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PREFACE 

The aim of this monograph is to discuss in detail about the growth properties of 

integer translated entire and meromorphic functions on the basis of their (p; q; t) L-

order and (p; q; t) L-type. This book contains chapters where we step by step 

elaborate the topic. 

Chapter 1 contains the preliminary definitions and notations. In Chapter 2 and 

Chapter 3, we have derived some results related to (p; q; t) L-th order and (p; q; t) 

L-th lower order of composite entire and meromorphic functions on the basis of 

their integer translation. In Chapter 4, we have established some relations of 

integer translated composite entire and meromorphic functions on the basis of their 

(p; q; t) L-th type and (p; q; t) L-th weak type. Chapter 5 deals with some results 

about (p; q; t) L-th order and (p; q; t) L-th type of composite entire and 

meromorphic functions on the basis of their integer translation. Chapter 6 is 

focused on some results about (p; q; t) L-th order and (p; q; t) L-th type of 

composite entire and meromorphic functions on the basis of their integer 

translation. 

We are thankful to the authors whose publications help us to develop the results of 

this monograph. We think this monograph will be very helpful for future 

researchers and students. We are also grateful to Bentham Science Publishers for 

giving us the opportunity to publish this monograph. 
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Preliminary De�nitions and
Notations

Abstract: In this chapter, we discuss the introductory parts connected to the growth of
entire and meromorphic functions and some de�nitions relating to the growth indicators
such as order, type, generalized order, generalized type, m-th generalized pL

�-order, m-th
generalized pL

�-type, (p; q; t)L-th order, (p; q; t)L-th type.

Keywords: Entire function, meromorphic function, generalized order, generalized type,
m-th generalized pL

�-order, m-th generalized pL
�-type, (p; q; t)L-th order, (p; q; t)L-th

type.
Mathematics Subject Classi�cation (2020) : 30D30, 30D35.

1.1 Introduction

Let us consider that the reader is familiar with the fundamental results and the standard
notations of Nevanlinna�s theory of meromorphic functions, which are available in [1-3].
We also use the standard notations and de�nitions of the theory of entire functions, which
are available in [4, 5]. Some related basic theories of entire and meromorphic functions
are brie�y discussed in [6, 7], so here we do not repeat those.

Throughout this monograph, we consider that x 2 [0,1) and k 2 N where
N be the sets of positive integers. We de�ne exp[k] x = exp(exp[k�1] x) and log[k] x =
log(log[k�1] x). We also denote log[0] x = x, log[�1] x = expx, exp[0] x = x and exp[�1] x =
log x.

1.2 Preliminary De�nitions and Notations

Considering above, the following de�nitions are relevant and have been frequently used
in the monograph.
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De�nition 1.2.1 The order � (f) and the lower order � (f) of an entire function f (z)
are de�ned as

� (f) = lim sup
r!+1

log[2]M (r; f)

log r
and � (f) = lim inf

r!+1

log[2]M (r; f)

log r
.

For meromorphic f (z),

� (f) = lim sup
r!+1

log T (r; f)

log r
and � (f) = lim inf

r!+1

log T (r; f)

log r
:

Next, to compare the growth of entire or meromorphic functions having the same
order, one may give the de�nitions of type and lower type in the following manner:

De�nition 1.2.2 The type � (f) and the lower type � (f) of an entire function f (z) are
de�ned as

� (f) = lim sup
r!+1

logM (r; f)

r�(f)
and � (f) = lim inf

r!+1

logM (r; f)

r�(f)
,

where 0 < � (f) <1:
If f (z) is meromorphic, then

� (f) = lim sup
r!+1

T (r; f)

r�(f)
and � (f) = lim inf

r!+1

T (r; f)

r�(f)
,

where 0 < � (f) <1:

It is obvious that 0 � � (f) � � (f) � 1.
Likewise, to compare the growth of entire or meromorphic functions having the same

lower order, one may give the de�nitions of upper weak type and weak type in the following
manner:

De�nition 1.2.3 [8] The upper weak type � (f) and the weak type � (f) of an entire
function f (z) of �nite positive lower order � (f) are de�ned by

� (f) = lim sup
r!+1

logM (r; f)

r�(f)
and � (f) = lim inf

r!+1

logM (r; f)

r�(f)
,

where 0 < � (f) <1:
If f (z) is meromorphic, then

� (f) = lim sup
r!+1

T (r; f)

r�(f)
and � (f) = lim inf

r!+1

T (r; f)

r�(f)
,

where 0 < � (f) <1:

It is obvious that 0 � � (f) � � (f) � 1.
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De�nition 1.2.4 The hyper order � (f) and the hyper lower order � (f) of an entire
function f (z) are de�ned as

� (f) = lim sup
r!+1

log[3]M (r; f)

log r
and � (f) = lim inf

r!+1

log[3]M (r; f)

log r
:

When f (z) is meromorphic, then

� (f) = lim sup
r!+1

log[2] T (r; f)

log r
and � (f) = lim inf

r!+1

log[2] T (r; f)

log r

holds.

The following two de�nitions are the natural consequences of the above study:

De�nition 1.2.5 The hyper type b� (f) and the hyper lower type b� (f) of an entire func-
tion f (z) are de�ned as

b� (f) = lim sup
r!+1

log[2]M (r; f)

r�(f)
and b� (f) = lim inf

r!+1

log[2]M (r; f)

r�(f)
,

where 0 < � (f) <1:
If f (z) is meromorphic, then

b� (f) = lim sup
r!+1

log T (r; f)

r�(f)
and b� (f) = lim inf

r!+1

log T (r; f)

r�(f)
,

where 0 < � (f) <1:

It is obvious that 0 � b� (f) � b� (f) � 1.
De�nition 1.2.6 The hyper upper weak type b� (f) and the hyper weak type b� (f) of an
entire function f (z) of �nite positive hyper lower order � (f) are de�ned by

b� (f) = lim sup
r!+1

log[2]M (r; f)

r�(f)
and b� (f) = lim inf

r!+1

log[2]M (r; f)

r�(f)
,

where 0 < � (f) <1:
If f (z) is meromorphic, then

b� (f) = lim sup
r!+1

log T (r; f)

r�(f)
and b� (f) = lim inf

r!+1

log T (r; f)

r�(f)
,

where 0 < � (f) <1:

It is obvious that 0 � b� (f) � b� (f) � 1.
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(p; q; t)L-th Order Oriented Some
Growth Analysis of Composite
Entire and Meromorphic Functions
on the Basis of Their Integer
Translation

Abstract: The main objective of this chapter is to investigate some results related to the
growth rates of the composition of integer translated entire and meromorphic functions
using (p; q; t)L-th order and (p; q; t)L-th lower order.

Keywords: Integer translated entire function, Integer translated meromorphic function,
composition, (p; q; t)L-th order, (p; q; t)L-th lower order.
Mathematics Subject Classi�cation (2020) : 30D30, 30D35.

2.1 Introduction

Let f(z) be a meromorphic function and n 2 N, then the translation of f(z) be
denoted by f(z + n). For each n 2 N, one may obtain a function with some properties.
Let us consider this family by fn(z) where

fn(z) = ff(z + n) : n 2 Ng :

We recall that if � is a regular point of an analytic function f(z) and if f(�) = 0,
then � is called a zero of f(z). The point z = � is called a zero of f(z) of multiplicity
m (m being a positive integer) if in some neighborhood of �, f(z) can be expanded in a

Taylor�s series of the form f(z) =
1X
n=m

an(z � �)n where am

6

= 0.

It is clear that the number of zeros of f(z) may be changed in a �nite region

16                                      On Generalized Growth Rates, 2023, 16-23                                                                
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after translation but it remains unaltered in the open complex plane C, i.e.,

N(r; f(z + n)) = N(r; f) + en; (2.1.1)

where en is a residue term such that en ! 0 as r ! +1.
Also

m(r; f(z + n)) =
1

2�

2�Z
0

log+
��f(rei� + n)�� d�

i:e:;m(r; f(z + n)) = m(r; f) + e
0

n; (2.1.2)

where e
0
n (may be distinct from en) be such that e

0
n ! 0 as r ! +1.

Therefore from (2.1.1) and (2.1.2), one may obtain that

N(r; f(z + n)) +m(r; f(z + n)) = N(r; f) + en +m(r; f) + e
0

n

i:e:; T (r; f(z + n)) = T (r; f) + en + e
0

n:

Now if n varies, then Nevanlinna�s Characteristic function for the family fn(z),
where fn(z) = ff(z + n) : n 2 Ng for the meromorphic function f is

T (r; fn) = nT (r; f) +
X
n

(en + e
0

n): (2.1.3)

Similarly, one can de�ne a family for each m 2 N, gm(z) = fg(z +m) : m 2 Ng
where g(z) is an entire function. Then the composition fn � gm is de�ned.
Let fn�gm = ht, where h is a meromorphic function and t 2 N. So ht can be expressed

as ht = fh(z + t) : t 2 Ng :
Then by (2.1.3)

T (r; ht) = tT (r; h) +
X
t

(et + e
0

t)

where et; e
0
t ! 0 as r ! +1:

i:e:; T (r; fn � gm) = tT (r; f(g)) +
X
t

(et + e
0

t): (2.1.4)

However, in the case of any two meromorphic functions f (z) and g (z), the ratio
T (r;f)
T (r;g)

as r ! +1 is called as the growth of f (z) with respect to g (z) in terms of their
Nevanlinna�s Characteristic functions. Further, the concept of the growth measuring tools
such as order and lower order which are conventional in complex analysis and the growth
of entire or meromorphic functions can be studied in terms of their orders and lower
orders.

Somasundaram and Thamizharasi [1] introduced the notions of L-order and L-
lower order for entire functions where L � L (r) is a positive continuous function increasing

Entire and Meromorphic Functions                                                             On Generalized Growth Rates    17 



slowly, i.e., L (ar) � L (r) as r ! +1 for every positive constant �a�. The more gen-
eralized concepts of L-order and L-lower order of meromorphic functions are (p; q; t)L-th
order and (p; q; t)L-th lower order respectively.

The principal objective of this chapter is to investigate some results related to the
growth rates of the composition of integer translated entire and meromorphic functions
using (p; q; t)L-th order and (p; q; t)L-th lower order of entire and meromorphic functions.

2.2 Lemmas

In this section, we present some lemmas which will be needed in the sequel.

Lemma 2.2.1 [2] Let f (z) be a meromorphic function. If fn (z) = f(z + n) for n 2 N
then

lim
r!+1

T (r; fn)

T (r; f)
= n.

Lemma 2.2.2 Let f (z) be a meromorphic function. If fn (z) = f(z + n) for n 2 N then

�(p;q;t)L (fn) = �
(p;q;t)L (f) and �(p;q;t)L (fn) = �(p;q;t)L (f) .

Proof By Lemma 2.2.1 lim
r!+1

log[p] T (r;fn)

log[p] T (r;f)
exists and is equal to 1.

Now,

�(p;q;t)L (fn) = lim sup
r!+1

log[p] T (r; fn)

log[q] r + exp[t] L (r)

= lim sup
r!+1

(
log[p] T (r; f)

log[q] r + exp[t] L (r)
� log

[p] T (r; fn)

log[p] T (r; f)

)

= lim sup
r!+1

log[p] T (r; f)

log[q] r + exp[t] L (r)
� lim
r!+1

log[p] T (r; fn)

log[p] T (r; f)

= �(p;q;t)L (f) � 1
= �(p;q;t)L (f) :

In a similar manner, �(p;q;t)L (fn) = �(p;q;t)L (f) :
This proves the lemma.

2.3 Main Results

In this section, we present the main results of the chapter.

Theorem 2.3.1 Let f (z) be a meromorphic function and g (z) be a non constant entire
function such that 0 < �(m;q;t)L (f(g)) � �(m;q;t)L (f(g)) < +1 and 0 < �(l;q;t)L (f) �

18    On Generalized Growth Rates       Biswas and Biswas 



(p; q; t)L-th Order Based Some
Further Results of Integer
Translated Composite Entire and
Meromorphic Functions

Abstract: The main purpose of this chapter is to investigate some results related to the
growth rates of the composition of integer translated entire and meromorphic functions
using (p; q; t)L-th order and (p; q; t)L-th lower order under certain di¤erent conditions.

Keywords: Growth, Entire function, meromorphic function, Slowly increasing function,
Composition, (p; q; t)L-th order, (p; q; t)L-th lower order, integer translation.
Mathematics Subject Classi�cation (2020): 30D30, 30D35.

3.1 Introduction

Let C be the set of all �nite complex numbers and f (z) be a meromorphic function
de�ned on C. Somasundaram and Thamizharasi [1] introduced the notions of L-order
and L-lower order for entire functions where L � L (r) is a positive continuous function
increasing slowly, i.e., L (ar) � L (r) as r ! +1 for every positive constant �a�. The
more generalized concept of L-order and L-lower order of meromorphic functions are
(p; q; t)L-th order and (p; q; t)L-th lower order, respectively. In the chapter, we establish
some new results depending on the comparative growth properties of the composition of
integer translated entire and meromorphic functions using (p; q; t)L-th order and (p; q; t)L-
th lower order of entire and meromorphic functions under some what di¤erent conditions.

3.2 Main Results

In this section we present the main results of the chapter.
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Theorem 3.2.1 Let f (z) be a meromorphic function and g (z) be a non constant entire
function such that 0 < �(m;q;t)L (f(g)) � �(m;q;t)L (f(g)) < 1 and 0 < �(l;q;t)L (f) �
�(l;q;t)L (f) <1. Also let fu and gv be integer translations of f (z) and g (z), respectively,
for u; v 2 N. If exp[t] L (r) = o

n
log[l] T (r; fu)

o
as r ! +1 then

�(m;q;t)L (f(g))

�(l;q;t)L (f)
� lim inf

r!+1

log[m] T (r; fu(gv))

log[l] T (r; fu) + exp[t] L (r)
� �(m;q;t)L (f(g))

�(l;q;t)L (f)

� lim sup
r!+1

log[m] T (r; fu(gv))

log[l] T (r; fu) + exp[t] L (r)
� �(m;q;t)L (f(g))

�(l;q;t)L (f)
.

Proof From De�nition 1.2.22 and in view of Lemma 2.2.2, we have for all su¢ ciently
large positive numbers of r that

log[m] T (r; fu(gv)) �
�
�(m;q;t)L(fu(gv))� "

� �
log[q] r + exp[t] L (r)

�
i:e:; log[m] T (r; fu(gv)) �

�
�(m;q;t)L (f(g))� "

� �
log[q] r + exp[t] L (r)

�
; (3.2.1)

log[l] T (r; fu) �
�
�(l;q;t)L(fu)� "

� �
log[q] r + exp[t] L (r)

�
i:e:; log[l] T (r; fu) �

�
�(l;q;t)L (f)� "

� �
log[q] r + exp[t] L (r)

�
; (3.2.2)

log[m] T (r; fu(gv)) �
�
�(m;q;t)L(fu(gv)) + "

� �
log[q] r + exp[t] L (r)

�
i:e:; log[m] T (r; fu(gv)) �

�
�(m;q;t)L (f(g)) + "

� �
log[q] r + exp[t] L (r)

�
(3.2.3)

and

log[l] T (r; fu) �
�
�(l;q;t)L(fu) + "

� �
log[q] r + exp[t] L (r)

�
i:e:; log[l] T (r; fu) �

�
�(l;q;t)L (f) + "

� �
log[q] r + exp[t] L (r)

�
: (3.2.4)

Also for a sequence of positive numbers of r tending to in�nity

log[m] T (r; fu(gv)) �
�
�(m;q;t)L(fu(gv)) + "

� �
log[q] r + exp[t] L (r)

�
i:e:; log[m] T (r; fu(gv)) �

�
�(m;q;t)L (f(g)) + "

� �
log[q] r + exp[t] L (r)

�
; (3.2.5)

log[l] T (r; fu) �
�
�(l;q;t)L(fu) + "

� �
log[q] r + exp[t] L (r)

�
i:e:; log[l] T (r; fu) �

�
�(l;q;t)L (f) + "

� �
log[q] r + exp[t] L (r)

�
; (3.2.6)
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log[m] T (r; fu(gv)) �
�
�(m;q;t)L(fu(gv))� "

� �
log[q] r + exp[t] L (r)

�
i:e:; log[m] T (r; fu(gv)) �

�
�(m;q;t)L (f(g))� "

� �
log[q] r + exp[t] L (r)

�
(3.2.7)

and

log[l] T (r; fu) �
�
�(l;q;t)L(fu)� "

� �
log[q] r + exp[t] L (r)

�
i:e:; log[l] T (r; fu) �

�
�(l;q;t)L (f)� "

� �
log[q] r + exp[t] L (r)

�
: (3.2.8)

Now from (3:2:4) we get for all su¢ ciently large positive numbers of r that

log[l] T (r; fu)

(�(l;q;t)L (f) + ")
� log[q] r + exp[t] L (r) : (3.2.9)

Now from (3:2:1) and (3:2:9) ; it follows for all su¢ ciently large positive numbers of r
that

log[m] T (r; fu(gv)) �
�
�(m;q;t)L (f(g))� "

�
(�(l;q;t)L (f) + ")

log[l] T (r; fu)

i:e:;
log[m] T (r; fu(gv))

log[l] T (r; fu) + exp[t] L (r)
�
�
�(m;q;t)L (f(g))� "

�
(�(l;q;t)L (f) + ")

� log[l] T (r; fu)

log[l] T (r; fu) + exp[t] L (r)

i:e:;
log[m] T (r; fu(gv))

log[l] T (r; fu) + exp[t] L (r)
�
(�(m;q;t)L(f(g))�")
(�(l;q;t)L(f)+")

1 + exp[t] L(r)

log[l] T (r;fu)

:

Since exp[t] L (r) = o
n
log[l] T (r; fu)

o
as r ! +1; it follows from above that

lim inf
r!+1

log[m] T (r; fu(gv))

log[l] T (r; fu) + exp[t] L (r)
�
�
�(m;q;t)L (f(g))� "

�
(�(l;q;t)L (f) + ")

: (3.2.10)

As " (> 0) is arbitrary, we get from (3:2:10) that

lim inf
r!+1

log[m] T (r; fu(gv))

log[l] T (r; fu) + exp[t] L (r)
� �(m;q;t)L (f(g))

�(l;q;t)L (f)
: (3.2.11)

Again from (3:2:2) ; we obtain for all su¢ ciently large positive numbers of r that

log[l] T (r; fu)

(�(l;q;t)L (f)� ") � log
[q] r + exp[t] L (r) : (3.2.12)

From (3:2:5) and (3:2:12) ; it follows for a sequence of positive numbers of r tending
to in�nity that

log[m] T (r; fu(gv)) �
�
�(m;q;t)L (f(g)) + "

�
(�(l;q;t)L (f)� ") log[l] T (r; fu)
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(p; q; t)L-th Type and (p; q; t)L-th
Weak Type Based Some Growth
Properties of Composite Entire and
Meromorphic Functions on the Basis
of Their Integer Translation

Abstract: The main objective of this chapter is to investigate some results related to the
growth rates of the composition of integer translated entire and meromorphic functions
using (p; q; t)L-th type and (p; q; t)L-th weak type.

Keywords: Entire function, meromorphic function, (p; q; t)L-th type, (p; q; t)L-th weak
type, integer translation.
Mathematics Subject Classi�cation (2020): 30D30, 30D35.

4.1 Introduction

Let C be the set of all �nite complex numbers and f (z) be a meromorphic function
de�ned on C. Somasundaram and Thamizharasi [1] introduced the notions of L-order
and L-lower order for entire functions where L � L (r) is a positive continuous function
increasing slowly, i.e., L (ar) � L (r) as r ! +1 for every positive constant �a�. The
more generalized concept of L-order and L-lower order of meromorphic functions are
(p; q; t)L-th order and (p; q; t)L-th lower order, respectively. In order to compare the
growth of entire or meromorphic functions having the same (p; q; t)L-th order or (p; q; t)L-
th lower order, one may give the de�nitions of (p; q; t)L-th type and (p; q; t)L-th weak
type of entire or meromorphic functions. In this chapter, we establish some new results
depending on the comparative growth properties of composition of the integer translated
entire and meromorphic functions using (p; q; t)L-th type and (p; q; t)L-th weak type of
entire and meromorphic functions.
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4.2 Lemmas

In this section, we present some lemmas which will be needed in the sequel.

Lemma 4.2.1 [2] Let f (z) be a meromorphic function. If fn (z) = f(z + n) for n 2 N
then

lim
r!+1

T (r; fn)

T (r; f)
= n.

Lemma 4.2.2 Let f (z) be a meromorphic function. If fn (z) = f(z + n) for n 2 N then

(i) �(p;q;t)L (fn) =

8<:
n � �(p;q;t)L (f) for p = 1

�(p;q;t)L (f) for p > 1

and

(ii) �(p;q;t)L (fn) =

8<:
n � �(p;q;t)L (f) for p = 1

�(p;q;t)L (f) for p > 1:

Proof By Lemma 4.2.1 and Lemma 2.2.2, we get that

�(1;q;t)L (fn) = lim sup
r!+1

T (r; fn)h
log[q�1] r � exp[t+1] L (r)

i�(1;q;t)L(fn)
= lim

r!+1

T (r; fn)

T (r; f)
� lim sup
r!+1

T (r; f)h
log[q�1] r � exp[t+1] L (r)

i�(1;q;t)L(f)
= n � �(1;q;t)L (f) :

Also for p > 1; in view of Lemma 4.2.1, lim
r!+1

log[p�1] T (r;fn)

log[p�1] T (r;f)
exists and is equal to 1. There-

fore in view of Lemma 2.2.2 we obtain that

�(p;q;t)L (fn) = lim sup
r!+1

log[p�1] T (r; fn)h
log[q�1] r � exp[t+1] L (r)

i�(p;q;t)L(fn)
= lim

r!+1

log[p�1] T (r; fn)

log[p�1] T (r; f)
� lim sup
r!+1

log[p�1] T (r; f)h
log[q�1] r � exp[t+1] L (r)

i�(p;q;t)L(f)
= �(p;q;t)L (f) :

In a similar manner,

�(p;q;t)L (fn) = n � �(p;q;t)L (f) for p = 1

and �(p;q;t)L (fn) = �(p;q;t)L (f) otherwise.

Thus the lemma follows.
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Lemma 4.2.3 Let f (z) be a meromorphic function. If fn (z) = f(z + n) for n 2 N then

(i) � (p;q;t)L (fn) =

8<:
n � � (p;q;t)L (f) for p = 1

� (p;q;t)L (f) for p > 1

and

(ii) � (p;q;t)L (fn) =

8<:
n � � (p;q;t)L (f) for p = 1

� (p;q;t)L (f) for p > 1:

The proof of Lemma 4.2.3 is omitted as it can easily be carried out in the line of
Lemma 4.2.2.

4.3 Main Results

In this section, we present the main results of the chapter.

Theorem 4.3.1 Let f (z) be a meromorphic function and g (z) be a non constant entire
function such that 0 < �(m;q;t)L (f(g)) � �(m;q;t)L (f(g)) <1, 0 < �(l;q;t)L (f) � �(l;q;t)L (f)
<1, �(m;q;t)L (f(g)) = �(l;q;t)L (f). Also let fu and gv be integer translations of f (z) and
g (z), respectively, for u; v 2 N. If fu(gv) = ht, where h is a meromorphic function and
t 2 N, then

t � �(1;q;t)L (f(g))
u � �(1;q;t)L (f) � lim inf

r!+1

T (r; fu(gv))

T (r; fu)
� t � �(1;q;t)L (f(g))

u � �(1;q;t)L (f)
�

lim sup
r!+1

T (r; fu(gv))

T (r; fu)
� t � �(1;q;t)L (f(g))

u � �(1;q;t)L (f)

and

�(m;q;t)L (f(g))

�(l;q;t)L (f)
� lim inf

r!+1

log[m�1] T (r; fu(gv))

log[l�1] T (r; fu)
� �(m;q;t)L (f(g))

�(l;q;t)L (f)
�

lim sup
r!+1

log[m�1] T (r; fu(gv))

log[l�1] T (r; fu)
� �(m;q;t)L (f(g))

�(l;q;t)L (f)

for m > 1 and l > 1.

Proof By the procedure of establishing (2.1.4) we can express

T (r; fu(gv)) = tT (r; f(g)) +
X
t

(et + e
0

t);

where et; e
0
t ! 0 as r ! +1. Therefore

lim
r!+1

T (r; fu(gv))

T (r; f(g))
= t.
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(p; q; t)L-th Order and (p; q; t)L-th
Type Based Some Growth Rates of
Integer Translated Composite Entire
and Meromorphic Functions

Abstract: In this chapter, we establish some new results depending on the comparative
growth properties of the composition of integer translated entire and meromorphic func-
tions using (p; q; t)L-th order and (p; q; t)L-th type.

Keywords: Growth rates, Integer translated entire function, Integer translated mero-
morphic function, (p; q; t)L-th order, (p; q; t)L-th type.
Mathematics Subject Classi�cation (2020) : 30D30, 30D35.

5.1 Introduction

We denote by C the set of all �nite complex numbers. Let f (z) be an entire function
de�ned on C. The maximum modulus function corresponding to entire f (z) is de�ned
as M (r; f) = max fjf (z)j : jzj = rg. When f (z) is meromorphic, M (r; f) can not be
de�ned as f (z) is not analytic. In this case, one may de�ne another function T (r; f),
known as Nevanlinna�s Characteristic function of f (z) ; playing the same role as maximum
modulus function in the following manner:

T (r; f) = N (r; f) +m (r; f) ;

where the function N (r; f) and m (r; f) are, respectively, the enumerative function and
the proximity function corresponding to f (z). For further details, one may see [1]. If
f (z) is an entire function, then Nevanlinna�s Characteristic T (r; f) of f (z) reduces to
m (r; f).
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Lakshminarasimhan [2] introduced the idea of the functions of the L-bounded
index. Later Lahiri and Bhattacharjee [3] worked on the entire functions of the L-bounded
index and of non uniform L-bounded index. In this chapter, we establish some new results
depending on the comparative growth properties of the composition of integer translated
entire and meromorphic functions using (p; q; t)L-th order and (p; q; t)L-th type. Indeed
some works in this direction have also been explored in [4-6].

5.2 Lemma

In this section, we present some lemmas which will be needed in the sequel.

Lemma 5.2.1 [7] If f (z) is meromorphic and g (z) is entire, then for all su¢ ciently
large values of r,

T (r; f(g)) � f1 + o (1)g T (r; g)

logM (r; g)
T (M (r; g) ; f) :

5.3 Main Results

In this section, we present the main results of the chapter.

Theorem 5.3.1 Let f (z) be a meromorphic function and g (z) be a non constant entire
function such that �(m;n;t)L(g) < �(p;q;t)L(f) � �(p;q;t)L(f) < +1 where q � m. Also let fu
and gv be integer translations of f (z) and g (z), respectively, for u; v 2 N. Then

lim
r!+1

log[p] T (r; fu(gv))

log[p�m] T (r; fu)
= 0;

when for some � < �(p;q;t)L(f);
exp[t] L(M (r; g)) = ofexp[m�1][(log[q�1] r) exp[t+1] L(r)]�g as r ! +1.

Proof Let fu � gv = ht, where is a meromorphic function and t 2 N. So ht can be
expressed as

ht = f(z + t) : t 2 Ng :

Then by (2.1.3) we obtain

T (r; ht) = tT (r; h) +
X
t

(et + e
0

t);

where et, e
0
t ! 0 as r ! +1,

i:e:; T (r; fu � gv) = tT (r; f � g) +
X
t

(et + e
0

t): (5.3.1)
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Now in view of Lemma 5.2.1, (5.3.1) and the inequality T (r; g) � logM(r; g) {cf. [5] } we
get for all su¢ ciently large values of r that

log[p] T (r; fu(gv)) �
(�(p;q;t)L(f) + ")[log[q]M (r; g) + exp[t] L(M (r; g))] +O(1) (5.3.2)

i:e:; log[p] T (r; fu(gv)) � (�(p;q;t)L(f) + ")[log[m]M (r; g) + exp[t] L(M (r; g))] +O(1)

i:e:; log[p] T (r; fu(gv)) � (�(p;q;t)L(f) + ")�
[exp[m�1][(log[n�1] r) exp[t+1] L(r)](�

(m;n;t)L(g)+") + exp[t] L(M (r; g))] +O(1): (5.3.3)

Also in view of Lemma 2.2.2, we obtain for all su¢ ciently large values of r that

log[p�m] T (r; fu) � exp[m�1][(log[q�1] r) exp[t+1] L(r)](�
(p;q;t)L(fu)�")

i:e:; log[p�m] T (r; fu) � exp[m�1][(log[q�1] r) exp[t+1] L(r)](�
(p;q;t)L(f)�"): (5.3.4)

Now from (5:3:3) and (5:3:4) we get for all su¢ ciently large values of r that

log[p] T (r; fu(gv))

log[p�m] T (r; fu)
�

(�(p;q;t)L(f) + ")[exp[m�1][(log[n�1] r) exp[t+1] L(r)](�
(m;n;t)L(g)+")

exp[m�1][(log[q�1] r) exp[t+1] L(r)](�(p;q;t)L(f)�")

+
exp[t] L(M (r; g))] +O(1)

exp[m�1][(log[q�1] r) exp[t+1] L(r)](�(p;q;t)L(f)�")
: (5.3.5)

Since �(m;n;t)L(g) < �(p;q;t)L(f), we can choose "(> 0) in such a way that

�(m;n;t)L(g) + " < �(p;q;t)L(f)� ": (5.3.6)

Now let for some � < �(p;q;t)L(f);
exp[t] L(M (r; g)) = ofexp[m�1][(log[q�1] r) exp[t+1] L(r)]�g as r ! +1.
As � < �(p;q;t)L(f) we can choose "(> 0) in such a way that

� < �(p;q;t)L(f)� ": (5.3.7)

Since exp[t] L(M (r; g)) = ofexp[m�1][(log[q�1] r) exp[t+1] L(r)]�g as r ! +1 we get on
using (5:3:7) that

exp[t] L(M (r; g))

exp[m�1][(log[q�1] r) exp[t+1] L(r)]�
! 0 as r ! +1

i:e:;
exp[t] L(M (r; g))

exp[m�1][(log[q�1] r) exp[t+1] L(r)](�(p;q;t)L(f)�")
! 0 as r ! +1: (5.3.8)

Now in view of (5:3:5), (5:3:6) and (5:3:8) we obtain that

lim
r!+1

log[p] T (r; fu(gv))

log[p�m] T (r; fu)
= 0:

Thus the theorem follows.

Integer Translated Composite                                                                         On Generalized Growth Rates    53 



Some Growth Properties of Integer
Translated Composite Entire and
Meromorphic Functions on the Basis
of (p; q; t)L-th Order and (p; q; t)L-th
Type

fancyhead
Abstract: In this chapter, we establish some new results depending on the

comparative growth properties of the composition of integer translated entire and mero-
morphic functions using (p; q; t)L-th order and (p; q; t)L-th type.

Keywords: Integer translated entire function, Integer translated meromorphic function,
(p; q; t)L-th order, (p; q; t)L-th type.
Mathematics Subject Classi�cation (2020) : 30D30, 30D35.

6.1 Introduction

Lakshminarasimhan [1] introduced the idea of the functions of the L-bounded index.
Later Lahiri and Bhattacharjee [2] worked on the entire functions of the L-bounded index
and of the non uniform L-bounded index. In this Chapter we establish some new results
depending on the comparative growth properties of composition of integer translated
entire or meromorphic functions using (p; q; t)L-th order, (p; q; t)L-th type and (p; q; t)L-
th weak type.

6.2 Lemmas

In this section, we present some lemmas which will be needed in the sequel.
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Lemma 6.2.1 [3] If f (z) be meromorphic and g (z) be entire then for all su¢ ciently
large values of r,

T (r; f(g)) � f1 + o (1)g T (r; g)

logM (r; g)
T (M (r; g) ; f) :

6.3 Main Results

In this section, we present the main results of the chapter.

Theorem 6.3.1 Let f (z) be a meromorphic function and g (z) be a non constant entire
function such that �(p;q;t)L(f) = �(m;n;t)L(g), 0 < �(m;n;t)L(g) < +1 and �(p;q;t)L(f) > 0
where m � 1 = n = q and p > 2. Also let fu and gv be integer translations of f (z) and
g (z), respectively, for u; v 2 N. Then

lim sup
r!+1

log[p] T (r; fu(gv))

log[p�1] T (r; fu) + exp[t] L(M (r; g))

�

8><>:
�(p;q;t)L(f)�(m;n;t)L(g)

�(p;q;t)L(f)
if exp[t] L(M (r; g)) = oflog[p�1] T (r; fu)g

�(p;q;t)L(f) if log[p�1] T (r; fu) = ofexp[t] L(M (r; g))g.
:

Proof Let fu � gv = ht, where is a meromorphic function and t 2 N. So ht can be
expressed as

ht = f(z + t) : t 2 Ng :
Then by (2.1.3) we obtain

T (r; ht) = tT (r; h) +
X
t

(et + e
0

t);

where et, e
0
t ! 0 as r ! +1,

i:e:; T (r; fu � gv) = tT (r; f � g) +
X
t

(et + e
0

t): (6.3.1)

Now in view of Lemma 6.2.1 and the inequality T (r; g) � logM(r; g) {cf. [4] } we get
from (6:3:1) for all su¢ ciently large values of r

i:e:; log[p] T (r; fu(gv)) 6 log[p] Tf (M (r; g)) +O(1) (6.3.2)

i:e:; log[p] T (r; fu(gv)) �
(�(p;q;t)L(f) + ")[log[q]M (r; g) + exp[t] L(M (r; g))] +O(1)

i:e:; log[p] T (r; fu(gv)) � (�(p;q;t)L(f) + ")[log[m�1]M (r; g) + exp[t] L(M (r; g))] +O(1)

i:e:; log[p] T (r; fu(gv)) � (�(p;q;t)L(f) + ") �
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[(�(m;n;t)L(g) + ")[log[n�1] r � exp[t+1] L(r)]�(m;n;t)L(g) + exp[t] L(M (r; g))] +O(1).

Since �(p;q;t)L(f) = �(m;n;t)L(g); we obtain from above for all su¢ ciently large values of r

i:e:; log[p] T (r; fu(gv)) � (�(p;q;t)L(f) + ") �

[(�(m;n;t)L(g) + ")[log[n�1] r � exp[t+1] L(r)]�(p;q;t)L(f) + exp[t] L(M (r; g))] +O(1). (6.3.3)

Again in view of Lemma 2.2.2, Lemma 4.2.2, we get for all su¢ ciently large values of r,

log[p�1] T (r; fu) � (�(p;q;t)L(fu)� ")[log[q�1] r � exp[t+1] L(r)]�
(p;q;t)L(fu)

i:e:; log[p�1] T (r; fu) � (�(p;q;t)L(f)� ")[log[q�1] r � exp[t+1] L(r)]�
(p;q;t)L(f)

i:e:; [log[q�1] r � exp[t+1] L(r)]�(p;q;t)L(f) � log[p�1] T (r; fu)

(�(p;q;t)L(f)� ")

i:e:; [log[n�1] r � exp[t+1] L(r)]�(p;q;t)L(f) � log[p�1] T (r; fu)

(�(p;q;t)L(f)� ")
. (6.3.4)

Now from (6:3:3) and (6:3:4) it follows for all su¢ ciently large values of r

log[p] T (r; fu(gv)) � (�(p;q;t)L(f) + ") � exp[t] L(M (r; g)) +O(1) +

(�(p;q;t)L(f) + ")(�(m;n;t)L(g) + ") � log
[p�1] T (r; fu)

(�(p;q;t)L(f)� ")

ie:;
log[p] T (r; fu(gv))

log[p�1] T (r; fu) + exp[t] L(M (r; g))
� O(1)

log[p�1] T (r; fu) + exp[t] L(M (r; g))

+
(�(p;q;t)L(f) + ")

1 + log[p�1] T (r;fu)
exp[t] L(M(r;g))

+

(�(p;q;t)L(f)+")(�(m;n;t)L(g)+")

(�(p;q;t)L(f)�")

1 + exp[t] L(M(r;g))

log[p�1] T (r;fu)

. (6.3.5)

If exp[t] L(M (r; g)) = oflog[p�1] T (r; fu)g then from (6:3:5) we get

lim sup
r!+1

log[p] T (r; fu(gv))

log[p�1] T (r; fu) + exp[t] L(M (r; g))
� (�(p;q;t)L(f) + ")(�(m;n;t)L(g) + ")

(�(p;q;t)L(f)� ")
.

Since "(> 0) is arbitrary, it follows from above

lim sup
r!+1

log[p] T (r; fu(gv))

log[p�1] T (r; fu) + exp[t] L(M (r; g))
� �(p;q;t)L(f)�(m;n;t)L(g)

�(p;q;t)L(f)

Again if log[p�1] T (r; fu) = ofexp[t] L(M (r; g))g then from (6:3:5) it follows

lim sup
r!+1

log[p] T (r; fu(gv))

log[p�1] T (r; fu) + exp[t] L(M (r; g))
� (�(p;q;t)L(f) + ").

As "(> 0) is arbitrary, we obtain from above

lim sup
r!+1

log[p] T (r; fu(gv))

log[p�1] T (r; fu) + exp[t] L(M (r; g))
� �(p;q;t)L(f).

Thus the theorem is established.
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