as Caputo derivatives have been found in the study [11-13]. The field of chaos 

in nonlinear dynamics has grabbed the attention of researchers, and this contributes 

to a significant amount of ongoing research these days. 

Synchronization of chaos is a naturally occurring phenomenon where one chaotic 

dynamical system mimics the dynamical behavior of another chaotic system. This 

phenomenon can be used in a chaotic communication system as a mechanism for 

information decoding of the dynamical system. The application of nonlinear 

dynamical systems has nowadays spread to a wide spectrum of disciplines, 

including science, engineering, biology, sociology, etc. In nonlinear systems, a 

small change in a parameter in system parameters can lead to sudden and dramatic 

changes in both the qualitative and quantitative behavior. The idea of synchronizing 

chaotic systems was introduced by Pecora and Carroll [14] in 1990. They showed 

that it was possible to synchronize several chaotic systems through a simple 

coupling. Synchronization of chaotic dynamical systems has been extensively 

studied by many researchers [15-17] due to its important applications in an 

ecological system [18], physical system [19], chemical system [20], modeling brain 

activity, system identification, pattern recognition phenomena and secure 

communications [21, 22] and so on. 

In recent years, several different types of synchronization schemes have been 

proposed. These include a nonlinear time-delay feedback approach [23], adaptive 

control [24-26], active control [27-29], sliding mode control [30, 31] and so on. The 
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concept of synchronization can be extended to complete synchronization [32, 33], 

phase synchronization [34], projective synchronization [35, 36] and function proj-

ective synchronization [37, 38]. 

The synchronization of chaotic systems is a difficult problem due to their extremely 

sensitive dependence on initial conditions. Any initial correlations present between 

identical and non-identical systems, starting from very close initial conditions, 

exponentially decrease to zero with time. Thus, for all practical purposes, any initial 

synchronization between the systems is bound to disappear rapidly.  

The important feature of the study of synchronization is where the difference of 

states of chaotic systems converge to zero for a long time. This phenomenon is 

known as complete synchronization. Mathematically, the synchronization is 

achieved when  1 2lim ( ) ( ) 0,
t

x t x t


   where )(1 tx  and )(2 tx  are the state vectors 

of the drive and response systems, respectively. The phenomenon of anti-

synchronization is also observed in periodic, chaotic systems. This is a phenomenon 

in which the state variables of synchronized systems with different initial values 

have the same absolute but opposite signs. The sum of the two signals is expected 

to converge to zero when anti-synchronization occurs. Mathematically, the anti-

synchronization is achieved when  .0)()(lim 21 


txtx
t  

Adaptive Control methods are the control scheme used by a controller which must 

adapt to a controlled system with parameters that vary from time to time. In 

practical situations, these parameters may be unknown or initially uncertain. Thus 

the derivation of adaptive controller for the synchronization of chaotic systems in 

the presence of system parameter uncertainty is an important problem. This 

technique is used when the system parameters are unknown. In an adaptive method, 

a control law and a parameter update rule for unknown parameters are designed in 

such a way that the chaotic drive system controls the chaotic response system. Most 

of the studies in synchronization/anti-synchronization involve two identical/non-

identical systems under the hypotheses that all the parameters of the master and 

slave systems are known prior, a controller is constructed with the known 

parameters and systems are free from external perturbations. But in practical 

situations, the uncertainties like parameter mismatch and external disturbances may 

destroy the synchronization and even break it. Therefore, it is necessary to design 

an adaptive controller and parameter update law for control and synchronization of 

chaotic systems consisting of unknown parameters to get rid of internal and external 

noises. In the presence of model uncertainties and external disturbances, an 
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CHAPTER 2 

Improved Generalized Differential Transform 

Method for a Class of Linear Nonhomogeneous 

Ordinary Fractional Differential Equations 

İ. Onur KIYMAZ1,*and Ayşegül ÇETİNKAYA1 

1 Deptartment of Mathematics, Ahi Evran University, Kırşehir, Turkey 

Abstract: In this paper, by using the generalized Taylor's formula we improved the 

generalized differential transform method, which is a useful tool for getting the 

approximate analytic solutions of fractional differential equations. With this 

improvement, solutions of a class of linear nonhomogeneous ordinary fractional 

differential equations, which could not be solved with generalized differential 

transform method before, will be achieved and the solutions obtained will contain 

more integers and fractional exponents 

Keywords: Fractional Differential Equations, Generalized Taylor's Formula, 

Generalized Differential Transform Method. 2000 MSC: 65L05, 26A33. 

1. INTRODUCTION  

In 1986, Zhou [1] presented the concept of differential transformation and used it 

for obtaining the solutions of linear and non-linear initial value problems in electric 

circuit analysis. The concept is derived from the Taylor series expansion.  

In 1999, Chen and Ho [2] proposed a new transformation for solving partial 

differential equations, which called two-dimensional differential transform.  

In 2008, Momani and Odibat [3] developed this method for finding the solution of 

linear fractional partial differential equations. This method is based on the 

generalized Taylor's formula which given by Odibat and Shawagfeh [4] in 2007 

and called as generalized differential transform method (GDTM). Many other 
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authors used this method for solving fractional partial differential equations (see for 

example [5 - 9]).  

Recently, El-Ajou et al. [10] (see also [11]), introduced a general form of fractional 

power series. 

∑ ∑ 𝑎𝑗𝑛(𝑥 − 𝑥0)
𝑗+𝑛α,

𝑚−1

𝑗=0

∞

𝑛=0

 (1.1) 

where 𝑎𝑗𝑛's are constants, 𝑚 ∈ ℕ,  𝑥 ≥ 𝑥0 and 0 ≤ 𝑚 − 1 < α ≤ 𝑚. They also 

obtained a general form of the generalized Taylor's formula.  

𝑓(𝑥) = ∑ ∑
𝐷𝑗𝑫𝑛α𝑓(𝑥0)

Γ(𝑗 + 𝑛α + 1)
(𝑥 − 𝑥0)

𝑗+𝑛α

𝑚−1

𝑗=0

,

∞

𝑛=0

 (1.2) 

where 𝐷𝑗 =
𝑑𝑗

𝑑𝑥𝑗
,  𝑫𝑛α = 𝑫α𝑫α⋯𝑫α (n-times), and 𝑫α is the usual Caputo 

fractional derivative [12] which given for 𝑚 − 1 < α < 𝑚.  

𝑫α𝑓(𝑥) =
1

Γ(𝑚 − α)
∫

𝑑𝑚

𝑑𝑡𝑚
𝑓(𝑡)(𝑥 − 𝑡)𝑚−α−1

𝑥

0

𝑑𝑡, 

and for α = 𝑚 ∈ ℕ, 𝑫α𝑓(𝑥) = 𝐷𝑚𝑓(𝑥).  

Our motivation in this work is to improve the GDTM by moving from the above-

mentioned Taylor's formula (2). With the proposed method, more comprehensive 

solutions, which contains both integer and fractional orders of the unknown 

function, can be obtained for the following linear non homogenous fractional 

boundary value problem. 

𝑫α𝑢(𝑥) ± 𝜆𝑢(𝑥) = 𝑓(𝑥)

             𝑢(𝑗)(0) = 𝑐𝑗
 (1.3) 

where 𝑥 ≥ 0,  λ > 0, 𝑐𝑗 ∈ ℝ,  𝑗 = 0,1,2… ,𝑚 − 1 and 𝑓(𝑥) is an analytic function 

in its domain. 
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2. IMPROVED GENERALIZED DIFFERENTIAL TRANSFORM 

METHOD 

Before the definition of the improved generalized differential transform method 

(IGDTM), we gave the following theorem and a basic identity for Caputo fractional 

derivative in case the reader does not have enough information about fractional 

derivatives.  

Theorem 2.1. Suppose that 𝑓(𝑥) = 𝑥λ𝑔(𝑥), where λ > 1 and 𝑔(𝑥) has the 

generalized power series expansion 𝑔(𝑥) = ∑ 𝑎𝑛
∞
𝑛=0 𝑥α𝑛 with radius of 

convergence 𝑅 > 0, 0 < α ≤ 1. If 

a) β < λ + 1 and α arbitrary or 

b) β ≥ λ + 1, α arbitrary and 𝑎𝑛 = 0 for 𝑛 = 0,1, … ,𝑚 − 1, where 𝑚− 1 < β ≤
𝑚, 

then we have  

𝑫γ𝑫β𝑓(𝑥) = 𝑫γ+β𝑓(𝑥) 

for all 𝑥 ∈ (0, 𝑅) [13]. 

Lemma 2.1. Let 𝑚− 1 < α <  𝑚 and λ > 𝑚 − 1 then  

𝑫α𝑥λ =
Γ(λ+1)

Γ(λ−α+1)
𝑥λ−α. 

For more details about fractional calculus, we refer the books [12, 14, 15] to the 

reader.  

Now, suppose that the function 𝑢(𝑥) can be represented as 

𝑢(𝑥) = ∑∑ 𝑎𝑛𝑗(𝑥 − 𝑥0)
𝑛α+𝑗

𝑚−1

𝑗=0

∞

𝑛=0

= ∑ ∑ 𝑈α(𝑛, 𝑗)(𝑥 − 𝑥0)
𝑛α+𝑗,

𝑚−1

𝑗=0

∞

𝑛=0

 (2.1) 

where 𝑚− 1 < α ≤ 𝑚. Then the one-dimensional improved generalized 

differential transform (IGDT) of the function 𝑢(𝑥) in (4) is given with. 
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CHAPTER 3 

Incomplete 𝑲𝟐-function 

Dharmendra Kumar Singh1 and Vijay Laxmi Verma1, * 

1 Department of Mathematics, University Institute of Engineering and Technology, CSJM 

University, Kanpur, India 

Abstract: This chapter aims to introduce the incomplete 𝐾2-Function. Incomplete 

hypergeometric function, incomplete confluent hypergeometric function, and 

incomplete Mittag-Leffler function can be deduced as special cases of our findings. 

Some fractional integral formulae illustrate various avenues of their applications. 

Keywords: Incomplete pochhammer symbol, 𝐾2 function, Incomplete 𝐾2 function, 

Incomplete hypergeometric function, Incomplete Mittag-Leffler function. 

1. INTRODUCTION   

In 1993, Miller and Ross [1] introduced a function. 

𝐸𝑥[𝑣, 𝑎] =
𝑑−𝑣

𝑑𝑥−𝑣
𝑒𝑎𝑥 = 𝑥𝑣𝑒𝑎𝑥𝛾∗(𝑣, 𝑎𝑥) = ∑  ∞

𝑛=0
𝑎𝑛𝑥𝑛+𝑣

Γ(𝑛+𝑣+1)
, 𝑣 ∈ 𝐶                    (1.1) 

based on the solution of the functional order initial value problem, where 𝛾∗(𝑣, 𝑎𝑥) 
is the incomplete gamma function and divergent for |𝑥| = 1 if 1 ≤ 𝑅(𝛾). 

An extension of this function was introduced by Sharma and Dhakar [2] in the 

following form 

𝐾2

(𝑝;𝑞)

(𝑣;𝑎)
(𝑎1, … , 𝑎𝑝; 𝑏1, … , 𝑏𝑞; 𝑥) = 𝐾2

(𝑝;𝑞)

(𝑣;𝑎)
(𝑥)
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= ∑  ∞
𝑛=0  

(𝑎1)𝑛…(𝑎𝑝)𝑛
(𝑏1)𝑛…(𝑏𝑞)𝑛

𝑎𝑛𝑥𝑛+𝑣

Γ(𝑛+𝑣+1)
  (1.2) 

= 1 + ∑  ∞
𝑛=1  ∏  𝑛

𝑖=1   (𝑎𝑖)𝑛/∏  𝑛
𝑗=1   (𝑏𝑗)𝑛

𝑎𝑛𝑥𝑛+𝑣

Γ(𝑛+𝑣+1)
     (1.3) 

where𝑣 ∈ 𝐶 and in which no denominator parameter 𝑏𝑗 is allowed to be zero or a 

negative integer. If any parameter 𝑎𝑖 in (1.3) is zero or a negative integer, the serves 

terminate. An application of the elementary ratio test to the power series on the 

right side of (1.3) shows at once that. 

(i) If 𝑝 > 𝑞 + 1 the series is convergent for all 𝑥. 

(ii) If 𝑝 = 𝑞 + 1and |𝑥| = 1, the series can converge in some cases. Let 𝛾 =
∑𝑖=1
𝑝
 𝑎𝑖 − ∑𝑗=1

𝑞
 𝑏𝑗 it can be show that when 𝑝 = 𝑞 + 1 the series is absolutely 

convergent for |𝑥| = 1if 𝑅(𝛾) < 0, conditionally convergent for 𝑥 = −1 if 0 ≤
𝑅(𝛾) < 1 and divergent for |𝑥| = 1 is 1 ≤ 𝑅(𝛾) 

Recently, Singh and Porwal [3] introduced the incomplete Mittag-Leffler function 

with the help of an incomplete Pochhammer Symbol in the following way, 

𝐸(𝛼,𝛽)
[𝛿,𝑘] (𝑥) = ∑  ∞

𝑛=0  
[𝛿;𝑘]𝑛

Γ(𝛼𝑛+𝛽)

𝑥𝑛

𝑛!   (1.4) 

𝐸(𝛼,𝛽)
[𝛿,𝑘]

(𝑥) = ∑  ∞
𝑛=0  

(𝛿;𝑘)𝑛

Γ(𝛼𝑛+𝛽)

𝑥𝑛

𝑛!
,  (1.5) 

where, 

𝛼, 𝛽, 𝛿 ∈ 𝐶; Re (𝛼) > 0, 𝑅𝑒 (𝛽) > 0, 𝑅𝑒 (𝛿) > 0. 

 

For details of the Mittag-Leffler function, see [4 - 8]. Motivated with work 

[3], now we introduce incomplete K2-Function in the following form 

(𝑝; 𝑞)
𝐾2
(𝑣, 𝑎)

[(𝑎1; 𝑘)… , 𝑎𝑝; 𝑏1, … , 𝑏𝑞; 𝑥] 
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= ∑  ∞
𝑛=0  

(𝑎1;𝑘)𝑛…(𝑎𝑝)𝑛
(𝑏1)𝑛…(𝑏𝑞)𝑛

𝑎𝑛𝑥𝑛+𝑣

Γ(𝑛+𝑣+1)
, 𝑣 ∈ 𝐶  (1.6) 

and 

(𝑝; 𝑞)
𝐾2
(𝑣, 𝑎)

[(𝑎1; 𝑘)… , 𝑎𝑝; 𝑏1, … , 𝑏𝑞; 𝑥] 

= ∑  ∞
𝑛=0  

[𝑎1;𝑘]𝑛…(𝑎𝑝)𝑛
(𝑏1)𝑛…(𝑏𝑞)𝑛

𝑎𝑛𝑥𝑛+𝑣

Γ(𝑛+𝑣+1)
, 𝑣 ∈ 𝐶  (1.7) 

where𝑣 ∈ 𝐶 and the domain of convergents will be the same as of equations (1.2) 

and (1.3). 

Where [𝜆; 𝑘]𝑣 and (𝜆; 𝑘)𝑣 represent incomplete Pochhammer Symbol which is 

introduced by Srivastava et al. [9] and defined as follows: 

(𝜆; 𝑘)𝑣 =
𝛾(𝜆+𝑣,𝑘)

Γ(𝜆)
, (𝜆, 𝑣 ∈ 𝐶; 𝑘 ≥ 0)

  (1.8) 

[𝜆; 𝑘]𝑣 =
Γ(𝜆+𝑣,𝑘)

Γ(𝜆)
, (𝜆, 𝑣 ∈ 𝐶; 𝑘 ≥ 0)  (1.9) 

and these incomplete Pochhammer symbols satisfy the following decomposition 

relation: 

(𝜆; 𝑘)𝑣 + [𝜆; 𝑘]𝑣 = (𝜆)𝑣; (𝜆, 𝑣 ∈ 𝐶; 𝑘 ≥ 0)  (1.10) 

where the Pochhammer Symbol (𝜆)𝑣(𝜆, 𝑣 ∈ 𝐶) is given, in general, by 

(𝜆)𝑣 =
Γ(𝜆 + 𝑣)

Γ(𝜆)
= {

1 (𝑣 = 0; 𝜆 ∈ 𝐶)
𝜆(𝜆 + 1)… (𝜆 + 𝑛 − 1)(𝑣 ∈ 𝑁; 𝜆 ∈ 𝐶)

 

If 𝐴𝑝 the array of 𝑝 parameters like 𝑎1, 𝑎2, … , 𝑎𝑝. Then the Pochhammer Symbol 

(𝐴𝑝)𝑛, and the incomplete Pochhammer Symbols (𝐴𝑝; 𝑘)𝑛 and [𝐴𝑝; 𝑘]𝑛 are 

defined by: 
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CHAPTER 4 

Some Results on Incomplete Hypergeometric 

Functions 

Dharmendra Kumar Singh1,* and Geeta Yadav1 

1 Department of Mathematics, University Institute of Engineering and Technology, CSJM 

University, Kanpur, India 

Abstract: Hypergeometric functions are extensions and generalizations of the 

geometric series, and the process of generalization of hypergeometric series started in 

the 19th century itself. Thus, the subject of hypergeometrics has a rich history and led 

to renewed interest. Many mathematicians have presented the hypergeometric 

function in different ways and explained its properties. Recently, Srivastava et al. [9] 

represented hypergeometric functions in different forms with the help of incomplete 

pochhammer symbols. This paper is an attempt to present some new results for the 

incomplete hypergeometric function.  

Keywords: Generalized incomplete hypergeometric function, incomplete gamma 

function, incomplete pochhammer symbols, and decomposition formula. 

1. INTRODUCTION  

1.1. Incomplete Hypergeometric Function 

Incomplete hypergeometric function was introduced and studied by H.M. 

Srivastava and Agarwal [1], p.675, equations (4.1) and (4.2)], and defined as: 

 

𝑝𝛾𝑞 [
(𝑎1, 𝑥), 𝑎2, . . . , 𝑎𝑝

𝑏1, . . . , 𝑏𝑞
|𝑧] = ∑

(𝑎1,𝑥)𝑛(𝑎2)𝑛...(𝑎)𝑛

(𝑏1)𝑛...(𝑏𝑞)𝑛

∞
𝑛=0

𝑧𝑛

𝑛!
  (1.1) 

and 

𝑝𝛤𝑞 [
(𝑎1, 𝑥), 𝑎2. . . , 𝑎𝑝

𝑏1, . . . , 𝑏𝑞
|𝑧] = ∑

[𝑎1,𝑥]𝑛(𝑎2)𝑛...(𝑎𝑝)𝑛

(𝑏1)𝑛...(𝑏𝑞)𝑛

∞
𝑛=0

𝑧𝑛

𝑛!
 , (1.2) 
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where [𝑎1; 𝑥]𝑣 and (𝑎1; 𝑥)𝑣 represent incomplete pochhammer symbols which are 

defined as follows, 

(𝜆; 𝑥)𝑣 =
𝛾(𝜆+𝑣,𝑥)

𝛤(𝜆)
     (𝜆, 𝑣 ∈ 𝐶; 𝑥 ≥ 0) (1.3) 

and 

[𝜆; 𝑥]𝑣 =
𝛤(𝜆+𝑣,𝑥)

𝛤(𝜆)
     (𝜆, 𝑣 ∈ 𝐶; 𝑥 ≥ 0),  (1.4) 

and these incomplete pochhammer symbols (𝜆; 𝑥)𝑣 and [𝜆; 𝑥]𝑣 satisfy the 

following decomposition formula 

(𝜆; 𝑥)𝑣 + [𝜆; 𝑥]𝑣 = (𝜆)𝑣     (𝜆, 𝑣 ∈ 𝐶; 𝑥 ≥ 0), 

Here, the incomplete Gamma functions, 𝛾(𝑠, 𝑥) and (𝑠, 𝑥) , are defined as  

𝛾(𝑠, 𝑥) = ∫ 𝑡𝑠−1𝑥

0
𝑒−𝑡𝑑𝑡      (𝑅(𝑠) > 0;  𝑥 ≥ 0) (1.5) 

and 

𝛤(𝑠, 𝑥) = ∫ 𝑡𝑠−1∞

𝑥
𝑒−𝑡𝑑𝑡      (𝑅(𝑠) > 0;  𝑥 ≥ 0  when 𝑥 = 0), (1.6) 

and satisfy the following formula 

𝛾(𝑠, 𝑥) + 𝛤(𝑠, 𝑥) = 𝛤(𝑠).       (𝑅(𝑠) > 0) (1.7) 

1.2. Incomplete Wright Function 

Incomplete Wright function, 𝑝𝛹𝑞  and  𝑝 𝛹
̲
𝑞, was introduced by Singh and Porwal 

[2] and defined as: 

𝑝𝛹𝑞 [
[𝛼1, 𝐴1, 𝑥]. . . . (𝛼𝑝, 𝐴𝑝)

(𝛽1, 𝐵1). . . (𝛽𝑞 , 𝐵𝑞)
|𝑧] 

= ∑
𝛤(𝛼1+𝐴1𝑘,𝑥)𝛤(𝛼2+𝐴2𝑘)...𝛤(𝛼𝑝+𝐴𝑝𝑘)

𝛤(𝛽1+𝐵1𝑘)𝛤(𝛽2+𝐵2𝑘)...𝛤(𝛽𝑞+𝐵𝑞𝑘)

∞
𝑘=0

𝑧𝑘

𝑘!
                (1.8) 

𝑝𝛹
̲
𝑞 [

(𝛼1, 𝐴1, 𝑥). . . . (𝛼𝑝, 𝐴𝑝)

(𝛽1, 𝐵1). . . (𝛽𝑞 , 𝐵𝑞)
|𝑧] 

= ∑
𝛾(𝛼1+𝐴1𝑘,𝑥)𝛤(𝛼2+𝐴2𝑘)...𝛤(𝛼𝑝+𝐴𝑝𝑘)

𝛤(𝛽1+𝐵1𝑘)𝛤(𝛽2+𝐵2𝑘)...𝛤(𝛽𝑞+𝐵𝑞𝑘)

∞
𝑘=0

𝑧𝑘

𝑘!
  , (1.9) 
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Where, |𝜆; 𝑥)𝑛| ≤ |(𝜆)𝑛| and |[𝜆; 𝑥]𝑛| ≤ |(𝜆)𝑛|. Decomposition of (1.8) and (1.9) 

gives a well-known Wright function 𝑝𝛹𝑞 [3 - 7] who presented its 

asymptotic expansion for a large value of the argument z under the condition. 

∑ 𝛽𝑗
𝑞
𝑗=1 −  ∑ 𝛼𝑖

𝑝
𝑖=1 >  −1.   (1.10a) 

If these conditions are satisfied, the series is in (1.8) and (1.9) is convergent for 

any z ∈ C. 

1.3. Hypergeometric Function 

 

The hypergeometric function [8], 2𝐹1(𝑎, 𝑏, 𝑐; 𝑧) is defined as: 

2𝐹1(𝑎, 𝑏, 𝑐; 𝑧) = ∑
(𝑎)𝑛(𝑏)𝑛

(𝑐)𝑛

∞
𝑛=0

𝑧𝑛

𝑛!
,    |𝑧| < 1  (1.10b) 

Where 𝑎, 𝑏, 𝑐 are complex numbers and 𝑐 ≠ 0, −1, −2, …  and the generalized 

hypergeometric function, in a classical sense, has been defined [5] as: 

1

1 1

1

,...,
| ,..., ; ,..., ;

,...,

p

p q p q p q

q

a a
F z F a a b b z

b b

 
    

   

= ∑
(𝑎1)𝑘...(𝑎𝑝)𝑘

(𝑏1)𝑘...(𝑏𝑞)𝑘

∞
𝑘=0

𝑧𝑘

𝑘!
 ,                                 (1.11) 

Where (𝑎𝑖)𝑛 =
𝛤(𝑎𝑖+𝑛)

𝛤(𝑎𝑖)
 and no denominator parameter equal to zero or negative 

integer. 

2. THEOREMS 

Theorem 2.1. 

If  𝑎, 𝑏, 𝑐 ∈ 𝐶; 𝑅𝑒(𝑎) > 0, 𝑅𝑒(𝑏) > 0, 𝑅𝑒(𝑐) > 0; 𝜏 ∈ 𝑁, then 

𝑐 2𝐹1([𝑎; 𝑥], 𝑏; 𝑐; 𝑧) = 𝑐 2𝐹1([𝑎; 𝑥], 𝑏; 𝑐 + 1; 𝑧) + 𝑧
𝑑

𝑑𝑧 2𝐹1([𝑎; 𝑥], 𝑏; 𝑐 + 1; 𝑧)             (2.1) 

Proof. From the left side of equation (2.1) 

𝑧
𝑑

𝑑𝑧 2𝐹1([𝑎; 𝑥], 𝑏; 𝑐 + 1; 𝑧) 
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CHAPTER 5 

Transcendental Bernstein Series: Interpolation and 

Approximation 
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Abstract: This paper adopts the transcendental Bernstein series (TBS), a set of basis 

functions based on the Bernstein polynomials (BP), for approximating analytical 

functions. The TBS is more accurate than the BP method, particularly in 

approximating functions including one or more transcendental terms. The numerical 

results reveal also the applicability and higher computational efficiency of the new 

approach.  

Keywords: Transcendental functions; Bernstein polynomials; Transcendental 

Bernstein series. 

1. INTRODUCTION  

Generalized polynomials have been proven to be valuable tools in several areas of 

mathematics [1–6]. Several applied sciences adopted the Bernstein polynomials 

(BP) as a powerful practical tool [7–12]. Moreover, BP has an important role in 

approximation theory. Draganov [13] proved that several forms of the BP with 

integer coefficients reveal the property of simultaneous approximation, since the 

BP approximates the functions and its derivatives. Qian et al. [14] provided a 

uniform approximation of polynomials and BP. Javadi et al. [15] introduced the 

mailto:hosseinhassani40@yahoo.com
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shifted orthonormal BP and derived the operational matrices of integration and 

delays to solve generalized pantograph equations. Chen et al. [16] proposed a 

method for the numerical solution of a class of variable order fractional linear cable 

equations and obtained two kinds of operational matrices of BP. Acu and Muraru 

[17] introduced a bivariate generalization of the Bernstein-Schurer Kantorovich 

operators based on q-integers and discussed a Bohmann-Korovkin-type approxi-

mation theorem for these operators. Bataineh [18] used the BP method and its 

operational matrices to obtain analytical solutions to variational problems. Mirzaee 

and Hoseini [19] considered a combination of BP and block-pulse functions to 

approximate the solution of the optimal control problem for systems governed by a 

class of nonlinear Volterra integral equations. In the area of computer graphics, in 

the follow-up of Bézier curves and surfaces, the BP can be employed with a high 

degree of accuracy [20–25]. Sorokina [26] developed Bernstein-Bézier techniques 

for analyzing polynomial spline fields in n variables. Lewanowicz et al. [27] 

derived a set of recurrence relations satisfied by the Bezier coefficients of dual 

bivariate BP and proposed an efficient algorithm for evaluating these coefficients. 

Winkel [28] studied the ā-BP and ā-Béziercurves based on an interpretation of the 

ā-BPby means of the convolution of parameters. Winkler and Yang [29] described 

the application of a structure-preserving matrix method to the deconvolution of two 

BP basis. Aside from computer applications, BP has been adopted in the solution 

of elliptic and hyperbolic differential equations based on the Galerkin and 

collocation methods [30–35]. 

Hereafter, stemming from the BP formalism, the transcendental Bernstein series 

(TBS) and their properties are discussed. Indeed, as the set of basis functions, the 

TBS can approximate analytical functions as discussed in the follow-up. In Section 

2, we review the definition and some important properties of the BP, which will be 

used in the next sections. In Section 3, we introduce the TBS and investigate some 

fundamental properties of the TBS. In addition, we prove two convergence 

theorems and apply the TBS to approximate analytical functions. In Section 4, we 

expand four test functions in terms of the TBS, and we investigate the practical 

efficiency of the method. Section 5 is dedicated to a brief conclusion. 

2. BERNSTEIN POLYNOMIALS 

To improve the readability of the follow-up, we review the BP definition and some 

fundamental properties. 

Definition 2.1. The BP of degree 𝑚 are defined by [36, 37]. 
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𝐵𝑖,𝑚(𝑡) =  (
𝑚
𝑖
) 𝑡𝑖(1 − 𝑡)𝑚−𝑖 ,       0 ≤ 𝑖 ≤ 𝑚,    (2.1) 

Where (
𝑚
𝑖
) =

𝑚!

𝑖!(𝑚−𝑖)!
. By using the binomial expansion 

(1 − 𝑡)𝑚−𝑖= ∑(−1)𝑘
𝑚−𝑖

𝑘=0

(
𝑚 − 𝑖
𝑘

) 𝑡𝑘 ,                                                                                       (2.2) 

 

we have the following formula 

𝐵𝑖,𝑚(𝑡) =  (
𝑚
𝑖
) 𝑡𝑖(1 − 𝑡)𝑚−𝑖 = ∑ (−1)𝑘

𝑚−𝑖

𝑘=0
(
𝑚
𝑖
) (
𝑚 − 𝑖
𝑘

) 𝑡𝑖+𝑘 .   (2.3) 

In general, a given function u(t) can be approximated by means of the first 𝑚 +
1BP as 

u(t)=∑ di Bi,m(t)= DT Φm(t)m
i=0 ,                                                                             (2.4) 

where 𝐷𝑇 = [𝑑0𝑑1  . . .  𝑑𝑚]. Furthermore, we have 

Φ𝑚(𝑡) = [𝐵0,𝑚(𝑡)𝐵1,𝑚(𝑡)…  𝐵𝑚,𝑚(𝑡)]
𝑇
= 𝐴 𝑇𝑚(𝑡),                                                       (2.5) 

𝐴 =

(

 
 𝑎00
𝑎10
⋮

𝑎𝑚0

      𝑎01
𝑎11
⋮

𝑎𝑚1

…   
…   
⋮   
…   

𝑎0𝑚
𝑎1𝑚
⋮

𝑎𝑚𝑚)

 
 
, 𝑇𝑚(𝑡) = [1  𝑡  𝑡

2  . . .   𝑡𝑚]𝑇 ,                                       (2.6) 

and 

𝑎𝑖𝑗 = {
(−1)𝑗−𝑖 (

𝑚
𝑖
) (
𝑚 − 𝑖
𝑗 − 𝑖

) ,   𝑖 ≤ 𝑗,                                                                                
        

0,                                            𝑖 > 𝑗,                                                                                 

              (2.7) 

which represents the matrix form of approximation based on BP. 

2.1. Properties of BP 

Some relevant properties of BP are listed as follows: 
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CHAPTER 6 

Some Sufficient Conditions for Uniform Convexity 

of Normalized 1𝑭𝟐 Function 
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Abstract: The object of this chapter is to find sufficient conditions under 

which z1𝐹2(𝑎, 𝑏, 𝑐; 𝑧) belongs to UCV (α,β) and 𝑆𝑝(α, β). Here, 1𝐹2(𝑎, 𝑏, 𝑐; 𝑧) is a 

special case of generalized hypergeometric function for 𝑝 = 1 and 𝑞 = 2.  

Keywords: Analytic function; Univalent, Starlike; Close-to-convex. 

1. INTRODUCTION  

Let 𝒜 denote the class of analytic functions of the form 

𝑓(𝑧) = 𝑧 +∑

∞

𝑛=2

𝑎𝑛𝑧
𝑛,                                  (𝟏. 𝟏) 

analytic in the open unit disk 𝔻 = 𝑧: |𝑧| < 1and 𝒮  denote the subclass of 𝒜 that 

are univalent in 𝔻 i.e. 

𝒮 = {𝑓 ∈ 𝒜| 𝑓 𝑖𝑠 𝑜𝑛𝑒 − 𝑡𝑜 − 𝑜𝑛𝑒 𝑖𝑛 𝔻}. 

A set Ω containing origin in the complex plane is called starlike with respect to 
origin if for any point z in Ω, the line segment joining the origin to z lies interior of 
Ω. A function f ∈𝒜 that maps unit disk  𝔻 onto a starlike domain is called a starlike 

function and class of such functions is denoted by 𝒮∗. Alternatively, a function f 
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∈𝒜 is called starlike (with respect to 0), denoted by f ∈𝒮∗ if tw ∈ f(𝔻 )for all w ∈ 

f(𝔻) and t ∈ [0, 1]. For a given 0 ≤ α < 1, a function f ∈𝒜 is called a starlike function 

of order α, denoted by 𝒮∗ (α), if 

ℜ𝔢(
𝑧𝑓′(𝑧)

𝑓(𝑧)
) > 𝛼,          𝑧 ∈ 𝔻. 

A set Ω is said to be convex if it is starlike with respect to each of its points, that is 
if the line segment joining any two points of Ω lies entirely in Ω. A function f ∈𝒜 

is called convex, denoted by f ∈𝒦 if f is univalent in 𝔻 and f(𝔻) is a convex domain. 

For a given 0 ≤ α < 1, a function f ∈𝒜 is called convex function of order α, denoted 
by 𝒦 (α), if 

ℜ𝔢(1 +
𝑧𝑓′′(𝑧)

𝑓′(𝑧)
) > 𝛼,          𝑧 ∈ 𝔻. 

It is well known that 𝒮∗ (0) = 𝒮∗ and 𝒦 (0) = 𝒦. We recall [1] that the function 

zg′(z) is starlike if and only if the function g(z) is convex. In 1916, L. Bieberbach’s 
conjectured that: The coefficient of each function𝑓(𝑧) = 𝑧 + ∑∞

𝑛=2 𝑎𝑛𝑧
𝑛, satisfy 

     |𝑎𝑛| ≤ 𝑛,                                                                       (𝟏. 𝟐) 

and proved the bound for the case n = 2. In 1985 L. de Branges proved the 

Biberbach Conjecture with the help of the theory of Special Functions. The equality 

in (1.2) can be obtained for the Koebe function and its rotations, defined by: 

𝐾(𝑧) =
𝑧

(1 − 𝑧)2
= 𝑧 + 𝑧2 + 𝑧3+. . . . . . . . . . . . . . .                    (𝟏. 𝟑) 

Using mapping properties, one can easily show that the Koebe function maps the 

unit disk 𝔻 (Fig. (a)) onto ℂ− (−∞, ¼) (Fig. (b)). It is easy to see that K(z) is a 

starlike but not convex function. The Koebe function plays a role of extremal 

function for many problems related to the class 𝒮∗. Further, the function defined by 

𝑓0(𝑧) =
𝑧

(1 − 𝑧)
= 𝑧 + 𝑧2 + 𝑧3+. . . . . . . . . . . . . . .                    (𝟏. 𝟒) 

is convex as well as starlike function. This function maps the unit disk 𝔻 (Fig. (c)) 

onto domain such that ℜ(𝑓0(𝑧)) > −1/2 (Fig. (d)). 𝑓0(𝑧) plays a role of extremal 

function for many problems related to class 𝒦. 
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(a) Unit Disc 𝔻                                       (b) Image of 𝔻 under z/(1 − 𝑧)2 

 

(c) Unit Disc 𝔻                 (d) Image of 𝔻 under z/(1 − 𝑧) 

A function f ∈𝒜 is said to be convex in the direction of the imaginary axis if f(𝔻) 

intersects every line parallel to the imaginary axis either in an interval or not at all. 

Given a convex function g ∈𝒦 with 𝑔(𝑧) ≠ 0and α < 1, a function f ∈𝒜, is called 

close-to-convex of order α with respect to convex function g, denoted by 𝐶𝑔(𝛼),if 

ℜ𝔢(
𝑓′(𝑧)

𝑔′(𝑧)
) > 𝛼,          𝑧 ∈ 𝔻.                                    (𝟏. 𝟓) 
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From Abel Continuity Theorem to Paley-Wiener 

Theorem 
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Abstract: In this note we reveal that the missing link among a few crucial results in 

analysis, Abel continuity theorem, convergence theorem on (generalized) Dirichlet 

series, Paley-Wiener theorem is the Laplace transform with Stieltjes integration. By 

this discovery, the reason why the domains of Stoltz path and of convergence look 

similar is made clear. Also as a natural intrinsic property of Stieltjes integral, the use 

of partial summation in existing proofs is elucidated. Secondly, we shall reveal that a 

basic part of the proof of Paley-Wiener theorem is a version of the Laplace transform.  

Keywords: Laplace transform, Stieltjes integral, Abel continuity theorem, Paley-

Wiener theorem, conformal mapping, 2010 MSC: 130E99, 44A10, 40A05. 

1. INTRODUCTION 

Let { }n  be an increasing sequence of real numbers for which we may suppose

1 0  . For complex coefficients na , the series 

1

( ) ns

n

n

f s a e







                                                 (1.1) 

convergent in some half-plane, is called a generalized Dirichlet series.  

1. If logn n   with log denoting the principal value, 
1

( ) n

s
n

a
f s

n





 is (an ordinary) 

Dirichlet series.  
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2. If n n 
 and

se w  , 
1

( ) ( log ) n

n

n

f w f w a w




    is the power series. 

In all literature [1], [2], [3], etc. the convergence theorem for generalized Dirichlet 

series, Theorem 1 and the Abel continuity theorem, Corollary 1 are regarded as 

independent and proofs are given separately. Cf. also [4] (cf. [5]). In [6] it is shown 

that Theorem 1 entails Corollary 1 via a counterpart, Corollary 2 together with 

conformality of the analytic mapping se w  , thus revealing the reason why the 

convergence domains are angular domains of a similar shape. The proof uses a 

general form of the partial summation [6, Lemma 2] for a generalized sequence

{ }n , thus unifying all existing proofs.  

In this note we employ a general treatment by (Lebesgue-) Stieltjes integrals to 

attain two objects at a stretch. I.e. we follow [7] to introduce Corollary 3 whose 

discrete version leads to Theorem 1. In the proof, integration by parts is used which 

is a more general version of the partial summation. Then on one hand we cover 

Abel continuity theorem by the convergence theorem, Corollary 3, for Laplace 

transforms and conformality, revealing the reason why convergence domains being 

similar.  

On the other hand, we shall show that the basic part of the Paley-Wiener theorem 

(cf. e.g. [8]) is laid by the Laplace transform method. Then we appeal to two 

fundamental results, the Plancherel formula and the Fourier inversion formula to 

conclude the theorem. By finding this hidden link of Laplace transform, we are able 

to treat these two remote-looking objects of Paley-Wiener theorem and Abel 

continuity theorem in a unified way, up to some auxiliary fundamental results. The 

Paley-Wiener theorem has recently been highlighted in view of its essential 

application to signal restoration. In both well-known approaches by sampling [7], 

[10], [11] and by Bernstein polynomials [12] the Paley-Wiener theorem plays a 

fundamental role. This is a typical example of ideas indoctrinated previously with 

the established methods and attitudes of the discipline, can sometimes point to 

unorthodox, though remarkably simple, solutions to those problems. 

Theorem 1. If the series (1.1) is convergent for 0 0 0s s it   , then f (s) is 

uniformly convergent in the right half-plane 0  in the wide sense and 

represents an analytic function there. More precisely, let D be an angular domain 

0 00, arg( )s s                                            (1.2) 
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with 0
2


  0

2


  . Then ( )f s  is uniformly convergent on D in the wide 

sense. 

Corollary 1. (Abel continuity theorem) 

Suppose a power series 
1

( ) n

n

n

f z a z




  converges at the point 0z  on its circle of 

convergence. Draw two chords (inside the circle) that start from 0z
and form an 

angle   with the tangent at 0z
of the circle 0

2





 


 
 

. Let   be the (closure of) 

intersection of this angular subdomain and the disc of convergence. Then ( )f z

approaches 0( )f z  as 0z z in the angular domain inside  . This is often said as 

z approaches to 0z  along Stoltz path. 

Corollary 2. (Counterpart of Abel continuity theorem) 

f(s) approaches to f(s0) as 0s s in the angular domain (1.2) 

Lemma 1. 

(i) The Stieltjes integral d
b

a
f g  exists if f is continuous and g is of bounded 

variation and linear in f and g. The role can be changed in view of Item (ii). It holds 

that 

d ( ) ( ) ( ).
b

a
g x g b g a                                    (1.3) 

(ii) The formula for integration by parts holds true: 

( )d ( ) [ ( ) ( )] ( )d ( ),
b b

b

a
a a

f x g x f x g x g x f x                         (1.4) 

provided that f is continuous and g is of bounded variation or g is continuous and f 

is of bounded variation.  
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CHAPTER 8 

A New Class of Truncated Exponential-Gould-

Hopper-based Genocchi Polynomials 
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Abstract: The present paper introduces a hybrid family of truncated exponential-

Gould-Hopper-based Genocchi polynomials by means of generating function and 

series definition. Some significant properties of these polynomials are established. In 

addition, graphs of truncated exponential-Gould-Hopper-based Genocchi 

polynomials are drawn using Matlab. Thereafter, the distribution of zeros of these 

polynomials is shown.  

Keywords: Truncated exponential-Gould-Hopper polynomials, Genocchi poly-

nomials, Monomiality principle, Operational techniques. 

1. INTRODUCTION AND PRELIMINARIES  

In its various forms, multivariable and generalized forms of the special functions 

have been an object of speculation and application in recent years. Most of the 

special functions and their generalizations are suggested by physical problems. We 

recall the 3-variable truncated exponential-based Gould-Hopper polynomials 

(3VTEGHP), denoted by 𝑒(𝑟)𝐻𝑛
(𝑠)

(𝑥, 𝑦, 𝑧), defined by means of the following 

generating function [1]:  
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and posses the following equivalent forms of series representation in terms of 2 

variable truncated exponential polynomials (2VTEP) [2], denoted by 𝑒𝑛
(𝑟)

(𝑥, 𝑦); 

Gould-Hopper polynomials (GHP) [3], denoted by 𝐻𝑛
(𝑠)

(𝑥, 𝑧); and in terms of 

𝑥, 𝑦, 𝑧:  

 𝑒(𝑟)𝐻𝑛
(𝑠)

(𝑥, 𝑦, 𝑧) = 𝑛! ∑
[
𝑛

𝑠
]

𝑘=0

𝑧𝑘 𝑒𝑛−𝑠𝑘
(𝑟)

(𝑥,𝑦)

𝑘!(𝑛−𝑠𝑘)!
,      (1.2) 

  

  𝑒(𝑟)𝐻𝑛
(𝑠)

(𝑥, 𝑦, 𝑧) = 𝑛! ∑
[
𝑛

𝑟
]

𝑚=0

𝑦𝑚 𝐻𝑛−𝑟𝑚
(𝑠)

(𝑥,𝑧)

(𝑛−𝑟𝑚)!
 (1.3) 

 and  

  𝑒(𝑟)𝐻𝑛
(𝑠)

(𝑥, 𝑦, 𝑧) = 𝑛! ∑𝑠𝑘+𝑟𝑚≤𝑛
𝑘,𝑚=0

𝑥𝑛−𝑠𝑘−𝑟𝑚𝑦𝑚𝑧𝑘

𝑘!(𝑛−𝑠𝑘−𝑟𝑚)!
, (1.4) 

 respectively. 

It is shown in [1] that the 3VTEGHP 𝑒(𝑟)𝐻𝑛
(𝑠)

(𝑥, 𝑦, 𝑧) are quasimonomial [4, 5], and 

their multiplicative and derivative operators are given by:  

 �̂�𝑒(𝑟)𝐻(𝑠) = 𝑥 + 𝑟𝑦𝜕𝑦𝑦𝜕𝑥
𝑟−1 + 𝑠𝑧𝜕𝑥

𝑠−1 (1.5) 

 and  

 �̂�𝑒(𝑟)𝐻(𝑠) = 𝜕𝑥 , (1.6) 

 respectively. 

Now since 𝑒(𝑟)𝐻0
(𝑠)

(𝑥, 𝑦, 𝑧) = 1, so monomiality principle implies that the 

3VTEGHP  𝑒(𝑟)𝐻𝑛
(𝑠)

(𝑥, 𝑦, 𝑧) can be constructed as:  

 𝑒(𝑟)𝐻𝑛
(𝑠)(𝑥, 𝑦, 𝑧) = �̂�𝑒(𝑟)𝐻(𝑠)

𝑛
{1} = (𝑥 + 𝑟𝑦𝜕𝑦𝑦𝜕𝑥

𝑟−1 + 𝑠𝑧𝜕𝑥
𝑠−1)

𝑛
{1},      (1.7) 

 which yields the series definition (1.4). 

In view of identity (1.7), the exponential generating function of the GHP 𝐻𝑛
(𝑠)

(𝑥, 𝑦) 

can be given by:  
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 exp(�̂�𝑒(𝑟)𝐻(𝑠)𝑡){1} = ∑∞
𝑛=0 𝑒(𝑟) 𝐻𝑛

(𝑠)
(𝑥, 𝑦, 𝑧)

𝑡𝑛

𝑛!
,   (1.8) 

 which gives generating function (1.1). 

The operational representation of 3VTEGHP  𝑒(𝑟)𝐻𝑛
(𝑠)

(𝑥, 𝑦, 𝑧) is:  

  𝑒(𝑟)𝐻𝑛
(𝑠)

(𝑥, 𝑦, 𝑧) = exp(𝑧𝜕𝑥
𝑠 + 𝑦𝜕𝑦𝑦𝜕𝑥

𝑟) {𝑥𝑛}. (1.9) 

 

The operational representation which links the 3VTEGHP  𝑒(𝑟)𝐻𝑛
(𝑠)

(𝑥, 𝑦, 𝑧) with the 

2VTEP 𝑒𝑛
(𝑟)

(𝑥, 𝑦) and GHP 𝐻𝑛
(𝑠)

(𝑥, 𝑦) is:  

  𝑒(𝑟)𝐻𝑛
(𝑠)

(𝑥, 𝑦, 𝑧) = exp(𝑧𝜕𝑥
𝑠) {𝑒𝑛

(𝑟)
(𝑥, 𝑦)} (1.10) 

 and  

  𝑒(𝑟)𝐻𝑛
(𝑠)

(𝑥, 𝑦, 𝑧) = exp(𝑦𝜕𝑦𝑦𝜕𝑥
𝑟) {𝐻𝑛

(𝑠)
(𝑥, 𝑧)},     (1.11) 

respectively. 

The integral representation for the 3VTEGHP  𝑒(𝑟)𝐻𝑛
(𝑠)

(𝑥, 𝑦, 𝑧) in terms of 2-

iterated Gould-Hopper polynomials (2IGHP) [6] is:  

         𝑒(𝑟)𝐻𝑛
(𝑠)

(𝑥, 𝑦, 𝑧) = ∫
∞

0
𝑒−𝑢

𝐻(𝑟)𝐻𝑛
(𝑠)

(𝑥, 𝑦𝑢, 𝑧)𝑑𝑢.  (1.12) 

The research on Genocchi numbers and Genocchi polynomials can be traced back 

to Angelo Genocchi (1817-1889). During these very recent years, Genocchi 

numbers and Genocchi polynomials are extensively studied in many different 

contexts in mathematics and physics, such as, elementary number theory, analytic 

number theory, theory of modular forms, p-adic analytic number theory, different 

topology, and quantum physics. The generating function of Genocchi polynomials 

𝐺𝑛(𝑥) are given by  

 (
2𝑡

𝑒𝑡+1
) exp(𝑥𝑡) = ∑∞

𝑛=0 𝐺𝑛(𝑥)
𝑡𝑛

𝑛!
,    |𝑡| < 𝜋.  (1.13) 

The Genocchi numbers 𝐺𝑛 are given as  
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CHAPTER 9 

Computational Preconditioned Gauss-Seidel via 

Half-Sweep Approximation to Caputo's Time-

Fractional Differential Equations 
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Abstract: In this paper, we derived a finite difference approximation equation from the 

discretization of the one-dimensional linear time-fractional diffusion equations with 

Caputo's time-fractional derivative. A linear system is generated by implementing 

Caputo's finite difference approximation equation on the specified solution domain. Then, 

the linear system is solved using the proposed half-sweep preconditioned Gauss-Seidel 

iterative method. The effectiveness of the method is studied, and the efficiency is 

analyzed compared to the existing preconditioned Gauss-Seidel, also known as the full-

sweep preconditioned Gauss-Seidel and the classic Gauss-Seidel iterative method. A few 

examples of the mathematical problem are delivered to compare the performance of the 

proposed and existing methods. The finding of this paper showed that the proposed 

method is more efficient and effective than the full-sweep preconditioned Gauss-Seidel 

and Gauss-Seidel methods.  

Keywords: Caputo's fractional derivative, Implicit scheme, Half-sweep, 

Preconditioned, Gauss-Seidel, Iterative method. 
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1. INTRODUCTION 

Fractional partial differential equations (FPDEs) have been actively studied by 

many researchers nowadays. Several studies illustrated the importance of FPDEs to 

model complex phenomena [1-4]. The capability of FPDEs to capture anomalous 

phenomena, which some of the past PDEs have failed, attracted many researchers 

to apply in natural science fields other than pure mathematics [5-8]. By considering 

pure mathematics alone, various methods have been proposed to obtain accurate 

and efficient numerical solutions for the FPDEs [9-12].  

 

The present paper focuses on developing an efficient numerical method to solve 

one-dimensional linear time-fractional diffusion equations via Caputo's time-

fractional derivative. A numerical method is proposed to improve the effectiveness 

of the preconditioned Gauss-Seidel (GS) iteration studied by [13]. The contribution 

of the paper is to present the effectiveness of the half-sweep computation approach 

[14] in deriving a better version of the preconditioned Gauss-Seidel iterative 

method, which can be named the half-sweep preconditioned Gauss-Seidel (HSPGS) 

method. The half-sweep computation approach is a computational complexity 

reduction approach that has been extended from the finite difference method. This 

approach is capable of reducing the complexity of solving a large system of 

equations generated from linear and nonlinear PDEs [15-18]. The reported results 

from [15-18] motivated this study to investigate the efficacy of half-sweep 

computation in solving an FPDE.  

The theory and concept of iterative methods have contributed to numerical analysis 

and computation since the early 20th century. Several researchers introduced and 

explained different families of iterative methods [19-21]. Among the families of 

efficient iterative methods, the preconditioned iterative methods are widely 

accepted as one of the efficient methods for solving equations [22-25]. Thus, the 

paper presents the formulation of a preconditioned iterative method using the half-

sweep computation approach and Gauss-Seidel iteration. The effectiveness of the 

proposed HSPGS method is investigated and compared against the existing 

methods, such as the full-sweep preconditioned Gauss-Seidel [13] and the classic 

Gauss-Seidel methods. 
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2. IMPLICIT APPROXIMATION WITH CAPUTO'S TIME-FRACTIONAL 

Let us consider a time-FPDE to be defined as 

𝜕𝛼𝑈(𝑥, 𝑡)

𝜕𝑡𝛼
= 𝑎(𝑥)

𝜕2𝑈(𝑥, 𝑡)

𝜕𝑥2
+ 𝑏(𝑥)

𝜕𝑈(𝑥, 𝑡)

𝜕𝑥
+ 𝑐(𝑥)𝑈(𝑥, 𝑡), (𝟏) 

where 𝑎(𝑥), 𝑏(𝑥) and 𝑐(𝑥) are known functions or constants, whereas 𝛼 is a 

parameter that refers to the fractional-order of time derivative. A discrete 

approximation equation to the mathematical problem shown by equation (1) can be 

formulated using finite differences and Caputo's time-fractional derivative. Some 

basic definitions of the fractional derivative theory are used to approximate the 

fractional derivative in equation (1), which can be stated as [26]: 

Definition 1. The Riemann-Liouville fractional integral operator, 𝐽𝛼of order-𝛼 is 

defined as 

𝐽𝛼𝑓(𝑥) =
1

𝛤(𝛼)
∫ (𝑥 − 𝑡)𝛼𝑓(𝑡)

𝑥

0

𝑑𝑡, 𝛼 > 0, 𝑥 > 0. (𝟐) 

Definition 2. Caputo's fractional partial derivative operator, 𝐷𝛼 of order -𝛼 is 

defined as 

𝐷𝛼𝑓(𝑥) =
1

𝛤(𝑚 − 𝛼)
∫

𝑓(𝑚)(𝑡)

(𝑥 − 𝑡)𝛼−𝑚+1

𝑥

0

𝑑𝑡, 𝛼 > 0, (𝟑) 

with 𝑚 − 1 < 𝛼 ≤ 𝑚,𝑚 ∈ 𝑁, 𝑥 > 0. 

This paper aims to obtain the numerical solution of equation (1) using the implicit 

approximation based on Caputo's definition. The solution domain is subjected to 

Dirichlet boundary conditions, and we consider a nonlocal fractional derivative 

operator. The paper considers the following general notation of boundary and initial 

conditions: 

𝑈(0, 𝑡) = 𝑔0(𝑡), 𝑈(ℓ, 𝑡) = 𝑔1(𝑡), 𝑈(𝑥, 0) = 𝑓(𝑥), (𝟒) 
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CHAPTER 10 

Krasnoselskii-type Theorems for Monotone 

Operators in Ordered Banach Algebra with 

Applications in Fractional Differential Equations 

and Inclusion 

Nayyar Mehmood1,* and Niaz Ahmad1 

1Department of Mathematics & Statistics International Islamic University H-10 Islamabad, 

Pakistan  

Abstract: This chapter discusses Krasnoselskii-type fixed point results for monotone 

operators. It is well known that the monotone operators are not continuous on the whole 

domain, so we will find the solutions of discontinuous operator equations and inclusions. 

The presented fixed point results may be considered as variants of the Krasnoselskii fixed 

point theorem in a more general setting. The results of Darbo, Schauder and 

Bohnentblust-Karlin are also generalized. We prove these results for the case of single-

valued and set-valued monotone operators. We use our main result for single-valued 

operators to obtain the existence of solutions of anti-periodic ABC fractional BVP. The 

fixed point result for set-valued monotone operators is used to discuss the existence of 

solutions of a given fractional integral inclusion in ordered Banach spaces.  

Keywords: Krasnoselskii's fixed point theorem, Set valued mappings, Convex, 

Compact, Closed sets, Banach spaces, Fractional differential equations, Atangana 

and Baleanu derivatives. 

1. INTRODUCTION 

Fractional calculus is one of the most emerging fields of mathematics. Many 

physical models have been studied more accurately by virtue of fractional calculus. 

Some classical fractional derivatives are Riemann Liouville, Hadamard, Caputo 

and Grunwald-Letnikov; all of these have many applications [1]. Many of them 

have a singular Kernel, which creates some flaws when applied to some physical 
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problems. To overcome this problem, Caputo and Febrizio [2] introduced a new 

fractional derivative with a non-singular kernel. It also involves some ambiguities 

that were later removed by Atangana and Baleanu [3] by introducing a more general 

form of the fractional derivative with a non-singular kernel, using the Mittage-

Leffler function. Many applications can be seen in the literature. 

Topological fixed point theory is one of the most emerging fields in nonlinear 

analysis. It was initiated about a century ago. Utilizing the topological methods in 

the theory of differential equations, Poincare initiated the idea of fixed point theory 

[4]. After that, the most celebrated fixed point theorem of Brouwer was presented 

in 1910 [5]. Schauder generalized this result for the case of infinite dimensional 

Banach spaces [6]. The following is the theorem of Schauder. 

Theorem 1 Let  be a convex and compact subset of a Banach space .H  Suppose 

  is a continuous mapping of   into .H  Then   possesses at least one fixed point. 

The famous Banach contraction principle was proved in 1922 [7], which gave the 

theory more strength and a new direction to the stability and existence theory of 

nonlinear operators. This principle is given as follows. 

Theorem 2 Let  ,d  be a complete metric space and suppose  is a self-mapping 

of  such that  

      , , , for all , ,d hd           

For some,  0,1 .h Then    possesses only one fixed point. 

While studying the theory of perturbed differential equations and the article of 

Schauder, Krasnoselskii [8] came to know that the inversion of a perturbed 

differential equation might have formed a sum of contractive and compact 

operators. This thought ended with a famous Krasnoselskii's fixed point theorem 

for the sum of two operators. The result of Krasnoselskii's fixed point theorem is 

given below. 

Theorem 3 Let    be a nonempty convex and closed subset of a Banach space H. 

Suppose ,   are mappings of   into H  such that:  

 i
 

, ,    implies     ,       

 ii
 
  is a contraction mapping, 
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 iii
 
  is continuous and compact. 

Then    possesses at least one fixed point. 

Remark 4 If   be a zero operator and the condition of convexity is relaxed, then it 

is Banach contraction theorem. If  is a zero operator with the condition of 

compactness, then it is the fixed point theorem of Schauder. 

Many generalizations and extensions of Krasnoselskii's fixed point theorems are 

presented in the literature [9-13]. Different directions have been considered to 

generalize this result, for example, generalizing the space, weakening compactness 

or continuity, or taking set-valued maps instead of single-valued operators, etc. 

A novel way of generalization is to use partial ordering on space with some other 

conditions. This kind of generalization was considered by Ran and Reuring [14], in 

2004. Their main result is stated as follows. 

Theorem 5 Let the lower or upper bound of a partially ordered set  exists. Suppose

d  is a complete metric on   , and   is a monotone and continuous self-mapping 

on  , 

 i
 
  0,1h and for all    such that       , , ;d hd       

 ii
 


0   such that either 0 0Q   or 0 0.Q  Then   possesses only one 

fixed point. 

This theorem was applied to matrix equations to develop solvability results for these 

equations. A modified variant of the above result by weakening the continuity of 

the mappings was given by Nieto and Rodriguez-Lopez [15] as follows. 

Theorem 6 Let the lower or upper bound of a partially ordered set   exists. 

Suppose d  is a complete metric on   and    is a monotone self-mapping on  , 

 i   0,1h and for all    such that       , , ;d hd       

 ii 
0   such that either 0 0Q   or 0 0;Q   
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CHAPTER 11 

General Fractional Order Quadratic Functional 

Integral Equations: Existence, Properties of 

Solutions, and Some of their Applications 

Ahmed M.A. El-Sayed1* and Hind H.G. Hashem2 

1Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, 
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Abstract: In this chapter, we are interested in a certain class of integral equations, namely 

the quadratic integral equation. In this case, the unknown function is treated by some 

operators, then a pointwise multiplication of such operators is applied. The study of such 

a kind of problem was begun in the early 60’s due to the mathematical modeling of 
radiative transfer. The main objective was to present a special method or technique and 

results concerning various existence for a certain quadratic integral equation.  

Keywords: Quadratic integral equation, Carathéodory Theorem, Continuous 

solution, Iterative scheme, Maximal and minimal solutions, Comparison Theorem, 

𝛿 −Approximate solutions, Hybrid functional 𝜙 −differential equation, 

Pantograph functional 𝜙 − differential equation. 

1. INTRODUCTION 

Quadratic integral equations have many useful applications and problems in the real 

world. For example, quadratic integral equations are often applicable in the theory 

of radiative transfer, the kinetic theory of gases, the theory of neutron transport, the 

queuing theory, and the traffic theory. Many authors studied the existence of 

solutions  for  several  classes of nonlinear quadratic integral equations (see, e.g. 

[1-13] and [12-28]). 
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Let 𝐽 = [0, 𝑇], 𝜙: 𝐽 → 𝑅  be increasing and absolutely continuous and  𝜓𝑖: 𝐽 →
𝐽, 𝑖 = 1,2 be continuous. Let  𝛽 ∈ (0,1)  and  𝑡 ∈ 𝐽.   

Here, we study the existence of continuous solutions  𝑥 ∈ 𝐶(𝐽)  of the 𝜙 − 

fractional-orders quadratic functional integral equation 

 𝑥(𝑡) = 𝑎(𝑡) + 𝑓1 (𝑡, 𝑥(𝜓1(𝑡))) . ∫
𝑡

0

(𝜙(𝑡)−𝜙(𝑠))𝛽−1

Γ(𝛽)
 𝑓2 (𝑠, 𝑥(𝜓2(𝑠))) 𝜙′(𝑠)𝑑𝑠, 𝑡 ∈ 𝐽, 𝛽 ∈ (0,1]. (1) 

We discuss some properties of the solutions, prove the existence of maximal and 

minimal solutions of the quadratic integral equation (1) and introduce some 

particular cases and applications. 

Brownian motion is an anomalous diffusion process driven by a fractional integral 

equation in the sense of Erdélyi-Kober. For this reason, it is proposed to call such 

a family of diffusive processes Erdélyi- Kober fractional diffusion [29]. 

An Erdélyi-Kober operator is a fractional integration operator introduced by Arthur 

Erdélyi (1940) and Hermann Kober (1940).  

The Erdélyi-Kober fractional integral is given by [23-25]  

 𝐼𝑚
𝛼 𝑓(𝑡) = ∫

𝑡

0

(𝑡𝑚 − 𝑠𝑚)𝛼−1

Γ(𝛼)
 𝑚 𝑠𝑚−1 𝑓(𝑠) 𝑑𝑠, 𝑚 > 0, 𝛼 > 0, 

which generalizes the Riemann fractional integral (when 𝑚 = 1) and its 

generalized fractional derivative of order  𝛼,  like:  

 𝐷𝑚
𝛼 𝑓(𝑡) = 𝐷𝑚𝐼𝑚

1−𝛼 , 𝑚 > 0, 𝛼 ∈ (0,1). 

For the properties of Erdélyi-Kober operators, see [30] and [31] for examples. 

As a particular case of equation (1), we can consider the Erdélyi-Kober functional 

quadratic integral equation  

𝑥(𝑡) = 𝑎(𝑡) + 𝑓1(𝑡, 𝑥(𝜓(𝑡))) ∫
𝑡

0

(𝑡𝑚 − 𝑠𝑚)𝛽−1

Γ(𝛽)
𝑓2(𝑠, 𝑥(𝜓(𝑠)))𝑚 𝑠𝑚−1𝑑𝑠, 𝑡 ∈ 𝐽 (2) 

 when  𝜙(𝑡) = 𝑡𝑚, 𝑚 > 0. 
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As applications, we consider the nonlinear hybrid functional 𝜙 −differential 

equation of fractional order  

 𝐷𝜙
𝛽

(
𝑥(𝑡)−𝑎(𝑡)

𝑓1(𝑡,   𝑥(𝜓1(𝑡)))
) = 𝑓2(𝑡, 𝑥(𝜓2(𝑡))), 𝛽 ∈ (0,1). 

The importance of the investigations of hybrid differential equations lies in the fact 

that they include several dynamic systems as special cases.  

We also consider the 𝜙 −differential equation of pantograph-type delay of 

fractional order  

 𝐷𝜙
𝛽

(
𝑥(𝑡)−𝑎(𝑡)

𝑓1(𝑡,𝑥(𝜎1𝑡))
) = 𝑓2(𝑡, 𝑥(𝜎2𝑡)), 𝑡 ∈ 𝐽,   𝛽 ∈ (0,1). 

where  𝜎1, 𝜎2 ∈ (0,1).   

2.  PRELIMINARIES 

 Let  𝐿1 = 𝐿1(𝐽)  be the class of Lebesgue integrable functions on  𝐽 = [0, 𝑇]  with 

the standard norm and let  𝐶 = 𝐶(𝐽)  be the space of all real-valued functions 

defined and continuous on  𝐽  with the standard supremum norm. 

This section collects some definitions and results needed in our further 

investigations. 

Assume that the function  𝑓(𝑡, 𝑥) = 𝑓: (0,1) × 𝑅 → 𝑅  satisfies Carathèodory 

conditions, i.e., measurable in  𝑡  for any  𝑥 ∈ 𝑅  and continuous in  𝑥  for almost 

all  𝑡 ∈ 𝐽 . Then to every function 𝑥(𝑡) being measurable on the interval 𝐽 we may 

assign the function 

  (𝐹𝑥)(𝑡)  =  𝑓(𝑡, 𝑥(𝑡)), 𝑡 ∈ (0,1), 

the operator  𝐹  defined in such a way, is called the superposition (or Nemytskii) 

operator with the generating function  𝑓.  

This operator is one of the simplest and most important operators investigated in 

the nonlinear functional analysis and in the theories of differential, integral and 

functional equations (see [32], [3-7] and [33]). 

Furthermore, for every  𝑓 ∈ 𝐿1  and every  𝜓: 𝐽 → 𝐽 , we define the superposition 

operator generated by the functions  𝑓  and  𝜓   
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CHAPTER 12 

Non-linear Set-Valued Delay Functional Integral 

Equations of Volterra-Stieltjes Type: Existence 

of Solutions, Continuous Dependence and Applica-

tions 
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Abstract: In this chapter, we established two existence theorems for the non-linear 

Volterra-Stieltjes integral inclusion. The continuous dependence of the solutions on 

the delay functions, 𝑔𝑖 (𝑖 = 1,2) and on the set of selections, will be proved. The non-

linear Chandrasekhar set-valued functional integral equation and a non-linear 

Chandrasekhar quadratic functional integral equation, also the set-valued fractional 

orders integral equation, are studied as an application. An initial value problem of 

fractional-orders set-valued integro-differential equation will be considered. 

Keywords: Non-linear functional integral equation, Volterra-Stieltjes integral 

inclusion, Chandrasekhar quadratic integral equation, Function of bounded 

variation, Continuous dependence, Differential inclusion, Delay function. 

1. INTRODUCTION  

The non-linear Volterra-Stieltjes type integral operator  

 

 𝑇𝑥(𝑡)  =  ∫
𝑡

0
 𝑓(𝑠, 𝑥(𝑠)) 𝑑𝑠𝑔(𝑡, 𝑠), 𝑡 ∈ 𝐼 = [0, 𝑇]  
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has been studied, recently by J.Banas (see [1,2]), and has been studied by some 

authors(see [3, 4]), and references therein. 

 

Here we  discuss with the non-linear set-valued delay functional integral equations 

of Volterra-Stieltjes type  

 

𝑥(𝑡)  ∈ 𝑎(𝑡)  + ∫
𝜑(𝑡)

0
𝐹1(𝑡, 𝑠, 𝑥(𝑠), ∫

𝜑(𝑠)

0
𝑓2(𝑠, 𝜃, 𝑥(𝜃))𝑑𝜃𝑔2(𝑠, 𝜃). (1) 

  

The existence of solutions in the class of continuous functions  𝑥 ∈ 𝐶[0, 𝑇] and the 

continuous dependence on the delay function 𝜑  and the set of selections, of the set-

valued functions  𝐹, 𝑆𝐹  are proved. 

 

As applications of (1) the non-linear Chandrasekhar set-valued functional integral 

equation  

𝑥(𝑡)  ∈  𝑎(𝑡)  + ∫
𝜑(𝑡)

0

𝑡

𝑡+𝑠
𝐹1(𝑏1(𝑠)𝑥(𝑠), ∫

𝜑(𝑠)

0

𝑠

𝑠+𝜃
𝑏2(𝑠)𝑥(𝜃)𝑑𝜃, (2) 

 

the delay Chandrasekhar quadratic functional integral equation  

 

𝑥(𝑡)  =  𝑎(𝑡)  + ∫
𝜑(𝑡)

0

𝑡

𝑡+𝑠
𝑏1(𝑠)𝑥(𝑠) ⋅ (∫

𝜙(𝑠)

0

𝑠

𝑠+𝜃
𝑏2(𝑠)𝑥(𝜃) 𝑑𝜃)𝑑𝑠, 𝑡 ∈ 𝐼, (3) 

  

the set-valued fractional orders integral equation  

 

𝑥(𝑡) ∈ 𝑝(𝑡) + ∫
𝑡

0

(𝑡−𝑠)𝛼−1

Γ(𝛼)
𝐹1(𝑡, 𝑠, 𝑥(𝑠), ∫

𝑠

0

(𝑠−𝜃)𝛽−1

Γ(𝛽)
𝑓2(𝑠, 𝜃, 𝑥(𝜃))𝑑𝜃)𝑑𝑠, 𝑡, 𝑠 ∈ 𝐼. (4) 

  

and the set-valued fractional-order integro-differential equations  

 
𝑑𝑥(𝑡)

𝑑𝑡
∈  𝐼𝛼𝐹1(𝑡, 𝑥(𝑡), 𝐷𝛾𝑥(𝑡)), 𝑡 ∈ (0, 𝑇],     𝑎𝑛𝑑   𝑥(0)  =  𝑥𝑜, (5) 

 

where  𝛼, 𝛽, 𝛾 ∈ (0,1),  will be considered. For properties and applications on 

differential inclusion (5) (see [5 - 7]) and reference therein. 
 

This paper is organized as follows: In Section 2, we recall some useful 

preliminaries. In Section 3, we investigate existence results for single-valued 

problem. In Section 4, we discuss the uniqueness of the solution for the Volterra-

Stieltjes integral equation. Also, deals with the existence of continuous dependence 

of solutions for functional integral equations on delay function and functions 

𝑔𝑖 , (𝑖 = 1,2), and some applications explain. While in Section 5, conditions are 
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added to our problem in order to obtain a new existence theorem with the 

application. In the last Section 6, we present the existence results for a set-valued 

problem with continuous dependence on the set 𝑆𝐹1
, we discuss some special cases 

of inclusion by presenting the existence of solutions for the Set-valued 

Chandrasekhar non-linear quadratic functional integral equation and Set-valued 

Volterra functional integral equation of fractional order, and, as an application, the 

set-valued fractional-order integro-differential equations will be considered.  

2. PRELIMINARIES 

This section is devoted to providing the notation, definitions, and other auxiliary 

facts that will be needed in our further study. 

At the beginning, assume that 𝐸 is a Banach space with the norm ∥. ∥𝐸. For an 

interval, 𝐼 = [0, 𝑇], where 𝑇 < ∞ and denote by 𝐶 = 𝐶(𝐼, 𝐸), the space consisting 

of all continuous functions defined on 𝐼 and taking values in the space 𝐸. This space 

will be furnished with the sup-norm.  

∥ 𝑥 ∥𝐶= sup
𝑡∈𝐼

|𝑥(𝑡)|. 

We will accept the following axiomatic definition and theorem of the concept of a 

set-valued map.  

 

Definition 2.1  Let 𝐹 be a set-valued map defined on a Banach space 𝐸, 𝑓 is called 

a selection of 𝐹 if 𝑓(𝑥) ∈ 𝐹(𝑥), for every 𝑥 ∈ 𝐸 and we denote by  

 

 𝑆𝐹 = {𝑓: 𝑓(𝑥) ∈ 𝐹(𝑥), 𝑥 ∈ 𝐸}, 
 

the set of all selections of 𝐹 (For the properties of the selection of 𝐹 see [8-10]).  

 

Definition 2.2  [9] A set-valued map 𝐹 from 𝐼 × 𝐸 to family of all non-empty closed 

subsets of 𝐸 is called Lipschitzian if there exists 𝑘 > 0 such that for all 𝑡 ∈ 𝐼 and 

all 𝑥1, 𝑥2 ∈ 𝐸, we have  

 

 ℎ(𝐹(𝑡, 𝑥1), 𝐹(𝑠, 𝑥2)) ≤ 𝑘(|𝑡 − 𝑠| + |𝑥1 − 𝑥2|), (6) 

  

Where  ℎ(𝐴, 𝐵)  is  the  Hausdorff  distance  between the two subsets 𝐴, 𝐵 ∈ 𝐼 × 𝐸 

(properties of the Hausdorff distance (See [11])). 
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Abstract: This article aims to establish Saigo fractional derivatives of extended 

hypergeometric functions. Some special cases of these integrals are also derived. 
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Saigo-fractional derivative operator, Reimann-Liouville fractional integral 

operator, Reimann-Liouville fractional derivative operator, Hadamard product, 
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1. INTRODUCTION  

In recent years, many extensions and generalizations of special functions witnessed 

a significant evolution. This modification in the theory of special functions offers 

an analytic foundation for the many problems in mathematical physics and 

engineering sciences, which have been solved and have various practical 

applications. The theory of special functions revolves around the two most 

important basic special functions, i.e., the beta function and the Gamma function 

because most of the special functions are expressed either in terms of the beta 

function or the Gamma function. 
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The classical Euler beta function is defined as follows [1]: 

𝐵(𝑥1, 𝑥2) = ∫ 𝑡𝑥1−1(1 − 𝑡)𝑥2−1𝑑𝑡,
1

0
             ℜ(𝑥1), ℜ(𝑥1) > 0.       (1) 

Gamma function is defined as follows [1]: 

Γ(𝑥1) = ∫ 𝑡𝑥1−1∞

0
𝑒−𝑡𝑑𝑡,                 ℜ(𝑥1) > 0.                                                               (2) 

Further, the mathematical and physical applications of hypergeometric functions 

are found in various areas of applied mathematics, mathematical physics, and 

engineering. 

The Gauss hypergeometric function is a solution of a homogenous second-order 

differential equation which is called the hypergeometric differential equation, and 

it is given by 

𝑧(1 − 𝑧)
𝑑2𝑤

𝑑𝑧2 + (𝑐 − (𝑎 + 𝑏 + 1)𝑧)
𝑑𝑤

𝑑𝑧
− 𝑎𝑏𝑤 = 0.                                       (3) 

The Gauss hypergeometric function 2𝐹1 is defined as [2]: 

 2𝐹1(𝑎, 𝑏, 𝑐; 𝑧) = 𝐹(𝑎, 𝑏, 𝑐; 𝑧) = ∑
(𝑎)𝑘(𝑏)𝑘

(𝑐)𝑘

𝑧𝑘

𝑘!

∞
𝑘=0 ,                                             (4) 

where  (𝑢)𝑘  represents the Pochhammer symbol defined below: 

(𝑢)𝑘 =
Γ(𝑢 + 𝑘)

Γ(𝑢)
= {

1                                     𝑘 = 0; 𝑢 ∈ ℂ/{0},
𝑢(𝑢 + 1). . . . . (𝑢 + 𝑘 − 1)                     𝑘 ∈ ℕ; 𝑢 ∈ ℂ.

 

Later Kummer replaced the parameter 𝑧 by 
𝑧

𝑏
 d taking limit 𝑏 → ∞ in the equation 

(3), then the hypergeometric differential equation becomes a confluent 

hypergeometric differential equation or Kummer's equation. 

𝑧
𝑑2𝑤

𝑑𝑧2 + (𝑐 − 𝑧)
𝑑𝑤

𝑑𝑧
− 𝑎𝑤 = 0.                               (5) 

The confluent hypergeometric function is the solution of the above differential 

equation (5). 

A confluent hypergeometric function is defined as [2]: 
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1𝐹1(𝑎, 𝑐; 𝑧) = Φ(𝑎, 𝑐; 𝑧) = ∑
(𝑎)𝑘

(𝑐)𝑘

𝑧𝑘

𝑘!

∞
𝑘=0 ,                                             (6) 

Very recently, Goyal et al. [3] introduced an extension of the beta function using 

the Wiman function, thus studying various properties and relationships of that 

function: 

𝐵(𝑢1,𝑢2)
(𝑢) (𝑦1, 𝑦2) = ∫ 𝑡𝑦1−1(1 − 𝑡)𝑦2−1𝐸𝑢1,𝑢2

(−𝑢(𝑡(1 − 𝑡))
−1

) 𝑑𝑡,
1

0
              (7) 

where, min{ℜ(𝑦1), ℜ(𝑦2)} > 0, ℜ(𝑢1) > 0, ℜ(𝑢2) > 0, 𝑢 ≥ 0, and 𝐸𝑢1,𝑢2
(𝑧) is a 

2-parameter Mittag-Leffler function given by [4]. 

Motivated by the above work, Jain et al. [5] extended Gauss hypergeometric 

function, and confluent hypergeometric function by using the above-extended beta 

function and studied various properties of these extended functions. They also 

studied the increasing or decreasing nature (monotonicity), log-concavity, and log-

convexity of the extended beta function defined in [3]. 

𝐹(𝑠1,𝑠2)
(𝑠)

(𝑞0, 𝑞1, 𝑞2; 𝑧) = ∑
(𝑞0)𝑘𝐵(𝑠1,𝑠2)

(𝑠)
(𝑞1+𝑘,𝑞2−𝑞1)

𝐵(𝑞1,𝑞2−𝑞1)

𝑧𝑘

𝑘!
∞
𝑘=0 ,                                           (8) 

Where, ℜ(𝑞2) > ℜ(𝑞1) > 0, ℜ(𝑠1) > 0, ℜ(𝑠2) > 0, 𝑠 ≥ 0, |𝑧| < 1 and d 𝐵(𝑠1,𝑠2)
(𝑠)

 

(𝑤1, 𝑤2) is the extended beta function. 

The extended confluent hypergeometric function is defined as [5]: 

Φ(𝑠1,𝑠2)
(𝑠)

(𝑞1, 𝑞2; 𝑧) = ∑
𝐵(𝑠1,𝑠2)

(𝑠)
(𝑞1+𝑘,𝑞2−𝑞1)

𝐵(𝑞1,𝑞2−𝑞1)

𝑧𝑘

𝑘!
∞
𝑘=0 ,                       (9) 

where, ℜ(𝑞2) > ℜ(𝑞1) > 0,   ℜ(𝑠1) > 0, ℜ(𝑠2) > 0, 𝑠 ≥ 0,  and 𝐵(𝑠1,𝑠2)
(𝑠) (𝑤1, 𝑤2) 

is the extended beta function. 

The concept of Hadamard product(convolution) of the functions 𝑓 and 𝑔 is very 

important for our results. Hadamard product of 𝑓 and 𝑔 defined as follows [6]: 
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Abstract: This paper aims to establish some new formulas and results related to the 

Erdélyi-Kober fractional integral operator applied to the extended hypergeometric 

functions. The results are expressed as the Hadamard product of the extended and 

confluent hypergeometric functions. Some special cases of our main results are also 

derived. 

Keywords: Gamma Function, Beta function, Erdélyi-Kober fractional integral 

operators, Hadamard product, Gauss hypergeometric function, Confluent 

hypergeometric function, extended hypergeometric functions. 

1. INTRODUCTION AND PRELIMINARIES  

In the last few years, many generalizations of special functions with different 

kernels witnessed a significant evolution. This modification in the theory of special 

functions offers an analytic foundation for the many scientific problems in 

mathematical physics, biology, and engineering sciences, which have been solved 

and have many practical uses. 
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Beta and Gamma functions are two important members of a class of special 

functions which play a vital role in the theory of special functions. Many special 

functions are expressed either in terms of the beta function or the Gamma function.  

The gamma function is defined as follows [1].  

 Γ(𝑦1) = ∫
∞

0
𝑡𝑦1−1𝑒−𝑡𝑑𝑡, ℜ(𝑦1) > 0.     (1.1) 

The classical Euler beta function is defined as follows [1].  

 𝐵(𝑦1, 𝑦2) = ∫
1

0
𝑡𝑦1−1(1 − 𝑡)𝑦2−1𝑑𝑡, ℜ(𝑦1), ℜ(𝑦2) > 0. (1.2) 

Further, the mathematical and physical uses of hypergeometric functions are found 

in various areas of applied mathematics, mathematical physics, and engineering. 

The Gauss hypergeometric function is a solution of a homogenous second-order 

differential equation which is called the hypergeometric differential equation, and 

it is given by: 

 𝑧(1 − 𝑧)
𝑑2𝑤

𝑑𝑧2 + (𝑐 − (𝑎 + 𝑏 + 1)𝑧)
𝑑𝑤

𝑑𝑧
− 𝑎𝑏𝑤 = 0 (1.3) 

 The Gauss hypergeometric function 2𝐹1 is defined as [2]:  

 2𝐹1(𝑎, 𝑏, 𝑐; 𝑧) = 𝐹(𝑎, 𝑏, 𝑐; 𝑧) = ∑∞
𝑘=0

(𝑎)𝑘(𝑏)𝑘

(𝑐)𝑘

𝑧𝑘

𝑘!
, (1.4) 

 where (𝑢)𝑘 represents the Pochhammer symbol defined below:  

 (𝑢)𝑘: =
Γ(𝑢+𝑘)

Γ(𝑢)
= {

1 𝑘 = 0; 𝑢 ∈ ℂ\{0},

𝑢(𝑢 + 1) ⋯ (𝑢 + 𝑘 − 1) 𝑘 ∈ ℕ; 𝑢 ∈ ℂ.
 

 Series representation and integral representation of Gauss hypergeometric function 

2𝐹1 is defined as [2]:  

 𝐹(𝑟0, 𝑟1, 𝑟2; 𝑧) = ∑∞
𝑛=0

𝐵(𝑟1+𝑛,𝑟2−𝑟1)

𝐵(𝑟1,𝑟2−𝑟1)
(𝑟0)𝑛

𝑧𝑛

𝑛!
, (1.5) 

 where ℜ(𝑟2) > ℜ(𝑟1) > 0 and |𝑧| < 1.  

 𝐹(𝑟0, 𝑟1, 𝑟2; 𝑧) =
1

𝐵(𝑟1,𝑟2−𝑟1)
∫

1

0
𝑡𝑟1−1(1 − 𝑡)𝑟2−𝑟1−1(1 − 𝑧𝑡)−𝑟0𝑑𝑡. (1.6) 
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Then later, Kummer changes the parameter z by 
𝑧

𝑏
 and taking limit 𝑏 → ∞ in the 

(1.3), then the hypergeometric differential equation becomes a confluent 

hypergeometric differential equation or Kummer’s equation.  

 𝑧
𝑑2𝑤

𝑑𝑧2 + (𝑐 − 𝑧)
𝑑𝑤

𝑑𝑧
− 𝑎𝑤 = 0 (1.7) 

The confluent hypergeometric function is the solution of the above differential 

equation (1.7).  A confluent hypergeometric function is defined as [2]:  

 1𝐹1(𝑎, 𝑐; 𝑧) = Φ(𝑎, 𝑐; 𝑧) = ∑∞
𝑘=0

(𝑎)𝑘

(𝑐)𝑘

𝑧𝑘

𝑘!
. (1.8) 

Series representation and integral representation of a confluent hypergeometric 

function are defined as [2]:  

 Φ(𝑟1, 𝑟2; 𝑧) = ∑∞
𝑛=0

𝐵(𝑟1+𝑛,𝑟2−𝑟1)

𝐵(𝑟1,𝑟2−𝑟1)

𝑧𝑛

𝑛!
, (1.9) 

 where ℜ(𝑟2) > ℜ(𝑟1) > 0;  

 Φ(𝑟1, 𝑟2; 𝑧) =
1

𝐵(𝑟1,𝑟2−𝑟1)
∫

1

0
𝑡𝑟1−1(1 − 𝑡)𝑟2−𝑟1−1𝑒𝑧𝑡𝑑𝑡. (1.10) 

Recently, Goyal et al. [3] studied a new extension of the beta function using the 2-

parameter Mittag-Leffler function as a kernel and derived some important results 

for extended beta functions.  

 𝐵(𝑎1,𝑎2)
(𝑎)

(𝑥1, 𝑥2) = ∫
1

0
𝑡𝑥1−1(1 − 𝑡)𝑥2−1𝐸𝑎1,𝑎2

(−𝑎(𝑡(1 − 𝑡))−1)𝑑𝑡, (1.11) 

where min{ℜ(𝑥1), ℜ(𝑥2)} > 0, ℜ(𝑎1) > 0, ℜ(𝑎2) > 0, 𝑎 ≥ 0 and 𝐸𝑎1,𝑎2
(𝑧) is a 

2-parameter Mittag-Leffler function given by [4].  Then later, Jain et al. [5] 

introduced new extensions of the Gauss hypergeometric function and confluent 

hypergeometric function by using the above-extended beta function and studied 

various properties of these extended functions. They also have inequalities of the 

extended beta function defined in [3]. The extended confluent hypergeometric 

function is defined as [5]:  

 Φ(𝑎1,𝑎2)
(𝑎)

(𝑏1, 𝑏2; 𝑧) = ∑∞
𝑟=0

𝐵(𝑎1,𝑎2)
(𝑎)

(𝑏1+𝑟,𝑏2−𝑏1)

𝐵(𝑏1,𝑏2−𝑏1)

𝑧𝑟

𝑟!
, (1.12) 
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CHAPTER 15 

On Solutions of the Kinetic Model by Sumudu 

Transform 
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Abstract: This paper investigates the kinetic model with four different fractional 

derivatives. We obtain the solutions of the models by Sumudu transform and 

demonstrate our results with some figures. We prove the accuracy of the Sumudu 

transform by some theoretical results and applications. 

Keywords: Sumudu transforms, Fractional derivatives, Kinetic model. 

1. INTRODUCTION  

Mathematical modeling formulas have been used to predict the growth of 

microorganisms, the spread of epidemics, and drying kinetic models are some real-

world problems. Modeling of mass transfers is created with Fick’s law. For the 
fractional version of Fick’s law, see [1] and the references in this work. Although 
the classical Lewis model defines the exponential behavior of diffusion, the 

fractional Lewis model can also use the non-exponential behavior of diffusion [2]. 

The speed of the grain drying operation varies with the supply, such as temperature, 

airflow and mechanical drying systems. Additionally, drying kinetic models 

express the time required for optimum moisture loss. We consider [3]: 
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𝑑𝑁

𝑑𝑡
= 𝐷∇2𝑁,                                                    (1.1) 

Here, 𝐷 is the diffusion coefficient, and 𝑁 is the moisture content of the food. We 

present the Lewis model [4] as: 

 
𝑑𝑁

𝑑𝑡
= −𝑘(𝑁(𝑡) − 𝑁𝑒),                (1.2) 

 where 𝑁𝑒 is equilibrium moisture content, and 𝑘 is a constant of drying has 

dimension 𝑚𝑖𝑛−1. Then, we get: 

 𝑁(𝑡) = (𝑁0 − 𝑁𝑒)exp(−𝑘𝑡) + 𝑁𝑒 ,   (1.3) 

Here, 𝑁0 is the initial moisture content inside the food.  

Fractional analysis has gained a lot of attention recently. The most crucial reason 

for this is that it has implementations in real-world problems and gives better results 

in comparison. Fractional calculus has also been used to model physical and 

engineering processes. Recently, fractional calculus has played a huge role in 

various fields, such as mechanics, electricity, chemistry, biology, and economics, 

especially in control theory. Atangana et al. [5] studied the generalized mass 

transport equation. The analysis of new trends in the fractional differential equation 

has been investigated in [6, 7]. Abdeljawad et al. [8] surveyed fractional differences 

and integration by parts. Some classes of ordinary differential equations have been 

worked on by Jarad et al. [9]. Afshari et al. [10] examined a new fixed point 

theorem with an implementation of a coupled fractional differential equations 

system. KÃrt et al. [11] studied a certain bivariate Mittag-Leffler function in 2020. 

Integral transforms and some special functions were investigated by Saxena et al. 

[12] and Fernandez et al. [13] also conducted various studies on this subject.  The 

purpose of this study, because of the usefulness and significance of the fractional 

differential equations in certain physical problems, is to give numerical results 

using the Sumudu transformation for the kinetic model (1.2). 

2.  MATHEMATICAL BACKGROUND 

The Sumudu transformation was first introduced by Watagula [14]. Weerakoon 

[15] investigated the complex inverse formula for Sumudu transform. Asiru has 

studied the implementation of the Sumudu transform [16], discrete dynamical 

system equations [17] and more [18]. Sumudu transform is a theoretical dual of the 

Laplace transform. Sumudu transforms to convolution-type integral equation was 

applied by Belgacem et al. [19]. Additionally, Belgacem et al. [20] mentioned many 
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features of the Sumudu transform. For more details, we refer readers to [21-26]. 

Purohit et al. [27] examined an application of Sumudu transform for a fractional 

kinetic equation. Nisar et al. [28-30] also studied these types of equations. 

Definition 2.1 Over the set of functions,  

𝐴 = {𝑔(𝑡)|∃𝑁, 𝜏1, 𝜏2 > 0, |𝑔(𝑡)| < 𝑁exp(|𝑡|/𝜏𝑗 , if  𝑡 ∈ (−1)𝑗 × [0, ∞)}, (2.1) 

 the Sumudu transform is defined as [20]:  

𝐺(𝑢) = 𝑆[𝑔(𝑡)] = ∫
∞

0
𝑓(𝑢𝑡)exp(−𝑡)𝑑𝑡,    𝑢 ∈ (−𝜏1, 𝜏2). (2.2) 

The Sumudu transform changes domain size and shape, not units, unlike Laplace 

transform. ODEs solved by the Laplace transform can be solved by Sumudu 

transform and almost vice versa, except for some possibly artificially manufactured 

examples. The primal thing is that Sumudu is more natural and easier to understand, 

so there are lots of Sumudu transform’s applications in the literature. Actually, this 
transform is linear, protects linear functions, and hence especially does not change 

units [14]. 

Definition 2.2 Let 𝜂, 𝜁: [0, ∞) → ℜ, then the convolution of 𝜂, 𝜁 is [31]  

 (𝜂 ∗ 𝜁) = ∫
𝑡

0
𝜂(𝑡 − 𝑢)𝜁(𝑢)𝑑𝑢 (2.3) 

 and assume that 𝜂, 𝜁: [0, ∞) → ℜ, then we have  

 𝑆{(𝜂 ∗ 𝜁)(𝑡)} = 𝑢𝑆{𝜂(𝑡)}𝑆{𝜁(𝑡)}. (2.4) 

 Definition 2.3 The Caputo fractional derivative is presented as follows [32];  

  𝑎
𝐶𝐷𝛼𝑔(𝑡) =

1

Γ(𝑛−𝛼)
∫

𝑡

𝑎
(𝑡 − 𝑧)𝑛−𝛼−1𝑔(𝑛)(𝑧)𝑑𝑧 (2.5) 

 where 𝛼 ∈ ℂ, 𝑅𝑒(𝛼) > 0, 𝑛 = [𝑅𝑒(𝛼)] + 1.  

Lemma 2.4 The Sumudu transform of Caputo fractional derivative is defined by 

[31]  

 𝑆[0
𝐶𝐷𝑡

𝛼𝑔(𝑡)] =
𝐺[𝑢]−𝑔(0)

𝑢𝛼 , (2.6) 
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