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PREFACE

The energy crisis combined with environmental pollution has been recognized as one of the
most serious global concerns. Therefore, huge attempts have been devoted in recent decades
to resolving these challenges by introducing more advanced materials with higher efficiency.
Specially-designed catalysts are among the first candidates proposed to combat environmental
contaminations.  Metal-organic frameworks (MOFs) are a  novel  class  of  crystalline porous
substances  possessing  high  surface  area,  excellent  structural  properties,  chemical
adjustability, and stability which can be used in different applications including catalysis. The
significant benefits of MOFs in the field of catalysis can be found in their tunable porosity,
uniformly-distributed  active  sites,  and  excellent  porosity  offering  accessible  active  sites
through their open channels facilitating the mass transport and diffusion, and finally,  their
robust structure ensuring recyclability. Thus, MOFs can efficiently offer the positive features
of  both  homogeneous  and  heterogeneous  catalysts,  at  high  reaction  efficiency  and
recyclability. Catalytic properties of MOFs can be further enhanced when used as precursors
and/or templates. Their combination with other compounds as a hybrid can further improve
their catalytic activities due to synergic effects. The huge attempts to reinforce and modify
this class of materials raise our hopes in the bright future of MOFs in the field of catalysis.

Due  to  unique  features  of  inorganic-organic  hybrid  compositions,  MOFs,  compared  with
traditional porous materials, have a variety of advantages: (1) Good crystallinity. MOFs with
highly ordered structures,  could be precisely and intuitively analyzed by X-ray diffraction
technology,  which  is  helpful  to  determine  structure-property  relationships;  (2)  Good
designability  and  facile  functionalization.  Applying  to  crystal  engineering,  MOFs  can  not
only  be  predesigned  with  expected  structures  (topologies)  and  functions,  even  the
coordination  diversity  of  metal  ions  and  organic  ligands,  but  also  easily  operated  by  post
synthetic methods; (3) High porosity. MOFs are highly porous materials with a large specific
surface  area  (exceeding  to  7000  m2  g-1),  and  more  importantly,  the  size,  shape  and
composition of pores can be well tuned by a lot of methods, which is beneficial for host-guest
studies; (4) Flexibility. Due to the flexibility of coordination bond and organic linkers, most
of  the  MOFs  are  somewhat  flexible,  which  endows  MOFs  with  peculiar  properties  like
dynamic irritating response to external conditions (temperature, pressure, humidity, etc.), and
these features make MOFs more intelligent in applications.

The  MOF-based  materials  offer  favorable  catalytic  performance  owing  to  their  unique
structural attributes and subsequent modulation. Their range of chemical functionalities and
porosities facilitate to adsorb/activate other substrates/CO2 leading to facile CO2 conversion.
The  rise  in  the  number  of  MOF based  catalytic  materials  with  improved  performance  has
opened a new avenue for CO2 capture and conversion. One of the most important attributes an
MOF has is its chemical tunability along with its interactions with other substrates. MOFs as
photocatalysts are benefited from a large surface area, suitable band-gap, the ideal structure
for charge transfer, and high photo-corrosion resistance.

Junkuo Gao
School of Materials Science and Engineering

Sci-Tech University
China

Reza Abazari
Department of Chemistry, Faculty of Science

University of Maragheh
Iran
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CHAPTER 1

Strategies,  Synthesis,  and  Applications  of  Metal-
Organic Framework Materials
Zuo-Xi Li1,* and Chunxian Guo1,2,3,*

1 Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou
University of Science and Technology, Suzhou, Jiangsu, 215009, PR China
2 Jiangsu Laboratory for Biochemical Sensing and Biochip, Suzhou, Jiangsu, 215009, PR China
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Abstract: Metal-Organic Frameworks (MOFs), as one type of famous porous material
with  many  advantages  (good  crystallinity,  design  ability,  facile  modification  and
flexibility),  show a wide range of applications in gas adsorption and separation,  ion
exchange,  fluorescent  recognition,  nonlinear  optics,  molecular  magnets  and
ferroelectrics,  heterogeneous  catalysis,  semiconductors,  and  so  on.  The  research  of
MOFs  span  many  disciplines,  such  as  inorganic  chemistry,  organic  chemistry,
coordination chemistry, supramolecular chemistry, crystal engineering and materials
science. The design, synthesis, and applications of MOFs have attracted tremendous
attention  in  broad  scientific  areas.  Therefore,  it  is  worth  releasing  a  professional
publication  to  elucidate  so  many  related  issues.  In  this  chapter,  we  start  with  the
introduction of MOFs, including the definition, classification, concepts, terminologies,
and some well-known research. Then we carefully summarize the design and synthesis
of MOFs from three aspects of raw materials, synthetic methods, and design strategy,
aiming to get the goal of controllable syntheses of MOFs. Following this, we report the
developments and applications of MOF materials in adsorption and separation, organic
catalysis, luminescence, and drug delivery. Finally, we briefly outline challenges and
perspectives of MOF materials, and provide some promising research subjects in this
area.

Keywords:  Controllable  Syntheses,  Crystal  Engineering,  Long-range  Ordered
Pores,  Properties.
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1. INTRODUCTION OF METAL-ORGANIC FRAMEWORKS

Metal-Organic Frameworks (MOFs), also known as porous coordination polymers
(PCPs),  are  crystalline  porous  materials  with  periodic  networks  formed  by  the
self-assembly  of  metal  ions  (or  metal  clusters)  and  organic  ligands  through
coordination bonds. The concept of MOFs was proposed and firstly reported by
the  group  of  Yaghi  in  1995  [1].  In  their  work,  it  is  proved  that  MOFs  are
microporous  framework materials,  which  are  adjusted  through selecting  proper
organic ligands and metal ions. Furthermore, MOFs can adsorb guest molecules
and  remain  stable  after  the  guest  molecules  are  removed.  With  the  quick
development  of  MOF materials,  other  some  similar  terms  were  proposed  from
different  perspectives  as  well,  such  as  MILs  (Materials  of  Institute  Lavoisier
Frameworks) by Férey’s group [2],  ZIFs (Zeolitic Imidazolate Frameworks) by
Yaghi’s group [3], MAF (Metal Azolate Frameworks) by Chen’s group [4], PCPs
(Porous  Coordination  Polymers)  by  Kitagawa’s  group  [5]  and  PCN  (Porous
Coordination  Networks)  by  Zhou’s  group  [6].  In  recent  years,  the  bonding
interactions  in  MOFs  have  not  only  referred  to  coordination  bonds,  but  also
included  other  interactions,  such  as  hydrogen  bonds,  van  der  Waals  force,  π-π
interactions  between  aromatic  rings,  etc.Due  to  the  abundant  interactions,  the
structures and functionalities of MOFs are becoming more and more diversified.
In 2013,  to classify coordination polymers (CPs),  coordination networks (CNs)
and  MOFs,  International  Union  of  Pure  and  Applied  Chemistry  (IUPAC)
published a set of terms and definitions [7]. According to the recommendations,
MOFs are CNs with potential voids, where CPs refer to coordination compounds
that  extend  through  repeating  coordination  entities  in  one  dimension  (1D,
including  cross-links  between  two  or  more  individual  chains,  loops  or  spiro-
links),  or  coordination  compounds  that  extend  through  repeating  coordination
entities in two or three dimensions (2D or 3D). That is to say, MOFs are a subset
of CNs, also a branch of CPs.

Due  to  unique  features  of  inorganic-organic  hybrid  compositions,  MOFs,
compared  with  traditional  porous  materials,  have  a  variety  of  advantages:  (1)
Good crystallinity. MOFs with highly ordered structures, could be precisely and
intuitively  analyzed  by  X-ray  diffraction  technology,  which  is  helpful  to
determine  structure-property  relationships;  (2)  Good  designability  and  facile
functionalization.  Applying  to  crystal  engineering,  MOFs  can  not  only  be
predesigned  with  expected  structures  (topologies)  and  functions,  even  the
coordination diversity of metal ions and organic ligands, but also easily operated
by post synthetic methods; (3) High porosity. MOFs are highly porous materials
with  a  large  specific  surface  area  (exceeding  to  7000  m2  g-1),  and  more
importantly, the size, shape and composition of pores can be well tuned by a lot of
methods,  which  is  beneficial  for  host-guest  studies;  (4)  Flexibility.  Due  to  the
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flexibility  of  coordination  bond  and  organic  linkers,  most  of  the  MOFs  are
somewhat  flexible,  which endows MOFs with peculiar  properties  like  dynamic
irritating response to external conditions (temperature, pressure, humidity, etc.),
and these features make MOFs more intelligent in applications.

Nowadays,  as  a  new  type  of  functional  molecular  material,  the  design  and
synthesis of MOFs with the desired structure and properties have become one of
the  frontier  fields  of  coordination  chemistry,  supramolecular  chemistry,  crystal
engineering and materials science. The research of MOFs span many disciplines
and  categories,  such  as  inorganic  chemistry,  organic  chemistry,  coordination
chemistry, material chemistry, and synthetic chemistry, which have shown broad
applications in heterogeneous catalysis, molecular recognition, gas adsorption, ion
exchange,  molecular  magnets,  ferroelectric  materials,  fluorescent  materials,
nonlinear  optical  materials,  and so on.  In  this  chapter,  we aim to  introduce the
synthesis methods, construction strategies and potential applications of MOFs, as
well as some recent developments in this area.

2. SYNTHESIS OF MOFS

As a kind of coordination compounds,  MOFs are composed of inorganic metal
ions, organic ligands and guest molecules inside the frameworks. The synthesis
process of MOFs is very similar with that of other coordination compounds, and
the key for the synthesis of MOFs is the formation of coordination bonds between
metal  centers  and  coordination  atoms  from  organic  ligands.  Compared  with
covalent bonds, the bond energy of coordination bonds is much smaller, and so
most  of  the  MOFs  have  a  simple  and  mild  synthesis  condition.  Due  to  great
potential applications of MOFs, some of them have begun to be commercialized.
Therefore, to meet requirements of rapid, controllable and large-scale production,
new  methods  including  microwave  synthesis,  ultrasonic  synthesis,
electrochemical  method,  mechanochemical  method,  spray  drying  and  mobile
chemical synthesis have been gradually developed, besides traditional methods.

2.1. Raw Materials

2.1.1. Meal Nodes

In the synthesis of MOFs, various central metal nodes provide empty orbitals for
the formation of coordination bonds, which can be regarded as binders to anchor
organic  ligands.  Most  of  the  metal  nodes  have  relatively  definite  coordination
numbers and configurations, which are one key factor to determine the structures
of final products. It is worth mentioning that metal nodes in MOFs are not only
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CHAPTER 2
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Abstract: Metal-organic frameworks (MOFs) emerged as adjustable and multipurpose
materials, which are now intensively investigated worldwide. They are composed of a
wide range of organic and inorganic building units  which are a susceptible base for
various  post-synthetic  modifications  (PSMs).  In  the  last  years,  altering  MOFs
composition  has  significantly  contributed  to  their  broad  application  in  many  fields,
especially  in  heterogeneous  catalysis.  PSMs  are  employed  to  improve  the
physicochemical  properties  of  MOFs  such  as  stability  or  selectivity,  but  mostly  to
generate  catalytically  active  sites.  Here,  we  report  diverse  methods  of  metal-
(exchange,  doping,  redox  transformations)  and  ligand-based  (functionalization,
exchange,  installation,  removal)  PSMs  of  MOFs,  which  can  be  effectively  used  for
catalytic  purposes.  PSMs  can  either  extend  the  MOF  framework  with  catalytically
active functionalities or contribute to defect engineering for open metal site formation.
Moreover, combining different modifying procedures has been introduced as a tandem
approach when various reactions prompt several changes in the framework. Epitaxial
growth was also presented as PSM, which can govern catalytically beneficial features
mostly for thin films, unattainable to achieve by conventional methods. Recent MOFs’
PSM findings were reviewed to show new pathways and a continuously developing
field  of  reticular  chemistry  which  come  across  with  the  expectations  for  novel  and
more efficient catalysts.
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1. INTRODUCTION

The search for new materials applied in the catalysis is grounded in the constant
necessity for alternative and more efficient catalytic reaction pathways [1]. By any
means, a proper catalyst does not influence the thermodynamic equilibrium, yet it
provides opportune conditions for the substrate molecules to change the reaction
kinetics [2]. In consequence, it lowers the energy barrier of the reaction, leading to
its faster occurrence [3]. In heterogeneous catalysis, where the catalyst is usually
in the form of a solid, catalytic reactions take place on the catalyst surface, thus it
has to stand out with specific features [4, 5]. Firstly, the catalyst has to be stable
enough  during  the  proceeding  reaction  to  only  assist  it,  without  creating
interfering compounds, and in the end, it should remain unchanged. Moreover, it
should be characterized by a well-developed surface area to provide a place for
reagents, but above all, it must indicate abundance in catalytically active centers
to allow substrates to interact [6, 7].

In  the  last  few  decades,  intensive  research  devoted  to  MOFs  showed  that  they
meet the requirements of good catalysts [8 - 10]. Their extremely high porosity,
the multiplicity of topologies, and improved stability created a wide spectrum of
their  applications  in  catalysis  [11,  12].  On  top  of  that,  the  possibility  of  post-
synthetic modifications (PSMs) pushes MOFs utility even further [13 - 16]. It can
translate  into  increasing  their  performance  and  selectivity  or  even  giving  them
novel  catalytic  abilities  [17,  18].  Usually,  PSM is  performed  when  the  desired
framework  is  particularly  difficult  to  obtain  in  the  direct  synthesis.  Despite  it
constitutes as an additional processing step, extended synthesis may be ultimately
cost-effective [16].

Active sites in MOFs which provide catalytic abilities may occur in various forms
[19].  Metal  nodes  exhibit  catalytic  activity  if  only  they  are  accessible  for
substrates. When reagents are not able to approach nodes directly due to the steric
hindrance, defect generation is required. For instance, linker displacement creates
coordinatively unsaturated metal sites, known as open metal sites (OMSs), which
mainly contribute to supporting catalytic reactions. The other types of active sites
are outer surface terminating groups, which are exclusively located on the external
side  of  the  MOF  particles.  Therefore,  decreasing  particles  size  increases  the
number of active sites and catalytic activity.  Moreover,  terminating groups can
constitute  a  base  to  attach  different  functional  groups  which  are  catalytically
active.  For  instance,  sulfonic  or  amino moieties  may result  in  the  formation of
Brønsted acidic or basic centers, respectively [11]. They can also be generated by
defect  engineering,  which  does  not  always  involve  lattice  constructions
dislocation  or  modification.  Besides  organic  linkers,  inorganic  nodes  often  are
coordinated with solvent molecules or ligands which do not form the cage. Their
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removal at a specific temperature or by vacuum generates active sites which act as
Lewis  acids  [20].  It  all  indicates  that  MOFs  as  materials  constructed  from
inorganic and organic components,  can be post-synthetically modified in many
ways, due to the possibility of active sites generation on several levels (Fig. 1).
The  first  one  is  the  metal-based  PSM,  where  cations  in  metallic  nodes  can  be
substituted  by  different  metals  (transmetalation)  [21],  changed  through  redox
transformations  [22],  incorporated  with  new  species  [23],  or  become  more
available  through  vacancies  creation  [24].  The  second  way is  to  interplay  with
organic struts via any reaction that will not damage the pristine framework unless
intentionally for vacancies generation [25]. In order to increase catalytic activity
and selectivity of MOFs, organic building units can be modified through ligand
exchange,  installation,  and  removal.  Furthermore,  MOFs  owing  to  their  large
channels  are  capable  of  encapsulating  catalytically  active  entities  i.e.
nanoparticles, molecules, or clusters via host-guest interactions [26]. Up to now,
the  most  successful  guest  assemblage  within  framework  cavities  is  conducted
locally by impregnating MOFs with precursors,  followed by thermal treatment,
photochemical decomposition of precursor, or its redox reactions. This ‘ship-in-
a-bottle’ approach enables confining and immobilizing guests without the risk of
precursors  aggregation  if  only  the  process  is  conducted  in  mild  conditions  and
MOF maintains its structure [27].

Fig. (1). Post-synthetic modifications of metal–organic frameworks (IBUs - Inorganic Building Units; OBUs
- Organic Building Units).
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MOFs  and  Their  Composites  as  Catalysts  for
Organic Reactions
Anna  Olejnik1,  Aleksandra  Galarda1,  Anita  Kubiak1,  Marcelina
Kotschmarów1, Aleksander Ejsmont1, Agata Chełmińska1, Martyna Kotula1,
Simona M. Coman2 and Joanna Goscianska1,*

1  Adam  Mickiewicz  University  in  Poznań,  Faculty  of  Chemistry,  Department  of  Chemical
Technology,  Uniwersytetu  Poznańskiego  8,  61-614  Poznań,  Poland
2 University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry
and Catalysis, Bd. Regina Elisabeta, 4-12, 030018 Bucharest, Romania

Abstract:  In  recent  years,  metal-organic  frameworks  (MOFs)  have  significantly
contributed to broadening the frontiers of science. Due to their distinctive properties
including well-developed surface area, high porosity, multifarious composition, tunable
and  uniform pore  structures,  and  comprehensive  functionality,  they  were  applied  in
different fields such as separation, drug delivery, fuel storage, chemical sensing, and
catalysis. The application of pristine MOFs as materials that speed up the reaction rate
could be restricted mainly because of the limited number of active sites and their low
mechanical and thermal stability. In order to enhance their catalytic properties, metal-
organic frameworks can be functionalized or integrated with a variety of materials to
obtain  composites  or  hybrids.  The  review  outlines  the  state  of  art  concerning  the
application  of  MOFs  and  their  composites  as  catalysts  in  various  organic
transformation  processes.  A  particular  focus  was  given  to  the  oxidation  of  alkanes,
cycloalkanes, alkylbenzenes, alcohols, thiols, sulfides. Furthermore, the role of metal-
organic frameworks in hydrogenation and C–C coupling reactions were also presented.

Keywords:  Alkanes,  Alkenes,  Brønsted  acid  sites,  Catalysis,  C–C  coupling
reactions, Composites, Hybrids, Hydrogenation, Lewis acid sites, Linkers, Metal
nodes,  Metal–organic  frameworks,  MOF,  MOF  active  sites,  MOF  stability,
Oxidation,  Reduction,  Sulfides,  Thiols.

1. INTRODUCTION

In recent times, metal-organic frameworks (MOFs) have attracted great attention
of scientists from different fields. These materials are classified  as  hybrids  being
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composed of inorganic parts (metal nodes) connected by coordination bonds to
organic linkers. The most common representatives of MOFs are MOF-5, UiO-66,
MIL-101,  HKUST-1,  PCN-14  and  ZIF-8  [1  -  4].  They  exhibit  distinctive
properties  including  well-developed  surface  area,  high  porosity,  multifarious
composition,  tunable  and  uniform  pore  structures,  and  comprehensive
functionality  [5,  6].  As  porous  materials,  MOFs  fill  the  gap  between  zeolites
(possessing small pore size) and silicate (having larger pore size). So far metal-
organic  frameworks  with  micropores  to  mesopores  have  been  described  in  the
literature  [7,  8].  Due  to  the  presented  above  unique  features,  MOFs  have  the
potential to be applied in different fields such as separation [9], fuel storage [10],
drug delivery [11, 12], chemical sensing [13, 14], and environmental remediation
[15].  These  porous  polymers  have  also  been  recommended  as  catalysts  in
different processes [16 - 18]. The catalytic activity of MOF originates either from
metal ions or functional groups attached to the organic linkers of the framework.
Additionally,  high  density  and  spatially  separated  active  sites  of  metal-organic
frameworks  are  crucial  features  that  support  their  function  as  catalysts  [19].
Furthermore, the post-synthetic modification or in situ processes enable to adjust
the metal-organic framework structure and introduce additional functional acid-
base groups (–SO3H, –NH2, etc.) or embed active metal nanoparticles (Pt, Ru, Cu,
etc.) and metal complexes inside the MOF cages (or anchored on their surface)
that are beneficial to design an appropriate catalyst for the target application. The
high  porosity  and  permeable  channels  facilitate  the  delivery  of  reactants  to
catalytic  sites.  Therefore,  MOFs  and  their  composites  represent  a  new class  of
recyclable heterogeneous catalysts owing remarkable properties. Although their
application as catalysts is  still  at  the developing phase,  a series of studies have
been  performed  in  this  area  so  far,  showing  that  MOFs  exhibit  considerable
catalytic properties including high activity, appropriate stability, and reusability
[20 - 22].

Despite  the  fact  that  the  application  of  MOFs  and  MOF-derived  materials  for
various catalytic reactions has been documented in recent reviews [23 -  25],  in
this  fast-growing  research  field,  we  would  like  to  provide  an  overview  of  the
catalytic behavior and advantages of the MOFs and their composites in different
valuable organic processes such as oxidation, hydrogenation, and C–C coupling
reactions.

2. MOFs AND THEIR STABILITY

Stability is the fundamental factor in the development of materials. In this context,
it  should  be  highlighted  that  although  MOFs  have  unique  properties,  their  full
potential  application  is  limited,  mainly  due  to  their  low  chemical,  mechanical,
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thermal,  and  hydrothermal  stabilities  [16].  Chemical  stability  refers  to  the
resistance  to  different  solvents,  acids,  bases,  and  solutions  with  strongly
coordinating  anions  (for  example,  phosphate  anion),  while  the  mechanical  and
thermal stability is related to the capability of materials to preserve their structure
under exposure to pressure, heat,  and vacuum. The chemical stability of metal-
organic  frameworks  is  related  to  the  strength  of  the  metal-ligand  bond  [26].  It
should be noted that mostly the thermodynamic factors have an influence on the
metal-ligand  coordination  bond  strength  [27].  Therefore,  the  stronger  the
coordination bonds, the more stable MOFs can be created [28]. It was proved that
the  chemical  stability  of  UiO-66  and  SUMOF-7  series  declined  with  the
lengthening of the linker and an increase of pore sizes [1, 29]. This is due to the
kinetic factors, that are associated with the coordination number, the rigidity of
the linker, and surface hydrophobicity.

The structural framework of MOFs can be decomposed both in acidic solutions,
which can accelerate the formation of a protonated linker, and in basic solutions
facilitating  the  formation  of  a  hydroxide  ligated  node  [5,  30].  However,  the
chemical  stability  can be  enhanced by using high valence metal  ions  including
Zr4+, Fe3+ or Cr3+ and by the interactions with different ligands (imidazolates and
triazolates). Outstanding stability in water is therefore achieved for azolate MOFs
thanks  to  the  strong  metal–nitrogen  bonds  [31].  Nevertheless,  despite  recent
progress in understanding and improving the chemical stability of MOFs, it was
proved  that  MOFs  fabricated  by  the  traditional  methods  are  less  competitive
compared to commercial catalysts when applied in a harsh reactive environment
[32].

It should be added that the nature of reagents can also have an influence on the
stability  of  MOFs.  Timofeeva  et  al.  observed  the  destruction  of  MAF-6(S)
structure due to the leaching of Zn2+  caused by the polar reagents [33]. In turn,
Linder-Patton et al. detected that the surface of ZIF-8 was unstable in the catalytic
processes in the presence of hydrophobic reagents with polar functional groups
[34].

The  mechanical  stability  of  MOFs  decreased  with  the  increase  in  porosity.
However,  it  was  shown  that  when  metal–organic  frameworks  are  filled  with
solvent, they were more mechanically stable than the same materials with empty
pores [35 - 38].

It should be underlined that the thermal, chemical, and hydrothermal stabilities are
crucial in terms of MOF’s characterization and application as catalysts in various
reactions. When metal-organic frameworks undergo decomposition, it is hard to
determine  their  structure  by  using  X-ray  diffraction.  The  thermal  stability  of
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Abstract:  Biomass valorization is  receiving increasing attention over the past  years
with the consumption of traditional fossil fuels as well as the deterioration of the global
environment.  The transformation of  biomass into highly value-added chemicals  and
important feedstocks will be of keen interest and great impact. The conversion process
of  biomass  requires  efficient  and  durable  catalysts  with  high  selectivity  and  stable
structures.  This  chapter  focuses  on  the  employment  of  metal-organic  frameworks
(MOFs),  MOF composites  (metal,  metal  oxide,  or  polyoxometalates  combined  with
MOFs), and MOF-derived materials (carbon, carbon-supported metal or metal oxide by
using MOF as precursors) as solid catalysts for the upgrading of biomass into important
fine chemicals. First, we will give a short introduction of biomass and MOFs, and then
the brief biomass valorization reactions by MOFs and MOF-based catalysts based on
the types of substrates. The last segment is summary of the state of the art, challenges,
as well as prospects of MOFs and MOFs-derived structures for biomass transformation.

Keywords:  Biomass,  Heterogeneous  catalysts,  Metal-organic  frameworks,
Platform  chemicals,  Porous  materials,  Transformation.

1. INTRODUCTION

1.1. Biomass

Conventional fossil resources, crude oil, coal, and natural gas are used to satisfy
our energy consumption, improve the national economy and people’s livelihood.
However, severe environmental issues occurred due to the  high  consumption  of
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traditional fossil energy, such as the greenhouse effect, acid rain, atmosphere and
marine pollution [1, 2]. At the same time, these conventional fossil sources are not
renewable  and  will  be  depleted  one  day.  Hence,  it  is  necessary  and  urgent  to
develop  alternative  renewable  energy  resources  such  as  biomass,  solar  energy,
wind energy, as well as hydrogen energy owing to their features of being rich in
sources,  wide  distribution,  renewable  and  environmental-friendly.  Amongst,
biomass is regarded as the only potential reliable candidate for the replacement of
conventional fossil energy sources to produce fuels and fine chemicals [3 - 7].

Biomass can be obtained from an inexpensive and wide range of substances, such
as  forest  products  (green  plants,  forestry,  woods,  logging  residues),  crops
(agricultural and husbandry wastes as well as breeding), domestic and industrial
wastes (kitchen waste, biodiesel or bioethanol production, and paper industry and
so on), so as to avoid the competition with human food.

Lignocellulose,  in  general,  is  the  most  abundant  form  of  biomass.  The  main
construction  of  lignocellulosic  biomass  is  lignin  (20%-30%),  cellulose  (40%-
50%),  and  hemicellulose  (18%-28%)  (Fig.  1)  [8,  9].  Lignin  is  composed  of  an
aromatic  polymer  with  methoxylated  phenylpropane  units,  cellulose  is  a
crystalline  homopolysaccharide  polymer  and  made  up  of  glucose  units,  while
hemicellulose is a complex polymer in amorphous state (xylose monomer unit is
the main component) [10 - 13].

Fig. (1).  Lignocellulosic-derived initial  platform chemicals.  Reprinted from ref.  14 with permission from
American Chemical Society, Copyright 2018 [14].

Cellulose  is  a  homopolymer  consisting  of  glucose  units  with  a  high  degree  of
polymerization  (10000  to  15000  in  wood  and  cotton)  [15].  It  is  hard  to  be
hydrolyzed  ascribed  to  the  existence  of  intramolecular  and  intermolecular
hydrogen bonding between the units of anhydro glucan [16]. The bottom and top
part of the cellulose chains are entirely hydrophobic, and both ends of the chains
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are usually hydrophilic. This long range ordered hydrogen bonding feature makes
cellulose  a  highly  crystalline  and  robust  material  toward  chemical  reactivity.
Through strong acid hydrolysis process, cellulose can be degraded into glucose
tetramer, glucose trimer, glucose dimer, and even glucose (Fig. 2) [17]. Further
dehydration  of  glucose  obtains  a  very  important  chemical  intermediate  of  5-
hydroxymethylfurfural (HMF) [18], which can be widely used for the production
of various indispensable industrial feedstocks such as 5-formyl-2-furancarboxylic
acid  and  5-hydroxymethyl-2-furancarboxylic  acid  intermediates,  2,5-
furandicarboxylic  acid  via  furan-2,5-diformylfuran  (DFF)  [19],  2,5-
dihydroxymethyl-tetrahydrofuran  (DHMTHF)  through  di(hydroxymethyl)
furfural  (DHMF)  intermediate  [20].  Besides,  other  important  products  like
levulinic acid (LA), and γ-valerolactone (GVL) can be also obtained from HMF
[21, 22].

Fig.  (2).  Conversion  of  cellulose  into  diverse  chemicals.  Reprinted  from  ref.  23  with  permission  from
American Chemical Society, Copyright 2018 [22].

Hemicellulose is sugar polymer which is made up of five and six-carbon sugars:
this  raw material  can be transformed to  C5 sugar  monomers  (Fig.  3)  [24].  The
most abundant constitute of hemicellulose is xylan, which is usually composed of
xylose polymer. Hemicellulose is amorphous due to its branched feature, at the
same time, it is facile to be hydrolyzed into its basic monomer in comparison to
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Abstract:  Due  to  the  rapid  and  continuous  increase  in  CO2  concentrations  in  the
atmosphere by the massive combustion of fossil fuels, the global ecosystem is being
affected severely. Therefore, balancing the CO2 content in the atmosphere should be
our main agenda nowadays.  For  minimization of  CO2  concentration,  carbon capture
and its conversion to valuable chemicals are being perused worldwide. Metal-organic
framework (MOF)-based materials having a porous structure and tuneable structural
features, are best candidates for the purpose. Herein, we provide a detailed discussion
on the design, synthesis and catalytic applications of MOF-based materials for various
CO2 conversion reactions.

Keywords:  Carbon  dioxide,  Catalysis,  Cyclic  carbonate,  Metal-organic
frameworks  (MOFs),  Methanol,  MOF  composites,  Photocatalyst.

1. INTRODUCTION

Considering  the  global  climate  issue,  the  conversion  of  atmospheric  carbon
dioxide (CO2) into energy and other useful chemicals becomes a burgeoning field
of scientific research. It will not be early to say that the next quest for the human
race is for sustainable growth. Increased CO2 emissions from the burning of fossil
fuel is a key factor for environmental concern as the increase in the transport of
people and goods is set to continue over the coming years. According to a study
carried out in 2019, the CO2 emissions from human activity have reached 34 Gt
[1]. Hence, the need to develop a safe, economic and clean methodology for CO2
capture and its conversion into a valuable chemical could be a great milestone for
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the survival of the human race. Therefore, it is inevitable to examine and address
the  development  of  new and efficient  catalysts  for  catalytic  conversion  of  CO2
into fuels and valuable chemicals. Significant efforts are given to develop a highly
efficient catalyst bearing high surface area, high CO2 uptake property, and stable
catalytic activity to facilitate energy efficient capture and subsequent conversion
[2].  However,  the  biggest  obstacle  in  the  process  of  its  conversion  is  high
thermodynamic stability and kinetic inertness as the carbon of CO2 is in the most
oxidized state keeping its energy level low. Hence a catalyst is needed to activate
it and this will be going to possess long-term goals [3].

MOFs are an exciting class of new materials possessing very high surface areas,
high  porosity  and  myriads  of  chemical  functionalities  which  are  tunable  [4].
They’ve  been  used  with  great  success  in  many  applications,  including
adsorption/separation [5], water splitting [6], gas separation [7], drug delivery [8],
conversion  of  CO2  to  economically  valuable  products  [9],  photovoltaics  [10],
catalysis  [11],  batteries  [12]  and  so  on.  In  the  forthcoming  discussion  of  this
chapter,  the  current  state  of  research focused on the application of  MOF-based
materials  as  catalysts  for  CO2  conversion  into  fuels  and  chemicals  has  been
discussed. There are mainly three different routes available for CO2 conversion, 1)
thermal catalysis of the majority of reactions involves hydrogenation reaction at a
relatively  low  temperature  and  produces  carbon  monoxide,  methanol  and
methane, 2) photocatalytic conversion where the catalyst is exposed to solar light
and  generated  photoelectrons  induce  a  redox  reaction  involving  CO2,  and  3)
electrocatalytic conversion involves the reduction of CO2 by the transfer of two,
four, six, or eight number of electrons and controlling the formation of single and
desired products is the grand challenge behind this pathways. This route of CO2
conversion is gaining significant momentum as it offers higher cost-effectiveness
because  of  milder  operating  conditions,  high  efficiency,  controllable  reaction
conditions,  and recyclability of the electrolyte and the catalyst.  There are other
methods  too  but  fundamentally,  all  are  just  the  same  or  a  combination  of  the
aforementioned three routes.

Finally,  we  end  up  this  discussion  pertaining  to  the  challenges  associated  with
MOF-based catalysts, their pertinent solutions, and some highlights on their future
scenarios for the conversion of CO2 to fuels and valuable chemicals.

2.  SYNTHESIS  OF  VALUE-ADDED  ORGANIC  COMPOUNDS  USING
CO2 AS PRECURSOR

MOFs have porous structures and high CO2 uptake properties. Therefore, plenty
of MOFs or MOF-based materials have been exploited for the conversion  of  CO2
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to several valuable organic compounds. Some of the representative CO2 conver-
sion reactions catalyzed by-MOF-materials are recorded in Table 1.

Table 1. List of representative CO2 conversion reactions catalyzed by MOF-based materials.

The  transformation  of  CO2  to  the  value-added  compounds  will  be  “killing  two
birds  with  one  stone”  i.e.  the  atmospheric  CO2  level  can  be  reduced  while
producing essential chemicals. To do so, several MOFs-materials have proven to
be excellent heterogeneous catalysts. Conversion of CO2 mainly happens through
the following processes:

a) cycloaddition of CO2 to epoxides to form cyclic carbonates,

b) fixation of CO2 through carboxylation of terminal alkynes
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Cycloaddition  

 
 
Lewis acid, Lewis 

base, Brønsted acid
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Abstract:  The  rapid  rise  in  photocatalytic  technology  with  efficient  removal
capabilities has attracted wide attention. Recently, metal-organic frameworks (MOFs),
a kind of coordination polymers, have also been applied in the field of photocatalytic
water  purification due to  their  characteristics  such as  high specific  surface area and
adjustable pore structure. However, the weak water stability, low reutilization rate, and
poor  photocatalytic  ability  of  the  constructed  MOFs  restrict  their  application  in
environmental remediation. To tackle these problems, many researchers have devoted
themselves  to  designing  highly  efficient  MOF-based  composites  by  adding  other
substances.  This  chapter  mainly  focuses  on  the  research  status  of  MOF-based
composites  in  the  photocatalytic  elimination  of  various  pollutants  from  water.
Additionally, the synthetic strategies for MOFs and their composite materials as well as
for photodegradation of pollutants in water are reviewed and exemplified. The possible
removal mechanisms of some MOF-based composites have also been briefly analyzed.
Finally,  the  achievements  and  prospects  on  future  research  of  MOFs  and  their
composite  materials  have  been  described  in  detail.

Keywords:  Adsorption,  Metal-organic  framework  composites,  Photocatalysis,
Water  purification,  Water  treatment.

1. INTRODUCTION

To  meet  the  needs  of  the  alarming  growth  of  the  world  population,  the  rapid
development of the industrial sector has produced the required products and a lot
of polluted organic wastes [1]. The generated organic pollutants can cause serious
environmental  pollution,  which  will  threaten  the  existence  and  development  of
human  beings  [2].  Industrial  wastewater  discharged  into  lakes,  rivers,  and
drinking water environment often contains heavy metal ions or common organic
contaminants.  They  are highly likely to menace the lives of aquatic creatures and
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the  health  of  human beings  [3].  Some common organic  pollutants  in  rivers  are
dyestuffs,  phenols,  pharmaceuticals  and  personal  care  products  (PPCPs),
herbicides, pesticides, as well as other organics [4]. In addition, some inorganic
pollutants are also included and mixed pollutants may coexist in real water [5].
These pollutants are highly stable, remain very long-term bioactive, cause a big
effect on the type of microbial species, and they may also produce certain viruses
[6].  Due  to  their  high  solubility,  the  decontamination  process  of  inorganic
pollutants  is  more  durable  and  extremely  resistant.  The  predominant
concentrations of these pollutants in the water are virulent or deadly, even at ppm
or  ppb  levels.  These  pollutants  are  of  high  risk  because  they  can  easily  be
amplified by organisms and cause harm to organisms higher up the tropical food
chain [7]. As a consequence, it is urgent to search for a valuable water treatment
technology  to  remove  the  pollutants.  So  far,  numerous  approaches  for  the
elimination  of  these  pollutants  have  been  utilized,  for  example,  membrane
separation,  ion  exchange,  photocatalysis,  adsorption,  and  so  on.  Among  these
water  treatment  techniques,  photocatalysis  is  a  burgeoning  method  and  is
identified as the most valuable technique on account of its affordable cost, easy
operation,  and  good  practicability  [8].  As  a  consequence,  photocatalysis  is
deemed to be the most effective method for removing these pollutants [9]. Hence,
fabricating an efficient photocatalyst with enhanced photocatalytic performance is
of great practical importance.

MOFs  can  be  self-assembled  from  organic  ligands  and  metal  salts  or  metal
clusters. Up to now, these MOF materials have been considered as a new kind of
crystalline porous material [10]. Their applications in the field of photocatalysis
have  gradually  emerged  and  been  systematically  studied  based  on  the  large
surface area and adjustable pore sizes [11 - 13]. Initially, they are mainly used for
photocatalytic  H2  generation  [14],  photocatalytic  degradation,  and  metal  ion
reduction.  However,  due  to  the  high  e–-h+  recombination  efficiency,  low  solar
energy  conversion  efficiency,  and  poor  electrical  conductivity,  photocatalytic
efficiency is not ideal. Hence, many research groups have established MOF-based
composites  to  boost  the  photodegradation  capacity  of  MOFs.  The  constructed
composites have been reported to be used in photocatalytic water purification. At
the same time, they are expected to achieve better photocatalytic performance.

In this chapter, the applications of MOF-based composites in photocatalytic water
purification  in  recent  years  are  reviewed  (Fig.  1).  Firstly,  the  present  chapter
provides a brief review of their preparation strategy and photocatalytic substrates
of MOF-based composites. Then, we study MOF-based composite materials from
the  aspect  of  photocatalytic  degradation  of  organic  pollutants,  inorganic
pollutants,  and  mixed  system  pollutants  in  water  in  the  following  context.
Subsequently,  we  introduce  the  application  of  adsorption-photocatalysis



296   Advanced Catalysts Based on Metal-organic Frameworks, Part 1 Yuan and Zhang

synergism in water purification. Finally, we summarize the photocatalytic water
purification of MOF-based composites and give a prospect of the development of
the composites in the future. We hope that this chapter will provide a better guide
to  the  future  challenges  of  MOF-based  composites  in  photocatalytic  water
purification.

Fig. (1). Schematic diagram of the preparation method and photocatalytic water purification onto MOF-based
composites.

2. SYNTHESIS OF MOF-BASED COMPOSITES

Recently,  more  and  more  researchers  set  about  constructing  MOF-based
composites. The MOF-based composites with diverse synthetic methods can be
generated by regulating and controlling the reaction conditions. Various synthesis
strategies  to  prepare  MOF-based  composites  have  been  exploited,  leading  to
diverse  morphologies  and  properties,  so  they  can  be  applied  to  the
photodegradation  of  contaminants  in  wastewater.  In  the  current  section,  we
delineate the preparation strategy of different MOF-based composites. Their use
to treat the different organic pollutants in wastewater is also summarized in the
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