

Herbal Immunity Boosters Against COVID-19

Edited By

Sachin Kumar Jain

Oriental College of Pharmacy & Research
Oriental University
MP-452010
India

Ram Kumar Sahu

Department of Pharmaceutical Science Sushruta School of Medical and Paramedical Sciences Assam University (A Central University) Silchar-788011, Assam India

Priyanka Soni

B R Nahata College of Pharmacy Mandsaur University, Mandsaur Assam India

Vishal Soni

B R Nahata College of Pharmacy Mandsaur University, Mandsaur Assam India

Herbal Immunity Boosters Against COVID-19

Editors: Sachin Kumar Jain, Ram Kumar Sahu, Priyanka Soni & Vishal Soni

ISBN (Online): 978-981-5079-45-6

ISBN (Print): 978-981-5079-46-3

ISBN (Paperback): 978-981-5079-47-0

© 2022, Bentham Books imprint.

Published by Bentham Science Publishers Pte. Ltd. Singapore. All Rights Reserved.

First published in 2022.

BENTHAM SCIENCE PUBLISHERS LTD.

End User License Agreement (for non-institutional, personal use)

This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the book/echapter/ejournal ("Work"). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: permission@benthamscience.net.

Usage Rules:

- 1. All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit the Work or make the Work available for others to do any of the same, in any form or by any means, in whole or in part, in each case without the prior written permission of Bentham Science Publishers, unless stated otherwise in this License Agreement.
- 2. You may download a copy of the Work on one occasion to one personal computer (including tablet, laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it.
- 3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights.

Disclaimer:

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the Work.

Limitation of Liability:

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

General:

- 1. Any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims) will be governed by and construed in accordance with the laws of Singapore. Each party agrees that the courts of the state of Singapore shall have exclusive jurisdiction to settle any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims).
- 2. Your rights under this License Agreement will automatically terminate without notice and without the

- need for a court order if at any point you breach any terms of this License Agreement. In no event will any delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement constitute a waiver of any of its rights.
- 3. You acknowledge that you have read this License Agreement, and agree to be bound by its terms and conditions. To the extent that any other terms and conditions presented on any website of Bentham Science Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail.

Bentham Science Publishers Pte. Ltd.

80 Robinson Road #02-00 Singapore 068898 Singapore Email: subscriptions@benthamscience.net

CONTENTS

LIST OF CONTRIBUTORS	
CHAPTER 1 ORIGIN OF COVID-19	
Aseem Setia, Km. Nandani Jayaswal and Ram Kumar Sahu	
1. INTRODUCTION	1
2. HISTORICAL BACKGROUND, ORIGIN AND THE TRANSMISSION OF	
CORONAVIRUS	4
3. CLASSIFICATION OF CORONAVIRUS	
3.1. Differences and Similarities Between SARS, MERS, and the nCoV-2019	7
3.1.1. Similarities and Differences	7
4. STRUCTURE OF CORONAVIRUS AND ROLE OF THEIR PROTEINS	8
4.1. Coronavirus Structure	
4.2. Spike Protein and its Drawbacks into the Host Body	
5. MECHANISM OF VIRAL ENTRY	
6. MODES OF TRANSMISSION	
7. TREATMENTS OF COVID-19	
7.1. Antiviral Agents	
7.2. Natural Products	
7.3. Vaccines	
CONCLUSION	
CONSENT FOR PUBLICATION	
CONFLICT OF INTEREST	
ACKNOWLEDGEMENT	
REFERENCES	17
CHAPTER 2 COVID-19: SIGN, SYMPTOMS AND TRANSMISSION	25
Saket Singh Chandel, Deepshikha Verma and Vipinchandra Bhaskarrao Pande	
1. INTRODUCTION	26
2. SIGNS, SYMPTOMS AND SEVERITY STATUS OF COVID-19 PATIENTS	28
3. FACTORS THAT AGGRAVATE COVID-19 CONDITION	33
3.1. Age	
3.2. Obesity	
3.3. Smoking	34
3.4. Drinking	
3.5. Immune System Condition	
3.6. Human Selectivity and Reactivity	35
4. FACTORS THAT ENHANCE THE TRANSMISSION OF COVID-19	
4.1. Misdiagnosis	
4.2. Poverty	
4.3. Perception and Illiteracy	
4.4. Asymptomatic Patients	
4.5. Climatic Influence	
4.6. Low Vitamin D level	
CONCLUSION	
CONSENT FOR PUBLICATION	
CONFLICT OF INTEREST	
ACKNOWLEDGEMENT	
E H H H E H N E H N	/11

CHAPTER 3 A SILVER LINING FOR COVID 19: NUTRACEUTICALS AND PLANT SECONDARY METABOLITES	46
	40
Neetesh Kumar Jain and Nitu Singh 1. INTRODUCTION	46
2. IMMUNITY BOOSTER NUTRIENTS	
2.1. Vitamin A	
2.3. Vitamin B12	
2.4. Vitamin C	
2.5. Vitamin D	
2.6. Vitamin E	
2.7. Iron	
2.8. Zinc	
2.9. Selenium	
2.10. Amino Acids	
2.11. Arginine	
2.12. Glutamine (GLN)	
3. NUTRACEUTICALS	
3.1. Probiotics	
3.2. Omega-3 fatty Acids	
3.3. β-glucans	
3.4. Secondary Plant Metabolites Against COVID-19 Virus	50
3.4.1. Alkaloids	
3.4.2. Terpenoids	
3.4.3. Polyphenols/flavonoids	
4. EMERGING CHALLENGES AND POTENTIAL SOLUTIONS	
CONCLUSION	
CONSENT FOR PUBLICATION	
CONFLICT OF INTEREST	
ACKNOWLEDGEMENT	
REFERENCES	
	02
CHAPTER 4 RISK FACTORS OF COVID-19 ENHANCING TRANSMISSION AND	70
AGGRAVATING PATIENT'S CONDITION	70
Vishal Trivedi, Vinod Nautiyal and Retno Widyowati	70
1. INTRODUCTION	
2. COVID-19 BIOLOGY (GENOME, GENE AND PROTEINS)	
2.1. Virus Life Cycle	
3. FACTORS OF DEMOGRAPHIC	
3.1. Age and Gender	
3.2. Ethnicity 4. FACTORS RELATED TO OCCUPATIONS	
4.1. Smoking	
5. COMPLICATION IN COVID-19	
5.1. Acute Kidney Injury (AKI)	
5.2. Coagulation Disorders 5.3. Thromboembolism	
5.4. Anticoagulants	
6. RISK FACTOR OF CANCER AND COVID-19	
6.1. Inflammation and Immune-Senescence	
6.2. Metabolic Syndrome	01

6.3. Immunosuppression, Interferon and Neutrophilia
6.4. Relationships Between Cancer and Covid-19 Susceptibility or Therapies
7. ANTICANCER DRUGS USED TO INCREASE THE VULNERABILITY OF COVID-19
8. PRO-COVID-19 EFFECTS ON CANCER THERAPY
8.1. Interferon Therapy
8.2. Immune Blockers
8.3. JAK– IL-6–STAT3 Blockade
8.4. Androgen-Deprivation Therapy
8.5. Other Small Molecules
8.6. ANTIVIRAL DRUGS THAT HAVE SHOWN ANTITUMOR EFFECT AGAINST
COVID-19
9. RISK FACTORS OF CARDIOVASCULAR SYSTEM AND COVID-19
9.1. Cardiovascular Comorbidities Underlying
9.2. Cardiovascular Manifestations of Diverse
9.2.1. Myocarditis
9.2.2. Cardiovascular Diseases and Covid-19 Bidirectional Interaction
9.2.3. Acute Coronary Syndrome
9.2.4. Heart Failure
9.2.5. Cardiac Arrest
9.2.6. Coagulation and Thrombosis
9.2.7. Kawasaki Disease
9.2.8. Immunocompromised Patients
10. ACE2 MANIFESTATIONS IN CARDIOVASCULAR DISEASES
10.1. ACE2 Downregulation for COVID 19
10.2. Therapeutic Target ACE2
10.3. COVID 19 Broad Tissue Tropism
10.4. Endothelial Cells for Viral Targeting
10.5. Drug–Disease Interactions
10.5.1. RAAS Inhibitors On Covid 19
10.5.2. Antiviral Drugs for Cardiovascular Effects
10.5.3. Hydroxychloroquine and Azithromycin
10.5.4. Remdesivir
10.5.5. Lopinavir–ritonavir
CONCLUSION
CONSENT FOR PUBLICATION
CONFLICT OF INTEREST
ACKNOWLEDGEMENT
REFERENCES
APTER 5 INDIAN EXPEDITION AGAINST COVID-19 THROUGH TRADITIONAL
GS
Rupesh Kumar Pandey, Sokindra Kumar, Lubhan Singh, Priyanka Pandey, Rakesh
Sagar, Ravindra Kumar Pandey and Shiv Shankar Shukla
1. INTRODUCTION
1.1. Disease Etiology
1.2. Regulation of Spike Protein
1.3. Indian Traditional Drugs
2. INDIAN HERBAL FORMULATIONS USED AS IMMUNITY BOOSTER FOR COVID-
19
2.1. Alium Sativum
2.2. Ocimum Sanctum

2.3. Cinnamomum Verum	. 114
2.4. Acacia Arabica	115
2.5. Azadirachta Indica	115
2.6. Citrus Limon	
2.7. Zinger Oficinale	
2.8. Curcuma Longa	
2.9. Plant Metabolite Potential as Immunity Booster for Covid -19	
2.9.1. Flavonoids	
2.9.2. Polyphenols	
2.9.3. Terpenoids	
2.9.4. Dipeptides	
3. SCOPE, CHALLENGES AND POTENTIAL SOLUTION	
3.1. Challenges	
3.2. Potential Solution	
4. FUTURE PROSPECTS	
CONCLUSION	
CONSENT FOR PUBLICATION	
CONFLICT OF INTEREST	
ACKNOWLEDGEMENT	
REFERENCES	
CHAPTER 6 HERBAL THERAPY FOR COVID-19	126
Upendra S. Bhadoriya, Ankit Jain and Sachin Kumar Jain	
1. INTRODUCTION	
1.1. Herbal Therapy as a COVID-19 Treatment Option	
2. COVID-19 HERBAL THERAPY/HERBS	
2.1. Echinacea Purpurea	
2.2. Curcumin	
2.3. Cinchona SP.,	
2.4. Withania Somnifera	
2.5. Planax Quinquefolius (Ginseng)	
2.6. Fenugreek	131
2.7. Herbal Extracts and Nutraceuticals [29]	
2.7.1. Vitamins	
2.7.2. Minerals in the Diet	132
2.7.3. Probiotics	
2.7.4. Omega-3 fatty Acids	
2.8. Tinospora Cordifolia (Giloy, Guduchi)	
2.9. Ocimum Sanctum, (Holy Basil, Tulsi)	
2.10. Syzygium Aromaticum (Clove, Laung)	133
2.11. Sambucus Nigra (Elderberry)	
2.12. Allium Sativum (Garlic, Lahsun)	
2.13. Zingiber Officinalis (Ginger)	
2.14. Traditional Indian Medicines	
2.15. Rebooting of the Immune System	138
2.16. COVID-19 Herbal Therapy: The Role of Specific Phyto-constituents	
2.16.1. Phenolic Compounds	
2.16.2. Saponins	
2.16.3. Alkaloids	141
2.16.4. Polysaccharides	
2.16.5. Anthraquinones	142

OVERCOMING CHALLENGESFINAL THOUGHTS/CONCLUSION	
CONSENT FOR PUBLICATION	
CONFLICT OF INTEREST	
ACKNOWLEDGEMENT	
REFERENCES	
APTER 7 HERBAL IMMUNE-BOOSTER FOR COVID-19	
Raja Chakraborty, Saikat Sen, Bhargab Jyoti Sahariah, Chayanika Bordoloi and	
Sunil Mistry	
1. INTRODUCTION	
2. OUTBREAK OF CORONAVIRUS IN THE 21ST CENTURY	
3. TRADITIONAL MEDICINE IN CORONA PANDEMIC	
4. PLANT BASED-IMMUNITY BOOSTER FOR COVID-19	
4.1. Terpenoids	
4.2. Polyphenols and Flavonoids	
4.3. Dipeptides for COVID-19	
4.4. Polysaccharides for Immunity	
4.5. Vitamin D Rich Foods	
4.6. Vitamin C and E Rich Foods to Induce Immunity	
4.6.1. Vitamin A	
4.6.2. Minerals	
4.7. Nutraceuticals Supplements and Probiotics for Immunity	
5. INDIAN SPICES APPLICABLE AS AN IMMUNE BOOSTER	
5.1. Herbal Formulations for COVID-19	
6. CHALLENGES, POTENTIAL SOLUTIONS, AND FUTURE PROSPECTS	
CONCLUSION	
CONSENT FOR PUBLICATION	
CONFLICT OF INTEREST	
ACKNOWLEDGEMENT	
REFERENCES	

PREFACE

The book is an exclusive version of the instructive matter on Herbal Immunity Boosters for Covid-19. The herbal immunity booster is basically an emerging field that discusses potential preparations to diminish the severity of the infection caused by Covid-19. Currently, the effective treatment of COVID-19 is lacking. Hence it is imperative for individuals to use such type of food supplements which boost their immune systems. In this concern, the ideal technique is to fortify immunity naturally by using medicinal plants. Whereas, immunity booster deals with the remarkable protection mechanism against loads of bacteria, viruses, fungi, toxins and parasites when entering the body. Additionally, other signaling pathways are recognized that are responsible for the regulation of the pathogenesis of infections and noninfectious diseases due to lower immunity. It also deals with the exploration of functional and nutraceutical foods for preserving body homeostasis which is essential to maintain immunity. Therefore, plants or herbs having immunomodulating properties should be included in the diet, and we should explore novel therapeutic opportunities to improve immunity against diseases. This book contains immense knowledge about Herbal Immunity Boosters for Covid-19 with respect to the mode of action, modulation of signaling pathways, regulatory aspects, safety, food supplements and drug delivery for better function of the immune system. In addition, drug development issues, adaptation to clinical use, market prospects and industrial commercialization too come under the concept of Herbal Immunity Boosters for Covid-19. The book not only focuses on theoretical knowledge but also considers practical aspects. The book is very beneficial for students and researchers across the globe that are indulged in the reading and investigation of Herbal Immunity Boosters for Covid-19, thereby, spreading awareness all over the globe and promoting anticipated trends in the field of Herbal Immunity Boosters. The major objective of this initiative is to bring into light the entire fundamental concept. This book also includes different types of procedures and herbal medicines to increase and treatment and immunity of Covid-19.

Sachin Kumar Jain

Oriental College of Pharmacy & Research Oriental University Ujjain Road Indore MP-452010 India

Ram Kumar Sahu

Department of Pharmaceutical Science Sushruta School of Medical and Paramedical Sciences Assam University (A Central University) Silchar-788011 Assam, India

Priyanka Soni

B R Nahata College of Pharmacy Mandsaur University, Mandsaur Assam India

&

Vishal Soni

B R Nahata College of Pharmacy Mandsaur University, Mandsaur Assam India

List of Contributors

Ankit Jain IPS Academy College of Pharmacy, Rajendra Nagar AB Road, Indore MP,

India

Aseem Setia Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab-

142001, India

Chayanika Bordoloi NEF College of Pharmacy, Guwahati, Assam, India

Deepshikha Verma Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya,

Koni, Bilaspur-495009, Chhattisgarh, India

Km. Nandani Jayaswal Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab-

142001, India

Lubhan Singh KSCP, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh,

India

Neetesh Kumar JainFaculty of Pharmacy, Oriental University Indore, MP, IndiaNitu SinghFaculty of Pharmacy, Oriental University Indore, MP, India

Priyanka Pandey Swami Vivekanand College of Pharmacy, Indore, Madhya Pradesh, India

Ram Kumar Sahu Department of Pharmaceutical Science, Assam University (A Central

University), Silchar, Assam – 788011, India

Raja Chakraborty Institute of Pharmacy, Assam Don Bosco University, Tepesia Garden,

Sonapur, India

Rakesh Sagar Department of Pharmacy SGSITS, Indore MP, India

Ravindra Kumar Pandey Columbia Institute of Pharmacy, Tekari, Raipur, Chhattisgarh, India

Retno Widyowati Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas

Airlangga, Surabaya, 60115, Indonesia

Rupesh Kumar Pandey KSCP, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh,

India

Saikat Sen Faculty of Pharmaceutical Science, Assam Down Town University,

Guwahati, Assam, India

Sachin Kumar Jain Oriental College of Pharmacy & Research, Oriental University, Ujjain

Road Indore MP-452010, India

Saket Singh Chandel Department of Pharmacology, Dr. C. V. Raman Institute of Pharmacy, Dr.

C. V. Raman University, Bilaspur-495113, Chhattisgarh, India

Shiv Shankar Shukla Columbia Institute of Pharmacy, Tekari, Raipur, Chhattisgarh, India

Sokindra Kumar KSCP, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh,

India

Sunil Mistry Apex Institute of Pharmacy, Samaspur, Chunar, Mirzapur UP, India 231304

Upendra S. Bhadoriya IPS Academy College of Pharmacy, Rajendra Nagar AB Road, Indore MP,

India

Vinod Nautiyal Department of Pharmaceutical Sciences, Gurukul Kangri University

Haridwar, Uttarakhand, India

Vipinchandra Bhaskarrao Department of Pharmacy, Mandsaur University, Mandsaur-458001,

Pande Madhya Pradesh, India

Vishal Trivedi Department of Pharmacy, Madhav University, Abu Road, Pindwara,

Rajasthan, India

CHAPTER 1

Origin of COVID-19

Aseem Setia¹, Km. Nandani Jayaswal¹ and Ram Kumar Sahu^{2,*}

Abstract: Coronavirus is a type of virus that is surrounded by non-segmented, singlestranded, positive-sense RNA genomes that reproduce in the cytoplasm. The size of the coronavirus is usually 80-120 nm. It was discovered in Wuhan, China in December 2019, and it was termed 2019 nCoV or COVID-19. The coronavirus is encased in a lipid bilayer and it possesses several proteins. These proteins are surrounded in the envelope of a virus; whereas, in the viral RNA, N-protein shows interactions and it can be found on the outer surface of the viral particle, forming the nucleocapsid. The spike protein is identified as the leading protein and mediates the entrance inside the host body that would cause SARS-CoV-2syndrome. The spike protein has two spheres namely S1 and S2. The receptor that is attached to the S1 and further S2 is responsible for fusion. In the past, the most severe types of virus which had resulted in large-scale pandemics were SARS (in 2002–2003) which occurred in Guandong Province, China. Meanwhile, Saudi Arabia had experienced the Middle East respiratory syndrome (MERS) in 2012. The virus in the 1960s was commonly identified in birds and mammals; mostly in rats, camels, cats and bats. SARS-CoV-2 causative agents belong to the genus β -Coronavirus. Coronavirus can be classified into four genera such as α , β , γ , and δ coronavirus. Alpha and beta coronaviruses are found in mammals such as bats. Gamma coronaviruses would primarily infect birds and affect mammalians, whereas delta coronaviruses would infect both birds and mammals. This chapter highlights the origin, historical background, the classification of the coronavirus as well as providing the conceptual information on various treatment approaches for COVID-19.

Keywords: β-Coronavirus, Coronavirus, MERS-CoV, SARS-CoV, SARS-Co--2, Spike Protein.

1. INTRODUCTION

Coronavirus is a chief pathogen that principally infects the respiratory tract of humans. Previous coronavirus outbreaks (CoVs) have shown syndromes of the

¹ Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab-142001, India

² Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, Assam – 788011, India

^{*} Corresponding author Ram Kumar Sahu: Department of Pharmaceutical Science, Assam University (A Central University), Silchar, Assam – 788011, India; E-mail: ramsahu79@gmail.com

Middle East respiratory syndrome (MERS)-CoV as well as a severe acute respiratory syndrome (SARS)-CoV. These syndromes were alarming to the world's population due to the infections they had caused [1]. SARS-CoV first appeared in 2002, followed by (MERS-CoV) and the novel coronavirus in 2012 and 2019, respectively. COVID-19, which was recently discovered, is the fifth known pandemic since the 1918 flu pandemic [2]. Coronaviruses are viruses enclosed with non-segmented, single-stranded, positive-sense RNA genomes that reproduce in the cytoplasm and they are typically 80-120 nm in size. COVID-19 was first identified in December 2019 in Wuhan, China, and was later referred to as 2019 nCoV or COVID-19 [3]. The SARS-CoV virus is a member of the Coronaviridae family, specifically the orthocoronaviridae subfamily and the order Nidovirales. The size range of the RNA genome lies between 26 to 32 kb. A helical nucleocapsid encompasses the DNA, which is surrounded by a lipid bilayer that is derived from the host [4]. Membrane (M), Spike (S), envelope (E) and nucleocapsid (N) are proteins found on the surface of the coronavirus (N). The S protein is the primary viral entry point [5]. The S protein is a large, Type-I transmembrane protein with 1160 amino acids for avian infectious bronchitis virus (IBV) and 1400 amino acids for feline coronavirus (FCoV). In the S protein, two domains namely S1 and S2 were discovered. The two domains S1 and S2 would recognize the host receptor and act for further fusion, respectively [6]. Once it is attached to the receptor, the envelop spike proteins would enter the host body directly through the cell surface and via the endocytosis fusion process. The massive conformational changes in the spike protein would determine the virushost membrane fusion. Coronavirus has the appearance of a crown in an electron microscope and it is due to the presence of the glycoprotein spikes on its cover [7]. The MHV receptor was first discovered in 1991 and it was identified as the leading coronavirus binding receptor as it would allow the MHV to infect cells by binding them to the CEACAM1 molecule [8]. CEACAM1 is a part of the immunoglobulin superfamily and it is classified as a Type-I transmembrane protein. The multifunctional protein CEACAM1 plays a major role in the adhesion and cell signalling. Human coronaviruses consist of seven strains namely Human Coronavirus OC43 (HCoV-OC43), MERS-CoV, SARS-CoV (HCoV-NL63, New Heaven Coronavirus), Human Coronavirus HKU1, Human Coronavirus 229E (HCoV-229E), HCoV-EMC as well as the new strain that is identified as the Wuhan coronavirus which is known to be extremely dangerous and currently spreading widely worldwide (known as SARS-CoV-2 or COVID-19). Coronavirus Humanoid viruses, such as HCoV-229E, -NL63, -OC43 and -HKU1 are common in the humanoid population and they would display severe infection in the human respiratory tract at every age group. Alpha coronaviruses consist of HCoV-229E and NL63 while beta coronaviruses include OC43 and HKU1 [9]. The binary human viruses (HCoV-229E and HCoV-NL63) that are identified as the alpha coronavirus can infect animals and cause severe illness. The amino peptidase N (APN) protein is present in the host and acts as a receptor for HCoV-229E [10]. The Type II transmembrane protein CD13 is termed an APN protein that originates on the respiratory and intestinal epithelial cells. The APNs are Zn²⁺dependent proteases and they have the capability to break down the protein of N terminal neutral amino acids. Furthermore, the beta SARS-CoV is able to bind to the carbohydrates that are presented in a galectin fold-like structure found in the S1 NTD. The SARS-CoV was first discovered in 2002 and the (ACE-2) receptor was responsible for the virus [11]. Type I main membrane protein is a mono-carboxypeptidase that hydrolyzes angiotensin II and it is found in a substantial fraction of ACE2 receptors expressed in lung tissue. When a coronavirus infects the host, the calcium-dependent (C-type) lectins are predicted. Humans, mammals and birds are all afflicted by the coronavirus infection in humans as it affects the respiratory tract, the gastrointestinal tract, the hepatic system and the nervous system. Acute and persistent infections are both possible [12]. The α , β , γ , and δ are four different types of coronaviruses in which the alpha and beta are responsible for infections. Acute lung injury is caused by H5N1, SARS-CoV and H1N1 while acute respiratory distress syndrome (ARDS) could cause failure and death of the pulmonary region. The following are two possibilities that are likely to explain the creation of novel coronaviruses: a) natural selection in an animal host prior to and after zoonotic transmission and b) natural selection in humans after zoonotic transmission. Clinical types and risk factors are highly variable, resulting in scientific data ranging from asymptomatic to lethal. The basic symptoms of coronavirus include: cough, sore throat, breathlessness, fever, and the patient must be guarantined for 2-14 days after infection. Following the (H1N1), 1957 (H2N2), 1968 (H3N2) and 2009 Pandemic flu (H1N1), the WHO had declared a new coronavirus outbreak pandemic on March 11, 2020 [13] (Fig. 1).

COVID-19: Sign, Symptoms and Transmission

Saket Singh Chandel^{1,*}, Deepshikha Verma² and Vipinchandra Bhaskarrao Pande³

Abstract: COVID-19, which is caused by SARS-CoV-2, was first reported in Wuhan, China in late 2019. Till date, over 12.1 million people have contracted the disease across 221 countries in the world. The global fatality rate is about 6.2% thus far, and as of May 26th 2020, the highest confirmed cases were recorded in the USA, Brazil, Russia, Spain, UK, Italy and France. Several attempts to fight against the virus are taken by the World Health Organization (WHO) as well as other health agencies in various countries with reported confirmed cases. The present study has reviewed COVID-19 with respect to the clinical symptoms and signs, as well as factors that could exacerbate COVID-19 condition and transmission amongst people. Recent reports and studies have found the disease status to be of the predominantly mild condition and to a lesser extent, a critical/severe status. COVID-19 presents several clinical manifestations with symptoms such as fever, dry cough, fatigue, dizziness, anorexia, headache, expectoration, dyspnea, chest tightness, abdominal pain, diarrhea and nausea. Studies have observed age, obesity, smoking and drinking habit, immune system condition, human selectivity and reactivity as factors that can aggravate the disease condition, while poverty, fake news, non-validated scientific claims, and perception/illiteracy have been reported as risk components that could enhance the transmission of the viral infection. This study concludes by suggesting the appropriate methods to combat the factors discussed.

Keywords: Co-Morbidities, COVID-19, Global Pandemic, Immune System, Public Health, SARS-CoV-2.

¹ Department of Pharmacology, Dr. C. V. Raman Institute of Pharmacy, Dr. C. V. Raman University, Bilaspur-495113, Chhattisgarh, India

² Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur-495009, Chhattisgarh, India

³ Department of Pharmacy, Mandsaur University, Mandsaur-458001, Madhya Pradesh, India

^{*} Corresponding author Saket Singh Chandel: Department of Pharmacology, Dr. C. V. Raman Institute of Pharmacy, Dr. C. V. Raman University, Bilaspur-495113, Chhattisgarh, India, Mobile: +919827181552; Email Id: singhpharma@gmail.com

1. INTRODUCTION

In early January 2020, there were several global news concerning the emergence of a novel coronavirus in Wuhan, Hubei Province, China. Prior to that time, specifically towards mid-December 2019, there were cases of unknown pneumonia in the province reported. It rapidly became a major source of concern to the Chinese Government and its health institutions. Consequently, an etiological study was launched to curtail its spread. According to Kakodkar *et al.* (2020), China's CDC discovered a virus called novel coronavirus 2019 (2019-nCoV) and it was colloquially referred to as "Wuhan Coronavirus" on 7th January, 2020 [1].

The causative agent responsible for the disease was identified as Severe Acute Respiratory Syndrome (SARS-CoV-2) by scientists. By the end of January 2020, WHO had declared 2019-nCoV a public health emergency. The cases were increasing in China, before the virus had spread to other nations and territories across various continents of the world. During this period, the WHO had closely monitored the situation and the name of the disease was given as Coronavirus Disease 2019 with a short name of COVID-19 by 11th February, 2020. Authors had attributed the renaming of the "Wuhan Coronavirus" as SARS-CoV-2 as an attempt to de-stigmatize the association of the virus with respect to the geographic locality and in relation to the disease symptomatology [1]. By 11th March 2020, COVID-19 was declared a global pandemic.

Presently, the disease has spread to over 221 countries and territories. The major means of the virus transmission include person to person, making contact with SARS-Cov-2 contaminated surfaces as well as having exposure to and inhalation of droplets released by SARS-Cov-2 patients through aerosolization. The disease has been reported to affect the respiratory tracts which would lead to coughing, sneezing, difficulty in breathing or shortness of breath and pneumonia among others [2].

Information obtained from the Worldometer website as of March 16, 2021, 10:38 GMT has shown that over 12.1 million people have contracted the disease across 221 countries in the world to date. The total numbers of confirmed deaths, recovered and discharged cases were 2,672,766; 100,107,434 and 97,434,668 respectively. Among the active cases currently (20,687,790), 99.6% and 0.4% are in mild and critical conditions, respectively. Presently (Till 16th March, 2021), the number of nations with the highest cases are in this order USA (30,138,586), Brazil (11,525,477), India (11,409,831), Russia (4,400,045), UK (4,263, 527), France (4,078,133), Italy (3,238,394) and Spain (3,195,062), while the countries with the highest death rates are in the order; USA (548,013), Brazil (279,602),

Mexico (194,944), India (158,892), UK (125,580), Italy (102,499), Russia (92,494), France (90,762), Germany (74,115) and Spain (72,424). China is ranked as the 86th nation with the highest number of confirmed cases (90,062) while India and Nigeria are ranked 3rd and 73rd, respectively. India had 11,146,371 confirmed cases, 158,892 deaths, 11,027,543 discharged cases, 223,396 active cases and 8,944 cases in critical condition, while the most populated nation in Africa (Nigeria) had 160,895 confirmed cases, 2,016 deaths, 145,752 discharged cases, 13,127 active cases and 10 in critical condition [2].

A large number of deaths have been recorded as a result of the global pandemic of COVID-19 in which most of the deaths were individuals with underlying health conditions. It is opined that chronic medical conditions would commonly occur in combination which is also known as comorbidities [3]. Researchers have reported that comorbidity is related to adverse health effects, more intricate clinical management and increased cost of health care. It is difficult to accurately define the relationship between a disease and its comorbidities [4]. Furthermore, the nature and prevalence of the comorbidities are mainly swayed by their epidemiology in the patients' area of origin. Most comorbidities of a disease often influence its clinical manifestations and may cause uncertainties in their diagnosis.

Effective management of chronic medical conditions with comorbidities is accrued with multifaceted treatment procedures, therefore, entails suitable self-care by the patients of all comorbid conditions. This can be made possible by understanding the underlying mechanisms, the causative agent of the diseases as well as their interactions [4]. The coexistence of other infectious comorbidities in patients with life-threatening ailments has been recorded in the literature. Studies have shown that most people that had died from COVID-19 had suffered from other health conditions. The comorbidity rate of COVID-19 patients is at least 74.4% and 58.8% of it are from various parts of the pandemic area [5, 6]. Some of the common health conditions associated with COVID-19 include chronic obstructive pulmonary/lung disease, cardiovascular diseases, diabetes, hypertension, chronic liver and kidney disease, malignant tumor, and bacteria co-infection among others [7 - 12].

Therefore, this study is aimed at reviewing the factors that could aggravate the condition and transmission as well as increasing the awareness of the severity status of the disease.

A Silver Lining for Covid 19: Nutraceuticals and Plant Secondary Metabolites

Neetesh Kumar Jain^{1,*} and Nitu Singh¹

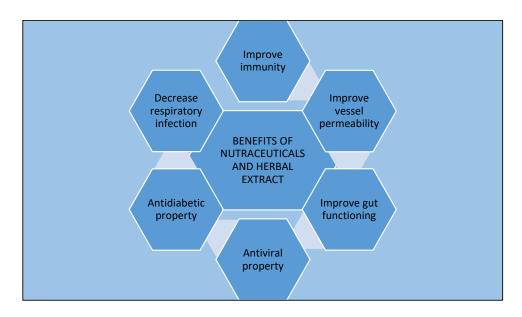
¹ Department of Pharmacology, Oriental College of Pharmacy and Research, Faculty of Pharmacy, Oriental University, Indore, India

Abstract: There are some confines to the worldwide disease instigated by the novel coronavirus disease 2019 (COVID19), for now, a vaccine or treatment is available. According to SAGE, the Pfizer-BioNTech, COVID-19 mRNA vaccine is safe and effective. Vaccination is not recommended for certain populations due to contraindications, lack of availability, or inadequate data. Individuals with a background of grave allergies, pregnant women, and foreign travellers who are not part of a prioritized group, and children under the age of 16 are all cautioned against getting the vaccine. This necessitates the use of some alternatives that strengthen the immune system. The new therapies and medications provide our bodies with a window duration that aids in the creation of adaptive ion channels. The human immunity system is made up of various body organs and cells that work together with a symphony to defend the host from foreign particles such as viruses, bacteria, fungi, parasites, and so on. To synthesize various types of immune cells, our body needs a broad range of small amounts (vitamins and minerals) and large amounts (carbohydrate, protein, and fat) nutrients. Certain established prehistoric herbs that improve immunity include garlic, basil leaves, and black pepper. The following chapter includes a list of immunesupporting nutraceuticals (such as omega-3 fats, glucans, amino acids, probiotics, vitamins, and minerals) and plant's secondary metabolites, as well as the impression of their supplementation in boosting the body's immunity to make it able to combat COVID-19.

Keywords: Alkaloids, Amino Acids, COVID 19, Coronavirus, Flavonoids, Herbal Extract, Immunity Booster.

1. INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a communicable ailment instigated by the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. Firstly, it was discovered in Wuhan, China, in December 2019 and has meanwhile blow-


^{*} Corresponding author Neetesh Kumar Jain: Department of Pharmacology, Oriental College of Pharmacy and Research, Faculty of Pharmacy, Oriental University, Indore, India; Tel: 91-9479347077; E-mail: drneetesh@orientaluniversity.in

out internationally, resulting in a pandemic [2]. On average 7.3 million cases stayed registered across 188 countries and territories as of June 10, 2020, resulting in more than 413,000 deaths [3]. As of March 3, 2021, the virus had infected 115 million people worldwide, with 2.54 million people dying as a result of the disease. COVID-19 is a highly contagious, critical illness characterized by Pneumonia and Acute respiratory distress syndrome (ARDS). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), like Middle East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV-1, comes under the Coronaviridae family and causes the disease. The virus's genome is positive-sense Ribonucleic acid (RNA), which codes for 26 proteins that help the virus survive. replicate as well as propagate in the host. The virus is spread by contact with infected people's aerosol droplets [4]. Coronaviruses are encased viruses with a positive-sense genome of single-stranded RNA (+ssRNA). These viruses are members of the Coronaviridae family and subfamily Coronavirinae, which contaminate birds and mammals through its spike (S) glycoprotein and the virus binds to angiotensin-converting enzyme 2 (ACE2) receptors on cells [5]. S1 and S2 are the two domains of the S protein. S1 binds to the peptidase domain of ACE2, known as the receptor-binding domain (RBD), and membrane fusion is catalyzed by S2, allowing genetic material to be released inside the cells [6]. Individuals' immune status and the occurrence of underlying medical conditions. may influence the beginning of the clinical disease and its progression to a serious level. Dry cough (67 percent), fever (88 percent), exhaustion (38 percent), myalgias (14.9 percent), and dyspnoea (18.7%) are the most common clinical symptoms. Other symptoms comprise headache, sore throat, rhinorrhoea, and gastrointestinal symptoms. Pneumonia is a serious infection indicator. COVID-19 has complicated the pathogenesis that includes the conquest of the host's antiviral and innate immune responses, oxidative stress initiation, and a "cytokine storm" that results in acute lung damage, tissue fibrosis, and pneumonia [7]. Vaccines and other treatments are now currently available, although they have certain limitations. According to the Strategic advisory group of experts on immunization (SAGE), the Pfizer-BioNTech COVID-19 mRNA vaccine is safe and effective. Vaccination is not recommended for certain populations due to contraindications. a lack of availability, or inadequate data. The vaccine is not recommended for people who have a background of serious allergies or who are pregnant, international travellers who are not part of a prioritized group, and children under 16.

COVID-19 is more common in pregnant women than in non-pregnant women, and COVID-19 has been related to an increased risk of preterm birth. The World Health Organisation (WHO), however, does not suggest vaccination of pregnant women at this time due to a lack of evidence.

Vaccination may be given to a breastfeeding woman who is part of a group (*e.g.*, health workers) that has been recommended for vaccination. Breastfeeding should not be interrupted following vaccination, according to the WHO [8].

This necessitates the use of some alternatives that strengthen the immune system. The current therapy and medication are providing our bodies a window of opportunity for the production of adaptive immunity against COVID-19. Nutrition should be on top priority, particularly. Since our immune system is the only thing standing between us and this novel coronavirus-19 (Fig. 1). In this situation, the WHO issued certain guidelines for obtaining vital nutrients during the pandemic in order to maintain good health [9].

Fig. (1). Diagrammatic representation showing the favourable effects of nutraceuticals and herbal extracts in COVID-19.

Immune cells need adequate energy with macronutrients and micronutrients, serving as co-factors of the growth, articulation, and maintenance of the immunity system. The role of balanced food in the immune system has been extensively recognized, and the effect of various food components on specific aspects of immune function has been extensively researched (Fig. 2). It is generally accepted that an individual's nutritional status affects their immune ability, which can be taken as a proportion of a satisfactory diet [10].

Risk Factors of Covid-19 Enhancing Transmission and Aggravating Patient's Condition

Vishal Trivedi^{1,*}, Vinod Nautiyal² and Retno Widyowati³

- ¹ Department of Pharmacy, Madhav University, Abu Road, Pindwara, Rajasthan, India
- ² Department of Pharmaceutical Sciences, Gurukul Kangri University Haridwar, Uttarakhand, India
- ³ Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia

Abstract: For the last couple of years, novel coronavirus or SAR-CoV-2 is a severe threat to the world. This new strain of coronavirus emerged on 14th December 2020 and has been infecting many parts of the population around the world to date. These viral spikes will bind with the angiotensin-converting enzymes. Many clinical studies conducted have highlighted the association between cardiovascular diseases and COVID-19. It increases the mortality rate, the risk of injury in myocardial, acute coronary syndromes and thromboembolism. COVID-19 has produced some risk factors such as age and gender as well as comorbidities. Coronavirus may pose several challenges for oncology patients. Among cancer patients, severe respiratory and systemic infection are evident specifically among immunosuppressed and ageing patients. Cancer is said to worsen due to COVID-19 as it is linked with inflammatory burst and lymphopenia. This study has discussed the risk factors in COVID-19 transmission, factors that can aggravate it and clinical interactions between the cardiovascular system. Furthermore, several drugs that have been administered against the virus are believed to affect the patients.

Keywords: Cancer and Cardiovascular System, COVID-19, Risk Factors.

1. INTRODUCTION

The world had ceased in December 2019 when the coronavirus outbreak was first reported in Wuhan, China. From then on, the virus had spread all over the world and it was declared a global pandemic, affecting every country in the world. The effects of the virus remain unprecedented on public health [1, 2] as well as on

^{*} Corresponding author Vishal Trivedi: Department of Pharmacy, Madhav University, Abu Road, Pindwara, Rajasthan, India; Email: vishaltrivediqa@gmail.com

social and economic activity. The number of confirmed cases around the world would increase every day over the last six months. Till date, there is no definitive prevention available across the world. The genus beta coronavirus mainly caused COVID-19 [3, 4]. The other two corona viruses which also have contributed to the pandemic are Severe Acute Respiratory Coronavirus(SAR-COV) and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). COVID-19 causes a respiratory infection as well as signs of pneumonia and acute respiratory distress syndrome (ADRS) [5, 6]. This is because these coronaviruses would trigger cytokine storm like tumour necrosis, IL-β, and IL-6 which are released by the immune system, causing multiorgan failure. Furthermore, coagulations in a substantial proportionamong patients could take place, leading to thromboembolic events. The biological features have shown that 79.6% of genomic sequence is identified [7, 8]. It shows that boththe diseases may enter the body in the same way, triggering the binding of viral spike (S) protein to ACE2 in the host cells. Clinical data shows that the susceptibility to COVID-19 is strongly associated with cardiovascular diseases. This has been observed amonga large number of COVID-19 patients which further increases the comorbidities and mortality rate of the virus [9, 10]. Moreover, it can also result in myocardial injury, acute coronary syndrome and thromboembolism. Children too have been affected by COVID-19. The virus could cause hyper inflammatory shock, cardiac dysfunction and coronary vessel abnormalities [11, 12]. There is a bidirectional interaction between the cardiovascular system and COVID-19. This mechanism however is quite elusive. De novo cardiovascular damage is developed in a subclinical disorder. ACE2 surface protein plays the most important role in the virus entry. Pathophysiology plays the most crucial role in the development of therapies. There have been around 45 to 50 million of coronavirus cases and the virus has killed around 1.2 to 1.5 million people. Symptoms such as dyspnea, respiratory frequency, blood oxygen saturation and arterial pressure are commonly seen among patients. Some cases of COVID-19 have also shown respiratory failure and mechanism ventilation, shocks as well as coagulopathy. The utilisation of immunopathology is helpful for the identification of clinician patients with a higher risk as they may require prioritised treatment due to rapid progression and adverse outcomes of the infection [13 - 15]. As for demographic risk factors, age, sex and ethnicity complication play animportant role as well. Some risk factors would lead to the high risk of the illness. This is because, the cellular serine protease (TMPRSS2) is formed, thus implicating cancer and viral infections. The ACE2 is expressed in alveolar cells type 2. It is also present in the endothelial and smooth muscle cells. The paucisymptomatic and asymptomatic forms depicta substantial fraction in COVID-19 with comorbidities [16, 17] which include acute respiratory failure, cytokine storm, prothrombotic, organ dysfunction and even death. Cancer patients are more susceptible to COVID-19 as compared to non-

cancer patients as a risk factor like cancer has shown high prevalence to the virus. However, as respiratory failure is one of the symptoms of the virus, hematology lung and breast cancers are considered more vulnerable than other types of cancer. In lieu to this, the virus has mostly affected lung cancer patients. There are several countries thathave reported cases of cancer patients with traces of small amount of COVID-19 infection. Cancer prevalence however is not associated with infection risk as lung carcinoma is visible in CT scan manifestations. Other than that, gender, obesity and congestive heart failure are also considered as risk factors. In relation to COVID-19, race and ethnicity are believed to be risk factors as well with Hispanic and Black people are the most affected race and ethnicities with this disease [18 - 20]. Furthermore, the Veneto region has shown higher number of cases and death related to COVID-19. The comorbidities also would increase for former smokers and chemotherapy patients. At older age, the haematological malignancies are the diagnosis of myeloid leukaemia and the cell neo plasma associated would be worsening [21, 22]. Metastatic or stage IV carcinomas patients are more likely to contract COVID-19. Moreover, the severity of the cancer treatment also contributes to the risk factor of the virus. In a multivariant analysis of patients, age and immune inhibitor treatment are also associated with COVID-19 in which about 2.5% of patients are tested positive. It remains unclear whether cancer has higher risk factor or cancer associated risks depend on the demography. However, it is apparent that the combination of cancer diagnosis and COVID-19 is far more dangerous with a risk of death.

2. COVID-19 BIOLOGY (GENOME, GENE AND PROTEINS)

Genomic sequencing is done to understand the characteristics of COVID-19which would help to evaluate the structure of the viral protein. Coronavirus belongs to the family of single-stranded RNA envelope which is highly pathogenic for human beings. MERS-COV is considered as highly pathogenic coronavirus as well. Both of these coronaviruses are originated from bats. SARS-COV-2 is 80% similar to SARS-CoV and 97% similar to bat coronavirus (RaTG13). Based on the homology of genomic sequences, the biological features are also similar to SARS-CoV. ACE2 receptor is utilised by both infections to enter into the host cells. Meanwhile, dipeptidyl peptidaseis used in MERS-CoV. The crown like structure formed contains four types of proteins which are known as (S) spike, (E) envelope, (M) membrane and a (N) nucleocapsid [25 - 27] (Fig. 1). N proteins would surround the viral genome in a positive sense. Both genome and mRNA would function as a single-stranded rRNA. α , β , γ and δ are shown in coronavirus in which α and β coronaviruses have infected humans. Beta coronavirus is the genus from SARS-CoV, MERS-CoV and SARS-CoV-2. The genome sequence of COVID-19 is approximately 30kb in length, consisting of ORFs (open reading

Indian Expedition against Covid-19 through Traditional Drugs

Rupesh Kumar Pandey¹, Sokindra Kumar¹, Lubhan Singh¹, Priyanka Pandey², Rakesh Sagar³, Ravindra Kumar Pandey⁴ and Shiv Shankar Shukla^{4,*}

Abstract: COVID-19 was a menace to India's densely populated country. The entire globe is dealing with the same problem, but India is fighting it in its own unique way, namely via the use of ancient traditional medicines. Every country used to shut down as a first line of defence to safeguard its population; the whole globe came to a halt during the epidemic, and people were confined to their homes. A preparation program was needed to prepare their country and reconstruct their medical institution in the event of a pandemic. The entire globe is paying tribute to all of the corona warriors for their selfless commitment and unwavering care for patients during this critical period. The Indian government has also taken some swift moves to combat the sickness by employing certain traditional medicines. Many researchers went to considerable lengths not just to give therapy but also preventative strategies. Immunity has been proven to be the most critical factor in the illness. This chapter tries to highlight the most important traditional medications utilised by Indians from ancient times. Indians employ a variety of spices in their cooking, many of which are high in chemical elements that can help with a variety of ailments. When Ayurveda has been called upon, it has demonstrated its usefulness several times. The usage of traditional medications in every home is well documented in the Indian system. Since ancient times, the customary approach has been shown to be reliable and applicable. Many ailments have been categorised and evidence-based information has been provided by Indian literature such as the Ayurvedic Pharmacopeia and Chark Samhita. It also reflected the immunity level of Indians and they explored the uses of these traditional drugs in the dosage form i.e. kadha, Chwanpras, etc. The expedition showed great reflection in terms of the recovery rate of patients i.e. 97.15 percent, deaths were also minimized as compared to developed countries in terms of the population ratio.

¹ KSCP, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India

² Swami Vivekanand College of Pharmacy, Indore, Madhya Pradesh, India

³ Department of Pharmacy, SGSITS Campus Indore, Madhya Pradesh, India

⁴ Columbia Institute of Pharmacy, Tekari, Raipur, Chhattisgarh, India

^{*} Corresponding author Shiv Shankar Shukla: Department of Pharmaceutics Columbia Institute of Pharmacy, Tekari Raipur Chhattisgarh, India; Tel: 91-9479347077; E-mail: shiypharma007@gmail.com

Keywords: Ayurveda, Chark Samhita, Immunity, Traditional drugs.

1. INTRODUCTION

COVID-19 has not only affected the people but it deteriorated the economic conditions of countries too. Globally many people lost their jobs due to lockdown but that was the need of the hour. We will not forget this pandemic time and it would be a black chapter in history. People were locked down in their houses and they were in a fearful state while being in social gatherings. During this pandemic, students were silent and educational institutes closed. The disease started in Wuhan China in December 2019 and spread globally within a short period. Nobody has the answer to the treatment's concern; every country was looking for its best scientific efforts. India a religious country with a huge population started its expedition for COVID-19 in its traditional way. Indian people use many herbal drugs on day to day basis. While writing this book, it is a matter of pleasure that a huge vaccination program is running in India. India is also amongst those countries that are manufacturing vaccines for the whole world.

Indian government started some new programs to strengthen the health facilities in many COVID-19 hospital setups in each district. The aim was to maximize the testing protocols, for that many labs were established specifically for COVID-19 testing, and today India is testing approx 10 lacks cases daily through these labs. The self-reliant program is also running for the health care segment also. Many startup programs have also been initiated which are playing an important role in building the economy as well as improving the patient's status.

1.1. Disease Etiology

Corona virus is an enveloped and single-stranded RNA virus. They are zoonotic in nature and can transmit from animals to humans. They are largely classified as alpha, Beta, Gama, and Delta Corona virus with their different genomic structures. Some research suggests that alpha and Beta Corona virus cause infection only in mammals. Human Coronaviruses such as 229E and NL63 are responsible for common cold and cough and belong to α Corona virus. Hemagglutinin esterase is a glycoprotein that helps viruses with attack mechanisms. Several coronaviruses do have envelope-associated hemagglutininesterase protein (HE), which helps in the attachment and destruction of certain sialic acid receptors that are found on the host cell surface.

Coronavirus contains a spike protein that has a multifunctional molecular machinery that helps in Coronavirus entry into host cells. Based on a structural

study, it has been revealed that the mechanism is based on binding to the receptor on the host cell surface through its S1 subunit and then through the S2 subunit, it fuses viral and host membranes.

1.2. Regulation of Spike Protein

The life cycle of the virus and, host consists of these steps *i.e.* attachment to the site, penetration, biosynthesis, growth, and release. When binding occurs to the host receptor, it moves inside the host cells through endocytosis or by membrane fusion thereby starting replication. The viral mRNA plays an important role in the biosynthesis of viral proteins which mature and are released. Structural studies suggest that corona viruses have a spike (S), membrane (M), envelope (E), and nucleocapsid (N). Spike has a transmembrane glycoprotein that protrudes to the viral surface and shows multiplicity of Corona virus. There are two functional subunits *i.e.* S1 subunit which has the binding ability to the host cell receptor where S2 subunit is for penetration of the viral cellular membranes, according to some previous research work Angiotensin-converting enzyme 2 identified as a regulating receptor for SARS-Cov [1]. Studies based on structure and function implicated that these spike proteins bind to ACE2 [2 - 4]. These ACE2 are mostly found in the lungs where they play an important role in the disease.

1.3. Indian Traditional Drugs

India is linked with the use of traditional medicine since ancient times. The basic knowledge of these systems gained through literature can be seen in each household. Indian traditional medicinal system is unique and the oldest in the world.

Traditional systems of medicines played a crucial role in the development of the global healthcare system. Traditional medicine is useful in diverse health-related practices and approaches, divine knowledge, skills, and practices related to plants, and minerals. Indian civilization is wide-ranging having versatile cultural aspects and is one of the oldest for mankind. Indian traditional medicinal system is one of the oldest traditional medicinal systems in the world. India has distinctive characteristics and well-acclaimed traditional systems of medicine *i.e.* Ayurveda, Unani, Siddha, Yoga, naturopathy, and homeopathy, however, homeopathy is not an indigenous system and came into existence in India in the eighteenth century, it completely integrated into the Indian civilization and got improved like any other traditional medicinal system and it is believed as part of Indian Systems of Medicine. The unani system originated in Greece, and later it was introduced in India by Arabs.

Herbal Therapy for COVID-19

Upendra S. Bhadoriya^{1,*}, Ankit Jain¹ and Sachin Kumar Jain¹

¹ Oriental College of Pharmacy & Research Oriental University Ujjain Road Indore MP-452010, India

Abstract: The Covid-19 epidemic is presently rayaging the world, claiming the lives of countless people. This health crisis is well recognised to be caused by SARS-CoV-2 infection, and the problem has yet to be remedied. Many modern doctors and researchers feel that a person's disease resistance ability is critical in battling viral infections. If used appropriately, herbal therapy can be a game changer in this case, since herbal drugs significantly boost or modify immune function, enhancing resistance to microbial infections. These drugs alter the cellular immune response, enhance immunity, impart antioxidant effect, raise IgG antibody production, activate macrophages, have anti-inflammatory and analgesic properties, and so relieve symptoms and reduce viral infection pathology development. Herbal medicine can also aid in the prevention of viral infections by blocking virus entrance and replication in the host cell. Due to their vast therapeutic capabilities, Curcumin, Shunthi, Bhumiamalki, Guduchi, Yashtimadhu, Pippali, and Haritaki, among other drugs, can be examined for their efficiency and safety against viral infection. The potential uses of herbal medicine as a supplementary and alternative treatment for SARS-CoV-2 illness were reviewed in this chapter. However, further research into the effects of herbal treatment in COVID-19 is needed.

Keywords: COVID-19, Health, Herbal therapy, Herbal therapy COVID-19, Immunity, Infection.

1. INTRODUCTION

As seen by the current situation, in which people all over the world are battling a new pandemic coronavirus disease, the history of human civilization has witnessed both wealthy advancement and different health calamities (COVID-19). The COVID-19 disease transmitted from humans to humans and was labeled a pandemic even after its initial period of occurrence. Due to its high rate of transmission and severity, COVID-19 is considered a current global health problem, with the medical community investing major efforts in combating it.

^{*} Corresponding author Upendra S. Bhadoriya: IPS Academy College of Pharmacy, Rajendra Nagar AB Road, Indore MP-452012, India; E-mail: upendrabhadoriya@ipsacademy.org

This disorder is caused by the invasion of the zoonotic bacteria "severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2) [1 - 3].

SARS-CoV-2 is an enveloped RNA virus that spreads by close contact and respiratory droplets when an infected person coughs or sneezes. The contaminated surface can also act as a source of transmission when a person contacts it before contacting his or her nose, mouth, or eyes [2 - 4].

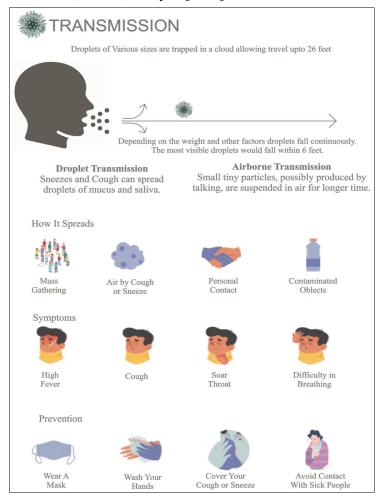


Fig. (1). Transmission, Symptoms and Prevention of COVID-19 Disease.

SARS-CoV-1 (2003), MERS-CoV (2012), and SARS-CoV-2 (2019) are three of the most common "respiratory syndrome coronaviruses" that are also lethal (4). SARS-CoV-2, which exhibits clinical symptoms comparable to those found in

earlier respiratory syndrome coronaviruses, is connected to the current COVID-19 pandemic. The most frequent signs and symptoms are fever, cough, shortness of breath, and sore throat; however, muscular soreness and headache are also prevalent. Bilateral pneumonia, severe respiratory distress, and multi-organ failure, among others, are disease-related consequences that are important causes of death. Other signs of sickness include a loss of taste and smell, however, these only appear in the later stages of the disease [5, 6]. Fig. (1) depicts general considerations about COVID-19 disease propagation, symptoms, and prevention.

Frequent hand washing with soap, maintaining general and respiratory hygiene, avoiding frequent touching of the nose, eye, and face, disinfecting the floor or objects, wearing masks, avoiding close contact with the infected people, maintaining social distance, and using alcohol-based hand sanitizer are some of the preventive measures recommended by medical science. Pharmaceuticals such as favipiravir and Chloroquine, among others, are already used in conjunction with plasma treatment for illness management; however, vaccines are thought to have more favourable results, and scientists anticipate that the drugs will reach the experimental phase [1 - 4].

Researchers are presently concentrating their efforts on finding COVID-19 therapies, which include investigating the antiviral effects of botanicals and natural medications. Herbs have been reported to have antiviral effects against the SARS-CoV-2 virus [7]. Herbs are also thought to improve immunity, making them a vital part of the viral illness prevention strategy. However, it is important to establish the effectiveness and safety of herbal treatment against COVID-19 using experimental models. Herbs contain antiviral and immune-boosting qualities, thus they can help prevent SARS-CoV-2 illness from progressing and spreading. Herbal therapy can also be used as adjuvant and adjunct therapy in combination with standard COVID-19 therapies. Antiviral activity of plants or plant-based extracts has been found in trials against Coronavirus, Enterovirus, Dengue virus, Influenza virus, HIV, and Hepatitis B [1 - 3].

1.1. Herbal Therapy as a COVID-19 Treatment Option

Synthetic antivirals and immunomodulators failed to provide an appropriate therapeutic response against COVID-19, and emergency vaccination usage has yet to be licensed in certain countries, and even if it is, vaccine availability to the general public within a reasonable time period remains a challenge. As a result, alternative, supplemental, and adjuvant therapy techniques for COVID-19 infection prevention and treatment are needed. Fortunately, traditional medical practitioners established the efficiency of natural treatments even against severe viral illness, and herbal therapy may be useful in the treatment of COVID-19 (Fig.

Herbal Immune-Booster for COVID-19

Raja Chakraborty¹, Saikat Sen², Bhargab Jyoti Sahariah³, Chayanika Bordoloi^{4,*} and Sunil Mistry⁵

Abstract: Medicinal plants always play a vital role by enhancing immunity and protecting us against different infections caused by microorganisms like fungi, bacteria, and viruses. The complex immune protection mechanism produces limitless cells or chemicals to control the spectrum of infectious agents and diseases caused by them. Medicinal plants contain different immunomodulatory constituents that amplify or inhibit the components present in the immune system. In India, people have used numerous medicinal plants and plant products since ancient times to boost the immune system and maintain its normal functioning capacity. Traditional herbaceuticals can boost body defense and improvise our health to survive better. In the last two years, the COVID-19 pandemic became a significant health concern. The healthcare system and scientists are fighting generously to save people. Existing medical facilities are not enough to beat the pandemic condition; therefore, the search for alternative remedies is gaining attention. Indeed, public health measures and the immune-boosting process are considered crucial approaches to dwindle the threat and mortality caused by infection. This chapter highlighted immune boosters from plant sources that can play an essential role as an alternative approaches to managing the current pandemic scenario.

Keywords: Immune System, Medicinal Plant, Herbal Booster, Pandemic, COVID-19

1. INTRODUCTION

The immune system is an integral part of the body, consisting of complex cellular elements that secrete chemicals to conserve the integrity of the body against

¹ Institute of Pharmacy, Assam Don Bosco University, Tapesia Gardens, Kamarkuchi, Sonapur, Assam, India

² Faculty of Pharmaceutical Science, Assam Down Town University, Assam, India

³ NETES Institute of Pharmaceutical Science, Guwahati, Assam, India

⁴ NEF College of Pharmacy, Guwahati, Assam, India

⁵ Apex Institute of Pharmacy, Samaspur, Chunar, Mirzapur, UP-231304, India

^{*} Corresponding author Chayanika Bordoloi: NEF College of Pharmacy, Guwahati, Assam, India; Tel: 9430628231; E-mail: bordoloichayanika15@gmail.com

peripheral infection. The exact function of the immune system is to balance and avoid the incidence of the enormous disorders caused by infectious agents. Immunomodulators can be natural or synthetic substances that can suppress or trigger innate and adaptive immune mechanisms [1].

Infectious diseases are very fast-spreading diseases caused by various microorganisms such as viruses, bacteria, fungi, protists, and other pathogenic agents. Pathogenic agents can cause disease by different disease-spreading conditions like coughing, sneezing, and physical contact. Contaminated water, exchanged body fluids, and droplet contaminations also play important roles in such a process. The innate immune system is the initial or first-line defense of the human body against invading pathogens, nonspecific. The innate immune systems are not activated against any particular pathogen but can provide a total defense. Skin is considered a physical barrier and can exert nonspecific defense against invading pathogens. Enzymes present in saliva, mucus, and tears exert defense by digesting invading microorganisms like bacteria. In response to the pathogen's entry into the body, the innate immune mechanism is activated in the initial stage [2].

Entry and spared of pathogenic microorganisms lead to an inflammatory response as a part of the defense mechanism that causes the flow of white blood cells in infected tissues. White blood cells (phagocytes) include neutrophils and protect us by engulfing and destroying bacteria. The immune system also secretes certain chemicals that maintain the body temperature and induce fever. Fever can slow down orstoppathogen's growth and thus help enhance immune responses in the body. Once pathogens invade our body without responding to innate immune defenses, an adaptive immune response gets activated to defend the same [2].

The primary cells of the immune system are known as lymphocytes and can be divided into two types, *i.e.*, B-lymphocyte cell and T-lymphocyte cell. Bone marrow produces B-lymphocyte cells, and maturation of B-lymphocyte takes place in the bone marrow itself. T-lymphocyte cells are also produced in the bone marrow but mature in the thymus. Humoral immunity is the aspect of immunity that consists of serum antibodies produced by plasma cells and exert their function throughout the body. Humoral immunity begins its action when an antibody of B-lymphocyte cell binds with a pathogen, and B-lymphocyte cell presents the pathogen in front of the helper T cell. Activated B cells also rapidly grow to produce plasma cells, which can release antibodies into the blood. Memory B cells are the specialized cells to store information about the pathogen to have future immunity [3].

2. OUTBREAK OF CORONAVIRUS IN THE 21ST CENTURY

COVID-19 pandemic disease has become a global concern in the 21st century; mortality rises regardless of existing medical facilities [4]. Highly communicable COVID-19 is responsible for a large number of morbidities and mortalities around the globe. Non-availability of vaccines until the early part of 2021 or scarcity of adequate vaccines around the world worsens the situation. In the 21st century, viral diseases are becoming more active throughout the world. In the last two decades, the world has witnessed serious infections caused by SARS-CoV, MERS-CoV, and different influenza viruses [5]. In the present scenario, COVID-19 can be considered the world's 3rd most dangerous disease for humans, spreading very fast to all parts of the world. Reports showed that approximately 213 countries are infected with coronavirus [6]. Experts confirmed its clinical characteristics, and it is pretty similar to a pneumonia condition. In March 2020, the World Health Organisation (WHO) announced COVID-19 as a pandemic [7]. COVID-19 disease is caused by the virus named SARS-CoV-2, coined by the International Committee on Taxonomy of Viruses [7]. SARS-CoV has sequence homology with the bat coronavirus and spike glycoproteins present in the virus of SARS play an important role in invading and transmitting the infection from human to human [8]. The spreading capacity of the novel coronavirus and its diagnosis are relatively different from the SARS-CoV virus. The nucleotide patterns of the SARS-CoV virus and their receptor binding sites are unique [9].

The government, WHO, and other healthcare organizations are working together to stop the spread of viral infection. Minimizing the physical contact, isolation, and screening of infected people during the initial stages of infection and sanitization are vital approaches to control the spread of COVID-19. The viral infection can transmit from person to person through the saliva or nose discharge of an infected patient. Manufacturing industries are producing tonnes of masks, and sanitizers to prevent or control the situation [10]. Drugs are in the clinical trial stage, and no specific medicines are available to treat the disease condition yet. Some existing drugs available in the market, like Lopinavir, Chloroquine, Nitazoxanide, Ritonavir, *etc.*, are used to reduce disease progression and balance the virusload [7].

It was observed that COVID-19 virus infection develops in people with weak immune systems, such as older people or people with comorbidities. Certain beneficial bacteria that live in our gut protect us against a spectrum of diseases. The growth of beneficial intestinal bacteria can be increased through the intake of healthy plant-based foods. According to WHO, the COVID-19 virus is similar to different coronavirus types in morphological and chemical compositions [11]. New strains of COVID-19 became a challenge for the healthcare system. It was

SUBJECT INDEX

A	eicosapentaenoic 56
	ferulic 116
Abdominal pain 25, 29, 30, 31	folic 50, 134
Ability 15, 33, 38, 56, 57, 59, 61, 114, 131,	gallic 15, 115, 154
139, 140, 142, 143	ginkgolic 154
air purification 114	glycyrrhetinic 59, 60
cerebral 131	glycyrrhizic 59, 154
immune system's 61	glycyrrhizin 137
reproductive 38	linoleic 114
Abnormalities 29, 71	malic 134
coronary vessel 71	microorganism's ribonucleic 35
Absorption 50, 51, 52, 53, 134	nucleic 50
vitamin B12 50	oleanolic 154
ACE 36, 98, 99, 153	positive-sense ribonucleic 47
	protocatechuic 154
genes 36	rosmarinic 114
inhibitors 98, 99	santalic 154
receptors 153	shoreic 58, 118
ACE2 3, 34, 60, 71, 72, 73, 74, 95, 99, 151	stearic 115
enzyme activation 60	synapic 116
expression 74, 99	tannic 15
gene 34	ursonic 58, 118
inhibitors 99	ACTH 138
manifestations in cardiovascular diseases	releasing 138
95	stimulated prolonged activation 138
receptors 3, 72, 73, 74, 99, 151	Action 85, 129, 139, 140, 152
surface protein 71	anti-inflammatory 140
virus 74	antiviral 139
ACE2 downregulation 95, 96	direct virucidal 129
for COVID 96	inflammatory 85
Acid 8, 15, 35, 47, 50, 56, 58, 59, 60, 114,	prophylactic 152
115, 116, 118, 119, 129, 134, 137, 154	Activation 59, 81, 131, 155, 158, 160
acetylatedsialic 8	neuraminidase 59
ascorbic 50, 115, 137	protein heat shock response 131
betulinic 154	
carboxylic 114, 116	Activities 55, 58, 71, 85, 87, 100, 101, 114,
chicoric 129	116, 117, 130, 133, 134, 137, 139, 141,
chlorogenic 154	142, 154, 155, 156, 157, 159, 160
cinnamic 114	adaptogenic 156
citric 134	anaesthetic 133
dammarenolic 58, 118	antiallergenic 159
deoxyribonucleic 50	anti-arthritic 133
eichlerianic 58, 118	anti-COVID-19 87

Sachin Kumar Jain, Ram Kumar Sahu, Priyanka Soni & Vishal Soni (Eds.) All rights reserved-© 2022 Bentham Science Publishers

Herbal Immunity Boosters Against COVID-19 169

antidiabetic 160	cancer prevention 52, 61
anti-inflammatory 116, 155, 157, 159, 160	immune-boosting 162
antimutagenic 133	immunostimulating 160
antipyretic 114, 133, 137	infectious 80, 148, 149
anti-SARS-CoV-2 139	pathogenic 149
anti-viral 117, 141	Aging 41, 80, 82
autophagy 100	Aglycone metabolite 60
economic 71	Air pollution 40
immune 157	Airway 7, 35, 55, 56, 76, 152
immune-boosting 156	inflammation 55, 56
inhibitory 156	Alanine aminotransferase 29
neuroprotective 130	Alcohol 41, 128
non-structural protein 55	addiction 41
polymerase 134	based hand sanitizer 128
prolonged therapeutic 142	Algae 155, 156
radiological 85	Allergic reactions 56
reducing physical 101	Allergies, grave 46
therapeutic 130, 154	Allicin 60, 113, 114, 134, 159
virus protease enzyme 58	and enzyme alliinase 159
Acute 3, 32, 70, 71, 76, 77, 92	Allium 113, 134, 136, 140, 153, 159
coronary syndromes and thromboembolism	cepa 134, 140
70, 71	sativum 113, 134, 136, 153, 159
kidney injury (AKI) 32, 76, 77	Aloe barbadensis 140
limb ischaemia 92	Alpinia officinarum SARS-CoV-2 140
lung injury 3	Alveolar 9, 11, 35
Acute respiratory) 3, 32, 47, 50, 55, 56, 71,	animal tissue cells and alveolar
131	macrophages 35
disease syndrome 32	cells 9, 11
distress syndrome (ARDS) 3, 32, 47, 50,	lavage liquid 35
55, 56, 71	macrophages 35
injury 32	Amino 3, 90
tract infection 131	peptidase 3
Acylglycosides 117	terminal pro-B-type natriuretic peptide 90
Adaptive immune reactions 51	Amino acids 2, 3, 5, 46, 54, 55, 60, 115, 116
Adaptogenic polysaccharides 133	134
Adenosine 15, 157	non-protein 60
nucleotide analog 15	plentiful free 55
triphosphate 157	terminal neutral 3
Adenoviruses 59	Analgesic 114, 117, 126, 133, 136, 159, 160
Adhatoda vasica 152	activity 160
Adjuvant therapy techniques 128	properties 126
Adrenocorticotrophic hormones 138	Analytical technique 120
Agents 14, 16, 52, 60, 61, 80, 84, 129, 133,	Andrographi spaniculata 152
148, 149, 153, 160, 162	Angiotensin 47, 70, 95, 99, 130
antiviral 14, 16, 60, 129, 133	converting enzyme 47, 70, 130

Subject Index

Anthocyanins 134	effective 15
Anti-apoptotic 60, 160	of plants 128
effect 160	Antiviral drugs 15, 73, 84, 87, 88, 99, 140,
properties 60	162
Antibacterial 60, 113, 115, 133, 136, 137, 159,	anti-CoV-2 effect 87, 88
160	Aphrodisiac properties 159
activity 113	APN protein 3
properties 137, 160	Arrhythmia 32, 88, 91
Antibodies synthesis 139	cardiac 91
Anticancer 83, 84, 130, 133	Aspartate aminotransferase 29
agents 84	Asthma 55, 56, 135
therapies risk factor 83	Astragalus 136, 141
therapy 84	glycyphyllos 136
Anti-coronaviral saponin 141	polysaccharides 141
Antigen presenting cell 138	Atherosclerosis 95
Anti-HER2 agents 83	Atmospheric oxygen 38
Antihypertensive medicines 130	Augmentation in immuno-modulatory
Anti-inflammatory 115, 134, 160	responses 135
characteristics 134	Aurantiamide acetate 155
effects 115, 160	Autoimmune destruction Ipilimumab
Antilithiasis 159	Hypophysitis 83
Antimicrobial 15, 114, 116, 133, 136, 139,	Ayurveda formulations 152
159, 160	Ayurvedic 110, 151, 152
activity 114, 116, 159, 160	medicines 151, 152
effect 160	pharmacopeia 110
peptides 139	Azadirachta Indica 115
properties 15, 133, 136	Azadirachtin indica 136
Antineoplastic properties 84	Azithromycin 89, 100
Antioxidant 59, 116, 136, 157	
activity 116, 136, 157	В
effects 136	
properties 59	Backhousia citriodora 154
Anti-platelet actions 133	Bacteria 27, 34, 46, 127, 148, 149, 150, 155,
Antiprotozoal agent 57	157
Antipyretic properties 137	co-infection 27
Antitumor effect 87	intestinal 150
Antiviral 50, 58, 59, 128, 129, 134, 136, 137,	zoonotic 127
138, 139, 141, 142, 162	Bacterial translocation 81
effects 128, 138, 142	Beans, black 157
medication 129	Beverages 138, 158
properties 50, 58, 59, 134, 136, 137, 139,	alcoholic 138
141, 162	carbonated 138
Antiviral activity 15, 57, 58, 59, 100, 116,	Bifidobacterium longum microbe 158
118, 128, 139, 141, 151, 155, 159, 162	Binary human viruses 2
broad-spectrum 100	y

Subject Index Herbal Immunity Boosters Against COVID-19 171 Biosynthesis, sterol 58, 154 failure 32 Black cumin 136, 151 injury 89 Blockage, nasal 152 **MRI 90** Blood 49, 60, 71, 130, 159 Cardiomyocytes 94 artery constriction 130 Cardiomyopathy, induced 91 cholesterol 159 Cardiovascular 27, 28, 49, 51, 70, 71, 88, 89, homocysteine levels 49 94, 95, 99 cells 94 oxygen saturation 71 pressure 60, 130 diseases 27, 28, 49, 51, 70, 71, 89, 94, 95 Body mass index (BMI) 33, 41 effects 99 Boerhaavia diffusa 153 system 70, 71, 88 Bone marrow 149 Cassia occidentalis 153 Breastfeeding woman 48 Cell(s) 2, 56, 97, 136, 138, 154, 156, 157 Breathing rhythm 41 mediated immunity 136, 156, 157 Bronchitis 54, 59, 142 metabolism 154 chronic 54 signalling 2, 56 Bronchoconstriction 56, 133 inflammation 97 to-cell communication 138 C Cellular 58, 81, 117, 118 metabolism 58, 118 protease 81 Cancer 28, 50, 55, 70, 71, 72, 79, 80, 81, 82, receptor kinases 117 83, 84, 87, 100 Cellular signalling 59 and cardiovascular system 70 cascades 59 autophagy-dependent 87 pathways 59 breast 72, 82 Cereals 49, 51, 158 lung 55 breakfast 51 pancreatic 82 processed 158 prevention 50 Cervical cancer cells 88 therapy 84 Chemicals 137, 148, 149 Cannabinoid 154 phenolic 137 Cannabis sativa protein 140 Chest 25, 28, 29, 30, 31, 33, 90 Capacity 33, 49, 52, 53, 57, 140, 142, 148, pain 90 151, 162 tightness 25, 28, 29, 30, 31 breathing 33 Chinese 56, 151 immune 49 medicines and ayurvedic medicines 151 Capsaicin 154, 160 national health commission 56 producing immunomodulatory activity 160 Chronic obstructive pulmonary disease Capsicum extract and capsaicin-producing (COPD) 28, 54, 56, 76, 84 immunomodulatory activity 160

Cardiac 32, 71, 83, 89, 90, 91, 92, 95

contractile dysfunction 83

dysfunction 71, 91, 95

arrest 91, 92

contractility 95

Chymotrypsin 87, 155

Cinnamaldehyde 114

verum 114, 160

Cinchona officinalis 136

Cinnamomum 114, 152, 160

zeylanicum 152, 160

Cinnamyl acetate 114	disease 26, 46
Clerodendrum ineme 153	enteropathogenic 141
Clove oil 133	feline 2
Coagulation 77, 78, 92	infections 73
abnormalities 92	outbreaks 1, 70, 138
disorders 77, 78	pathogenic 72
Comorbidities 27, 28, 40, 70, 71, 72, 88, 89,	seasonal 80
100, 150	therapy 14
cardiovascular 40, 89	Coronavirus infection 3, 40, 57, 153
health-threatening 28	pathogenic 57
infectious 27	Coscinium fenestratum 153
Comorbidity of cardiovascular system 88	Cough 3, 25, 28, 29, 30, 36, 40, 47, 111, 114
Compounds 15, 51, 54, 58, 60, 61, 62, 115,	127, 128, 135, 159, 160
116, 117, 118, 134, 140, 141, 155	dry 25, 28, 29, 47
herbal 15	infected person 127
phenolic 115, 116, 140	COVID-19 14, 16, 36, 46, 61, 70, 78, 85, 86,
polyphenolic 115, 134	129, 131, 139, 150, 155
pro-inflammatory 51, 54	herbal therapy 139
tylophorine 141	induced acute respiratory tract infection
Concentration 55, 57, 132	131
half-maximal inhibitory 57	mRNA vaccine 46
serum iron 132	pandemic disease 150
Conditions 27, 28, 33, 36, 39, 77, 79, 111,	pneumonia 14
149, 152, 156, 161, 162	prophylactic therapy 86
chronic medical 27, 33	protease 155
comorbid 27	symptoms 61, 78
disease-spreading 149	therapy 129
economic 111	transmission 36, 70
immunosuppression 79	treatments 61, 85
inflammatory 152	vaccination 16
life-threatening 162	vaccines 16
thermal 39	COVID-19 disease 126, 127, 128, 131, 150
Congestion, nasal 30, 160	propagation 128
Conjunctival congestion 31	COVID-19 infection 72, 82, 84, 132, 134,
Consumption 34, 138	136, 137, 152, 153, 154, 155, 157, 158,
alcohol 34	161, 162
Contaminated water 149	and post-infectious complications 162
Coriandrum sativum 153, 160	Creatine kinase isoenzyme 29
Corona pandemic 151	Cryogenic electron microscopy 73
Coronary 28, 33, 76	Curcuma longa 116, 117, 130, 140, 152, 160
artery disease 33	Curcuminoids 130
heart disease 28, 76	Cynara scolymus 153
Coronaviruse(s) 1, 2, 3, 4, 5, 8, 11, 12, 13, 14, 15, 17, 26, 33, 35, 46, 47, 70, 71, 72, 73,	Cytokine(s) 35, 47, 51, 71, 91, 95, 100, 130, 138, 156, 162
74, 80, 111, 138, 141, 150	inflammatory 51

Subject Index Herbal Immunity Boosters Against COVID-19 173 cardiovascular 95 pro-inflammatory 35, 156 storm 47, 71, 162 chronic 131 Cytopathic 35, 141 digestive 57 effect 141 immune 41 viruses 35 lifestyle-related 153 Cytoplasm 1, 2, 11, 12, 74 psychotic 34 genomic RNA host cell 11 respiratory 135 Distinctive pharmacological reactions 142 Cytotoxic therapies 84 Dizziness 25, 29, 30, 31 D DNA synthesis and cell proliferation 157 Domains 2, 11, 17, 47, 58, 73, 74, 81 peptidase 47 Damage 11, 17, 29, 47, 55, 71, 156 receptor binding 73, 74 acute lung 47 substrate-binding 58 cardiovascular 71 Drinking water 37 kidney function 29 Droplet(s) 9, 26, 40, 47, 127, 149 lung cells 17 contaminations 149 reduced lung tissue 55 infected people's aerosol 47 Data, single cell RNA sequencing 94 respiratory 9, 127 Defensin 139 Drug(s) 14, 15, 83, 84, 86, 87, 98, 99, 100, Demethoxycurcumin 130 101, 113, 119, 120, 126, 142, 150, 153, Dengue virus 128 162 Depression, respiratory 34 anticancer 83 Diabetes mellitus 33 antiplatelet 100 Diarrhea 25, 29, 30, 31 disease interaction 98 Diet 48, 52, 61, 117, 132, 152, 156, 158, 161 formulations 153 healthy 161 natural 142 Dietary fibres 134 Drug discovery process 119, 120 Dipeptidyl peptidaseis 72 traditional system 119 Disease 38, 39, 40, 41, 57, 61, 80, 95, 100, Dyspnea 25, 28, 29, 30, 31, 32, 71 111, 120, 128, 129, 139, 150 autoimmune 80 \mathbf{E} chronic 40 carrying organisms 39 etiology 111 Ebola virus 57, 100 lung 41, 95 Echinacea extract 129 microbial 139 Edible oils 52 outbreaks 38 Effective 50, 162 progression 150 immune modulator 50 related consequences 128 medicinal formulations 162

skin 57

brain 158

viral 61, 100, 120, 150

Disorders 34, 41, 57, 95, 131, 135, 153, 158

virus-related 129

Efficacy 56, 113, 119, 120, 129, 130, 137, 162

curcumin's 130 Egyptian medicine 59

ELISA assay 16

Electron microscope 2, 8

Embolism, pulmonary 92	engineered 158
Endocytosis 2, 11, 13, 74, 112	nutritious 61
fusion process 2	sources 54
receptor-mediated 11, 13	supply 39
Endolytic acidification 100	Foreign 46, 117
Energy metabolism 53	infestations 117
Enterococcus faecium 55	travellers 46
Enterovirus 128	Formulations 161
Envelope-associated hemagglutininesterase	herbal medicinal 161
protein 111	traditional 161
Essential oils trans-cinnamaldehyde 114	Frequency 36, 50, 55, 71
Exacerbations, therapeutic 85	respiratory 36, 50, 55, 71
Eye inflammation 57	Fruits 50, 51, 52, 53, 54, 58, 60, 115, 116,
	117, 134, 138, 139, 156
F	citrus 51, 60
	citrus limon 115
Factors 25, 27, 31, 33, 36, 41, 50, 51, 53, 70,	dried 53
75, 76, 82, 87, 138	healthy 138
demographic 75	kiwi 52
eukaryotic 87	Function 49, 50, 52, 61, 72, 73, 80, 82, 83, 84,
intrinsic 50	90, 93, 100, 112, 132, 138, 149
Families 9, 37, 72, 134	allograft 93
corona virus 134	anti-inflammatory 138
enveloped positive-stranded RNA virus 9	diastolic 90
Fast mutation 60	immunological 132
Fatigue 25, 29, 31, 36	macrophage 138
Fat tissues 33	nerve system 50
Fatty acids 56, 132	pulmonary 84, 100
essential 56	renal 90
polyunsaturated 56	systolic 83
Febrile neutropenia 82	Functional biopolymers 156
Fever 3, 7, 25, 29, 31, 36, 88, 93, 128, 130,	
137, 149, 152	G
Flavone glucuronide 60	_
=	Gallocatechin 136
Flavonoids 57, 58, 59, 60, 114, 115, 116, 117,	Garlic 46, 60, 134, 136, 151, 158, 159
134, 136, 154, 155	bulb 60
occurring 155	
Flavour, artificial maple syrup 132	phytochemical screening 60
Flu 36, 134	Gas exchange 79
Food(s) 37, 39, 40, 48, 51, 54, 61, 134, 152,	Gastrointestinal 3, 28, 31, 32, 57
157, 158, 162	hemorrhage 32
balanced 48	tract 3
cooked 158	Gastroprotective effects 160
daily consumed 40	Gene(s) 53, 72, 73, 80, 95, 139, 141, 152

angiogenesis 152 expression 80, 141	Healing, wound 50, 53, 59 Health 37, 55, 56, 100, 126, 131, 134, 148,
regulation 53	156
Genetic 36, 47	immunological 131, 134
diversity, increased 36	restore gastrointestinal 55
material 47	Health care 27, 37, 115, 118
Genome 33, 72, 73, 129	management 115
viral 72, 129	professionals 37
Genomic RNA 11, 12, 13, 74	Heart 31, 93
viral 12	palpation 31
Genotoxic chemotherapies 82	transplantation 93
Giloy plant 133	Heart failure 72, 83, 90, 91, 94
Ginger 116, 135, 136, 159	congestive 72, 83
fresh 116, 159	Heat 49, 51, 58, 156
powdered 135	generating reaction 156
tea 135	shock protein A5 58
Gingko biloba 154	Helicase protein 140
GIT 93, 100	Hemagglutinin esterase 111
disturbance 100	Hemophagocytic lymphohistiocytosis 85
syndromes 93	Hemoptysis 31
Glucocorticoids 138	Hepatitis 51, 57, 60, 83, 128
Glucose 83, 134, 138	C virus (HCV) 57, 60
high blood 138	chronic 60
Glutamine 55	Hepatoprotective properties 57
Glycoprotein(s) 2, 47, 55, 111, 139, 140	Herbaceous 154
lipid interactions 55	Herbal 15, 16, 111, 119, 120, 126, 128, 139,
spikes 2	140, 142, 143, 148, 153, 161, 162
viral envelope 139, 140	agents 15, 16
Glycosides 58, 60, 115, 117, 139	booster 148
acyl 58	drugs 111, 119, 120, 126, 139, 140
antimicrobial activity 115	medicines 119, 120, 126, 142, 143, 153,
cardio 60	162
flavanone 60	therapy COVID-19 126
Glycosylation 100	treatment 126, 128, 161
Glycyrrhiza glabra 137	Herbal formulations 113, 153, 154, 160, 161,
Glycyrrhizin 59, 60, 155	162
therapy 60	for COVID-19 160
Gum ulcers 133	Herbs 113, 128, 129, 131, 136, 137, 151, 152,
Gymnema sylvestre 153	153, 162
	anti-inflammatory 162
H	ayurvedic 131
	plant-based immunity-boosting 151
II	Herpes simplex viruses 57, 159
Haematopoiesis 85	Hesperidin 10, 58, 60, 115, 116, 118, 154, 155
Headache 25, 29, 30, 31, 47, 57, 128	rich citrus peel 60

HIV 100, 153 infections 100 treatment 153	capacity regulation 52 checkpoints 85 functions 40, 48, 49, 50, 126, 158
Homeopathy 112, 152	reaction, proper 53
Home quarantine 34	warriors 138
Host cell 9, 11	Immune cell function 50, 130
plasma membrane 11	inhibiting 50
protease 9	Immune system 33, 34, 48, 50, 52, 53, 82,
Human 2, 9, 39, 111, 159	100, 133, 134, 135, 138, 148, 149, 158,
adenovirus 39	159
angiotensin converting-enzyme 9	andincrease 82
coronaviruses 2, 111	Immunity 34, 36, 48, 50, 52, 61, 85, 110, 111,
respiratory syncytial virus (HRSV) 159	126, 128, 129, 133, 134, 138, 143, 148,
Hydroxyoleanonic lactone 58, 118	149, 151, 152, 154, 155, 156, 158, 159,
Hyoscyamus niger 153	161, 162
Hypercapnia 138	adaptive 48, 61, 85, 152, 158
Hyperinflammation 97	boosting 61, 134, 161
Hyperinflammatory response 81	cellular 50, 52
Hyperlipidemia 83	disorders 158
Hypertension 27, 28, 38, 60, 83, 88, 94, 99,	enhancing 143, 148
130, 137	humoral 133, 149
pulmonary atrial 60	innate 156, 159
Hypoalbuminemia 29	regulated 133
Hypocholesterolemic properties 60	system 48, 52, 61, 162
Hypophosphatemia 83	weak 34
Hypothermia 39	Immunity booster 46, 49, 113, 117
Hypovitaminosis 40	for COVID 117 nutrients 49
I	Immunological 135, 136, 138, 139
	reactions 138
IgG 126, 133, 136, 156	responses 135, 136, 139
antibodies 133, 156 antibody production 126, 136	Immunomodulatory 133, 151, 152, 156, 158, 160
Illness 4, 11, 32, 33, 36, 38, 39, 41, 50, 53, 54,	activity 133, 151, 156, 160
71, 75, 131, 137, 138	effect 158
acute febrile 36	phytochemicals 152
cardiovascular 39	Immunopathology 71
chronic 33	Immunostimulatory properties 130
coronary 54	Immunosuppressive effects 131
metabolic 38	Immunotherapy 84
Immune 40, 48, 49, 50, 52, 53, 85, 126, 138,	Infection 2, 3, 33, 34, 37, 38, 40, 41, 50, 57,
148, 152, 158, 162	61, 70, 76, 87, 95, 126, 138, 139, 142,
booster 152, 158, 162	148, 150, 151, 154, 160
boosting process 148	bacterial 33, 160
coosting process 1 to	lung 40

throat 160 organic 53 upper-respiratory-tract 61 Iron absorption 53 urinary 57 inorganic 53 Infectious 2, 40, 52, 149, 152, 162 Ischemia stroke 79 bronchitis virus (IBV) 2 Isothymonin 114	
diseases 40, 52, 149, 152, 162 Inflammation 49, 54, 55, 56, 57, 78, 80, 85, 93, 97, 100, 152, 156, 158, 159	
process 158 severe 93 siRNA-induced 152 Kawasaki disease 93 Kidney 7, 27, 38, 76 disease 27	
Inflammatory 28, 35 diseases 28 phagocyte proteins 35 reaction 35	
Inflammatory symptoms 137 viral infection-induced 137	
Influenza 36, 51, 54, 55, 57, 59, 73, 128, 129, 131, 134, 150, 153, 158, 159 infection 158 pathogenic avian 59 suppressing 134 symptoms 51 viruses 57, 73, 128, 129, 150, 153 Lactate dehydrogenase 29 Licorice astragalus 136 Lipid peroxidation 157 Liver 27, 29, 32, 49, 50, 51, 97 chronic 27 damage 97 enzyme abnormalities 32	
Inhibitors 15, 53, 58, 74, 117, 118, 140, 142 cathepsin 74 of viral protein synthesis 15 translation initiation 142 function 29 Lung(s) 8, 29, 33, 34, 55, 56, 59, 72, 85, 95, 112, 131, 153 carcinoma 72	94,
Inhibitory effects 141, 154, 155 disease severity 29 enzyme 154 disorders 153	
Initiation 139, 151 hematology 72 surfactant development 56 surfactant development 56	CO
Injury 10, 11, 55, 70, 94 cardiovascular 94 severe lung 10, 11 ventilator-induced lung 55 Lymphocytes 29, 53, 81, 82, 138, 149, 16 Lymphopenia 29, 70 Lysosomotropic agents 74	5 0
Innate 35, 149 M immune defenses 149	
reaction 35 Macronutrients 48 Insulin hormone 81 Macrophages 33, 35, 56, 60, 126, 134, 13 Interferon therapy 84 156, 159	36,

Malaria 57, 133	digesting invading 149
Malayan pangolin coronavirus 5	pathogenic 149, 156
Malignancies 72, 131	Middle East respiratory syndrome (MERS) 1,
haematological 72	2, 4, 7, 47, 71, 141
Malignant tumor 27, 28	Mitochondrial dysfunction 83
Mechanical ventilation 76, 79, 89	Molecular 111, 117, 154
Mechanism 9, 11, 13, 14, 15, 16, 55, 71, 112,	docking techniques 117, 154
117, 131, 149	machinery 111
adaptive immune 149	Molecules, immune-stimulating 61
innate immune 149	Mono-carboxypeptidase 3
ventilation 71	Monoclonal antibodies 161, 162
Medications 46, 48, 86, 119, 120, 121, 142,	Mucolytic properties 54
143	Mucosal 49, 157
allopathic 119	epithelial cell integrity 49
herbal 142, 143	integrity 49
prophylactic 121	layer 157
Medicinal 130, 137, 141, 148, 152, 153, 154,	Multiorgan failure 71, 151
162	Multivariant analysis 72
herb 130	Multivitamin-rich diets 138
plants 137, 141, 148, 152, 153, 154, 162	Myalgia 29, 31, 47
Medicines 83, 112, 118, 119, 139, 142, 150,	Myeloid 72, 85
151, 153, 155, 161, 162	cells 85
allopathic 162	leukaemia 72
anticancer 83	Myocardial 71, 79, 88, 89, 90, 91
ethnic 118	dysfunction 91
natural 139, 142	infarction 79, 90
plant-based 162	injury 71, 88, 89
Membrane, viral 74	Myocarditis 88
Membrane fusion 2, 9, 47, 74, 112	1.13 0041 01125 00
virus-host 2	N
Menstrual irregularities 133	14
MERS 5, 7	N
related CoVs 7	Natural 10, 51, 61, 130
viruses 5	antiviral elements 61
MERS-CoV 1, 2, 7, 8, 16, 17, 35, 71, 72, 140,	flavonoid 10
141, 150	food colourant 130
infections 8	nutrition sources 51
protein of 16	Natural killer 56, 138
Metabolic 50, 54	cells 56
processes 50	Natural products 16, 162
reactions 54	and phytochemicals 162
Microbial assay 120	potentially effective for COVID-19 16
Micronutrients 48, 52, 61, 157	Naturopathy 112, 152
essential 157	Nausea 25, 29, 30, 31, 135
Microorganisms 58, 120, 148, 149, 151, 156	Neoplastic cells 85

Nerve fiber cells 35	volatile 136
Neuraminidase activation assay 59	Organ 40, 71, 93
Neutrophilia 81, 82	dysfunction 71
Neutrophils 29, 35, 55, 56, 138, 139, 149	failure 40
activating 56	transplantations 93
migration 139	Outbreak 8, 39, 61, 150, 151
recruitment 55	diseases 151
Newcastle disease 73	viral 39
New Heaven Coronavirus 2	Oxidative damage 50, 137
Nictoflorin 154	viral infection-induced 137
Nidovirales order 5	Oxidative pressure 53, 54
Nigella sativa 58, 141	regulating 54
Nitric oxide, reduced 159	Oxygen 28, 31, 33, 51, 53, 134, 157
Nitrogen heteroatom 57	capacity 33
Nitrous oxide synthase 60	mask 31
Nucleocapsid 1, 2, 8, 12, 72, 112	saturation 28
helical 2	Oxygen therapy 31
Nucleocapsid protein 139, 141	high-flow nasal 31
Nucleoproteins 59, 134	ingh now hasar 31
viral 134	P
Nucleosides 73	1
Nutraceuticals 46, 48, 55, 60, 61, 132, 157,	
158	Pandemic 2, 120, 135, 136, 137, 143, 148
immune-supporting 46	condition 137, 148
supplements and probiotics for immunity	COVID-19 120
158	diseases 135
Nutrient(s) 46, 50, 52, 60, 134	flu 2
contents 134	outbreaks 136, 143
fat-soluble 52	Pathogen-associated molecular patterns
Nutritional properties 162	(PAMPs) 35
Nutritional properties 102	Pathways 15, 35, 59, 74, 94, 100, 117, 131,
0	138, 140, 155
O	cell-signaling 140
	endocytic 94
Obese people 132	endosomal 100
Obstructive pulmonary disease 36	endosomal entry 74
Ocimum 114, 133, 136, 140, 152, 153, 159	extreme inflammatory 35
kikim 153	immunological 138
sanctum 114, 133, 136, 140, 152, 153, 159	multiple signalling 59
scharicum 153	signaling 117, 155
Oil 49, 56, 116, 129, 133, 136, 152, 159	Pattern-recognition receptors (PRRs) 35
cod liver 56	Percutaneous intervention coronary diseases
essential 116, 129, 133, 159	90
red palm 49	Pfizer-BioNTech COVID-19 mRNA vaccine
sesame 152	47

PGE2 generation 159	antiviral 153
Phagocytosis 139	natural 14, 15, 16, 59, 118
Pharyngeal hypereramia 30	Prognosis 88
Phosphorylation process 139	Pro-inflammatory cytokinin 160
Phytochemical screening techniques 120	Protease(s) 8, 15, 58, 71, 74, 100, 118, 139,
Phytomedicines 153	140, 154, 155
Piper 136, 137, 152	activity 100
longum 137, 152	cellular serine 71
nigrum 136, 137, 152 Plants 57, 58, 114, 115, 119, 120, 121, 128,	enzyme 58, 118, 155 inhibitor 15, 118, 155
	viral 74
129, 130, 137, 139, 141, 148, 151, 153,	
154, 155, 156, 158, 162	Protein(s) 1, 2, 3, 4, 7, 8, 9, 11, 12, 13, 15, 16,
anti-inflammatory 137	47, 50, 53, 55, 72, 73, 74, 94, 112, 118,
based foods 158	140, 154
based-immunity booster 153	data bank (PDB) 154
constituents 139	function 16
curative 58	non-structural 12, 13, 73
herbal 151, 153	protein interactions 55
sources 119, 141, 148, 162	replicative 4 structural 12, 13, 73, 74, 118
Plasma 11, 80, 157 blasts 80	
	synthesis 50, 140 transmembrane 2
membranes 11, 157 Pneumonia 7, 26, 29, 32, 47, 51, 71, 78, 88,	vegetable 53
91, 128, 150	viral 15, 72, 112
bilateral 29, 128	Protein kinase 59, 117, 142
condition 150	mitogen-activated 59
Pneumonitis 83, 85	phosphorylation 142
Polyphenols display 117	Proteinuria 76, 83
Polyproteins of ORFs 74	Prothrombin time 77
Polysaccharides 129, 133, 141, 154, 155, 156	PT level 78
arabinogalactan 133	Pulmonary fibrosis 54, 56, 83, 84, 140
Pomegranate polyphenols 140	and venoocclusive diseases 83
Probiotic(s) 46, 55, 56, 132, 157, 158	Punica granatum 153
lactobacilli 158	Pyroptosis 35
nutritional supplementation 55, 132	virus-related 35
Problems 37, 54, 56, 110, 120, 126, 132, 133,	virus-related 55
135, 142, 159	R
digestive 135	N.
gastrointestinal bronchial 159	
inflammatory 56	Radio-sensitizing properties 59
kidney 133	Radiotherapy 82
respiratory 54, 56, 132	Rashes 31, 93
upper respiratory tract infection 56	Receptor-binding domain (RBD) 5, 47
Procyanidins 141	Recombinant ACE2s 95
Products 14, 15, 16, 59, 118, 119, 153, 158	Regulation of spike protein 112
1100000 17, 13, 10, 37, 110, 117, 133, 130	

Renal dysfunction 97	S
Respiratory 8, 28, 54, 55, 57, 58, 71, 72, 117,	
128, 134, 137, 141, 152, 153, 155, 159,	Salacia oblonga 153
162	Salvia divinorum 154
bacterial infections 134	SARS 7, 33, 59, 133, 150
failure 8, 28, 71, 72	binding affinity 7
hygiene 128	coronavirus 59, 133
infections 28, 57, 71, 137, 141, 152, 153,	micro RNAs fighting 33
162	virus of 150
syncytial virus (RSV) 54, 55, 58, 117, 155,	SARS-CoV 35, 130, 142, 155
159	infection 130, 155
Respiratory distress 28, 33	protease inhibitors 142
syndrome 28	proteins 35
Respiratory syndrome 2, 127, 128	SARS-CoV-2 8, 35, 56, 57, 126, 128, 130,
coronaviruses 127, 128	137, 143, 151, 153
Respiratory tract 50, 51, 54, 55, 132, 137	genomes 35
contaminations 51	illness 126, 128
diseases 51	infection 35, 56, 126, 130, 137, 143, 151
infections 50, 54, 55, 132, 137	replication 57
Respiratory viral 40, 141	virus 8, 57, 128, 151, 153
infection 141	Secondary plant metabolites 57
transmissions 40	Sepsis 50, 156
Responses 40, 47, 49, 81, 84, 85, 126, 128,	Serine, transmembrane protease 9, 11
138, 140, 142, 149, 152, 157	Severe acute respiratory 1, 2, 4, 5, 7, 11, 26,
antiviral 84	33, 46, 47, 71, 117
antiviral immune 140	coronavirus 71
cell-mediated immune 49, 152	syndrome (SARS) 1, 2, 4, 5, 7, 11, 26, 33,
cellular immune 126, 157	46, 47, 117
hormonal 138	Severe COVID-19 12, 101
immunogenic memory 138	Shock 32, 71, 156
inflammatory 149	hyperglycemia 32
innate immune 47	inflammatory 71
secondary hemophagocytic 85	septic 156
therapeutic 81, 128, 142	Silybum marianum 140
Retroviruses 142	Sinensis 152
Reverse transcription PCR 97	Single-stranded RNA envelope 72
Rhabdomyolysis 32	Smokers 34, 72, 76, 132
Rheumatoid arthritis 85	Smoking 25, 34, 41, 76, 100
Rhinorrhoea 47	habit 100
Rhinovirus 36	history 76
Ribavirin 84, 88	Smooth-walled vesicles 12
RNA 2, 8, 12, 13, 47, 73, 74, 94, 97, 118	Sneezing 9, 12, 26, 34, 149
dependent RNA polymerase 12	Social 34, 41, 111
genome 2	gatherings 111
polymerase 73	-

media 41 policies 34 Social distancing 34, 41, 61, 101 rules 41 Solvents environments 120 Sphaeranthus indicus 153 Spike 1, 2, 8, 9, 10, 11, 13, 17, 81, 111, 112, 140, 150 and helicase protein 140	body's defence 61 endocrine 28 health care 101 hepatic 3 host defence 56 innovative drug delivery 142 respiratory 137, 157 traditional medicinal 112 urinary 28
glycoproteins 150 proteins 1, 2, 8, 9, 10, 11, 13, 17, 81, 111, 112 Stress 50, 54, 61, 90, 131, 134, 138 free environment 138	weak immune 34, 150 T
free environment 138 oxidative 50, 54 reduction 131 Sunflower seeds 157 Supplements 40, 56, 61, 131, 158, 161, 162 dietary 56, 158 herbal 162 multivitamin-mineral 56 Surgical process 30 Symptoms 5, 7, 8, 28, 29, 30, 31, 32, 36, 38, 47, 71, 72, 127, 128, 161, 162 digestive 29 gastrointestinal 47 neurological 28, 29 pathological 5 Syndromes 70, 71, 81, 82, 85, 88, 90, 93 acute coronary 70, 71, 90 cardiac 88 cytokine release 85 inflammatory 93 metabolic 81, 82 Synthesis 12, 15, 50, 56, 118, 131, 134, 139, 158 cytokine 139 Synthetic antivirals and immunomodulators 128 Systems 3, 28, 34, 54, 56, 61, 101, 112, 113, 137, 138, 142, 150, 151, 157, 162 ayurvedic 162 ayurvedic medicine 151	Target herbal products 162 TCM system 151 Terminalia chebula 137 Terpenes 116, 134 Terpenoids 57, 58, 118, 133, 135, 154 Therapies 14, 48, 71, 78, 79, 82, 86, 87, 100, 110, 119, 133, 137, 143 androgen-deprivation 86, 87 anticoagulant 78, 79 antineoplastic 100 antiviral 14 haemoglobin replacement 133 herbal medication 143 natural 137 Thromboembolic events 71 Thromboembolism 70, 71, 78, 88 complications 78 Thromboplastin, activated 77 Thrombosis 83, 92 Tinospora cardifolia 136 Tissue(s) 34, 47, 54, 73, 74, 94, 97, 130 fibrosis 47 respiratory 74 tropism 73, 97 Tomography, computed 29, 78 Traditional 56, 59, 110, 135, 151, 161 Chinese medicine (TCM) 56, 59, 151 healthcare professionals 161 Indian medicines 135
balanced immune 61 body's antioxidant 54	medications 110

Subject Index	Herbal Immunity Boosters Against COVID-19 18:
Traditional medicine(s) 57, 110, 112, 113,	green 52, 156
118, 135, 151, 152, 153, 160, 162	green leafy 49, 51
professionals 160	oils 52
systems 118, 162	starchy 49
Traditional systems 112, 162	vitamin E-rich 52
of medicines 112	Venoocclusive diseases 83
Transcription factors 59	Ventilator-induced lung injury (VILI) 55
Transferrin 53	Vicenin immunomodulatory activity 114
Transmembrane glycoprotein 112	Viral 9, 12, 14, 15, 51, 59, 70, 71, 112, 117,
Transmission of coronavirus 4	118, 126, 135, 136, 137, 139, 140, 141,
Treatment 14, 15, 46, 47, 54, 55, 59, 60, 72,	142, 150, 154, 156, 161, 162
81, 82, 84, 85, 99, 100, 128	cellular membranes 112
effective antiviral 14	contamination 51
immune inhibitor 72	haemagglutination 59
Tuberculosis 51, 84	illnesses 137, 142
Tumor necrosis factor 35	infections 59, 117, 118, 126, 135, 136, 137,
Turmeric 59, 130, 136, 158, 159, 160	139, 140, 141, 150, 154, 156, 161, 162
derivatives 59	progeny 12
rhizomatous herbal plant 130	propagation 141
Tylophorine 57	protein synthesis 15
	replication 14, 139, 141
U	RNA packaging 9
	spikes 70, 71
Upgraded asthmatic symptoms 55	Viral load 12, 29, 76, 137
Upper respiratory tract infections (URTIs) 55,	reducing 137
57, 152	Viral RNA 1, 8, 9
Urinary 28, 33	single-stranded 9
system diseases 28	Virion, mature 12
tract infection 33	Virus(es) 1, 2, 4, 5, 8, 11, 12, 26, 33, 35, 36,
UV radiation 39, 156	41, 46, 47, 70, 71, 72, 74, 85, 93, 100,
0 v Tadiation 37, 130	112, 117, 131, 140, 141, 142, 148, 149,
V	150, 151, 154, 156, 157, 159
V	absorption 141
	corona 71, 112, 140
Vaccination 14, 46, 47, 48, 49, 80, 111	COVID-19 117
anti-rabies 49	enveloped 154
program 111	replication pathways 131
Vaccines 9, 16, 46, 47, 73, 101, 111, 128, 129,	suppress 142
150, 161	transmission 26
manufacturing 111	Virus infection 35, 55, 159
Vapour inhalations 84	respiratory 159
Vasa swarasa 161	respiratory syncytial 55
Vascular thrombosis 83	Vitamin 40, 41, 46, 49, 50, 51, 52, 53, 61,
Vegetable(s) 49, 50, 51, 52, 54, 58, 117, 138,	116, 132, 134, 136, 156, 157
156	anti-inflammation 49

B6 bioavailability 49
D deficiency (VDD) 40, 51
fat-soluble 49, 51, 52, 157
rich sources of 156, 157
water-soluble 50, 156
Vitamin B12 50
acts in combination 50
loss 50
Vomiting 29, 31

W

World Health Organisation 47, 150 Wuhan coronavirus 2, 26

\mathbf{Z}

Zika virus 57
Zinc 53, 61, 132, 157
absorption 53
deficiency 53, 132
ingested 53
Zinc's bioavailability 53
Zinger oficinale 116
Zingiber officinale 136, 140, 152, 159

Sachin Kumar Jain

Dr. S. K. Jain is currently working as a Professor in the department of Pharmacognosy; Oriental College of Pharmacy & Research, Oriental University Sanwer Road Indore MP India. He holds a Ph. D degree in Pharmacognosy and Phytochemistry from School of Pharmacy, Devi Ahilya Vishwavidyalaya, Indore in 2017. He has published more than 60 research papers in various national and international journals which include the citation in SCI, Scopus and others. He is a peer reviewer in more than 14 reputed international journals. He is editorial board member of various international journals with high repute. He has been an academic editor of Journal of Complementary and Alternative Medical Research. He has attended more than 18 national and international seminars and conferences and presented posters and papers. He has supervised more than 25 undergraduate and 1 postgraduate students. He received the Best Researchers award on Engineering, Science and Medicine 2021, organized by VDGOOD Professional Association, India.

Ram Kumar Sahu

Dr. Ram Kumar Sahu is Assistant Professor in the Department of Pharmaceutical Science, Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam. He had more than 16 years of teaching and research experience. He delivered guest lectures in various Universities of Malaysia, Thailand, Philippines and Indonesia. Dr. Sahu research work highlights on isolation and characterization of active constituents, novel drug delivery system, formulation and standardization of herbal drugs, screening and evaluation of various pharmacological activities of samples. He is the recipient of different awards from national and international organizations. He has supervised and co-supervised twenty-six PG scholars and three PhD scholars. He is the author of over 90 scientific publications in the field of Pharmaceutical Science, and has authored 06 books and 08 chapters for pharmacy books. He received six international and five national awards. Dr. Sahu has organized and is also an invited speaker and panelist in various national and international conferences. He has visited Singapore, Taiwan, Malaysia (Five times), Thailand (Twice times), Egypt and Indonesia for presentations.

Vishal Soni

He has completed Ph.D. in Pharmacognosy from Banasthali University, Rajasthan India and M. Pharm from B.R. Nahata College of Pharmacy, Mandsaur, Madhya Pradesh. Currently, he is a professor at the faculty of Pharmacy, Mandsaur University, Mandsaur. He had more than 14 years of teaching experience along with research experience. Dr. Soni's area of research is isolation and characterization of active moiety for antifertility, screening and evaluation of various pharmacological activities of samples, standardization of Ayurveda formulations etc. He has written many book chapters and edited books, has filed 2 patents and contributed to more than 40 review and research papers. He has received many awards from international and national conferences such as Best Oral Presentation, Young Scientist award etc. He has supervised seven Ph. D. scholars and four undergraduate students. He is a reviewer of a number of national and international journals.

Priyanka Soni

Dr. Priyanka Soni is presently working in the faculty of Pharmacy, Mandsaur University, Mandsaur. She did M. Pharm from B. R. Nahata College of Pharmacy, Mandsaur, Madhya Pradesh. She has written numerous chapters in edited books and filed 2 patents. She has contributed to more than 40 review and research papers. She has served as board member and reviewer of research journals and books. Her area of interest is isolation and characterization of lead molecules, screening and evaluation of various pharmacological activities of samples. She has received various awards such as SRIJAN-2015, Best Oral Presentation, and Women Scientist awards in the national and international conferences.