

Numerical Machine Learning

Authored by

 Zhiyuan Wang
DigiPen Institute of Technology Singapore

Singapore

National University of Singapore

Singapore

Sayed Ameenuddin Irfan
DigiPen Institute of Technology Singapore

Singapore

Christopher Teoh
DigiPen Institute of Technology Singapore

Singapore

&

Priyanka Hriday Bhoyar
DigiPen Institute of Technology Singapore

Singapore

Numerical Machine Learning
 Authors: Zhiyuan Wang, Sayed Ameenuddin Irfan, Christopher Teoh & Priyanka Hriday Bhoyar

ISBN (Online): 978-981-5136-98-2

ISBN (Paperback): 978-981-5165-00-5

© 2023, Bentham Books imprint.

Published by Bentham Science Publishers Pte. Ltd. Singapore. All Rights Reserved.

ISBN (Print): 978-981-5136-99-9

First published in 2023.

This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement
carefully before using the ebook/echapter/ejournal (“Work”). Your use of the Work constitutes your
agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms
and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the
Work subject to and in accordance with the following terms and conditions. This License Agreement is for
non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please
contact: permission@benthamscience.net.

 Usage Rules:

1. All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the
Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify,
remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way
exploit the Work or make the Work available for others to do any of the same, in any form or by any
means, in whole or in part, in each case without the prior written permission of Bentham Science
Publishers, unless stated otherwise in this License Agreement.

2. You may download a copy of the Work on one occasion to one personal computer (including tablet,
laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it.

3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject
you to liability for substantial money damages. You will be liable for any damage resulting from your
misuse of the Work or any violation of this License Agreement, including any infringement by you of
copyrights or proprietary rights.

Disclaimer:

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that
it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is
provided "as is" without warranty of any kind, either express or implied or statutory, including, without
limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the
results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science
Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of
products liability, negligence or otherwise, or from any use or operation of any methods, products instruction,
advertisements or ideas contained in the Work.

Limitation of Liability:

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages,
including, without limitation, special, incidental and/or consequential damages and/or damages for lost data
and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire
liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

 General:

1. Any dispute or claim arising out of or in connection with this License Agreement or the Work (including
non-contractual disputes or claims) will be governed by and construed in accordance with the laws of
Singapore. Each party agrees that the courts of the state of Singapore shall have exclusive jurisdiction to
settle any dispute or claim arising out of or in connection with this License Agreement or the Work
(including non-contractual disputes or claims).

2. Your rights under this License Agreement will automatically terminate without notice and without the

End User License Agreement (for non-institutional, personal use)

BENTHAM SCIENCE PUBLISHERS LTD.

mailto:permission@benthamscience.net

need for a court order if at any point you breach any terms of this License Agreement. In no event will any
delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement
constitute a waiver of any of its rights.

3. You acknowledge that you have read this License Agreement, and agree to be bound by its terms and
conditions. To the extent that any other terms and conditions presented on any website of Bentham Science
Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License
Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail.

Bentham Science Publishers Pte. Ltd.

80 Robinson Road #02-00

Singapore 068898

Singapore

Email: subscriptions@benthamscience.net

mailto:subscriptions@benthamscience.net

CONTENTS

PREFACE ... i

CHAPTER 1 INTRODUCTION TO MACHINE LEARNING .. 1

1.1. BRIEF HISTORY OF MACHINE LEARNING ... 1
1.2. MACHINE LEARNING AS A DE FACTO FEATURE .. 2
1.3. SUPERVISED AND UNSUPERVISED ... 3
1.4. REGRESSION AND CLASSIFICATION ... 3
1.5. UNDERFITTING AND OVERFITTING .. 4
1.6. THE IMPORTANCE OF UNDERSTANDING MACHINE LEARNING THROUGH
NUMERICAL EXAMPLE .. 4
CONCLUSION ... 5
REFERENCES ... 5

CHAPTER 2 LINEAR REGRESSION ... 6

2.1. INTRODUCTION TO LINEAR REGRESSION .. 6
2.2. MATHEMATICS OF LINEAR REGRESSION ... 7
2.3. NUMERICAL EXAMPLE OF LINEAR REGRESSION .. 10
 2.3.1. Start the First Iteration of Learning .. 12
 2.3.2. End the First Iteration of Learning .. 14
 2.3.3. Start the Second Iteration of Learning .. 14
 2.3.4. End the Second Iteration of Learning ... 16
2.4. SAMPLE CODES AND COMPARISON .. 19
CONCLUSION ... 26
REFERENCES ... 26

CHAPTER 3 REGULARIZATION .. 28

3.1. INTRODUCTION TO L1 AND L2 REGULARIZATION ... 28
 3.2. MATHEMATICS OF L1 REGULARIZATION FOR LINEAR REGRESSION 29

3.3. NUMERICAL EXAMPLE OF L1 REGULARIZATION FOR LINEAR REGRESSION .. 33
 3.3.1. Start the First Iteration of Learning .. 35
 3.3.2. End the First Iteration of Learning ... 37
 3.3.3. Start the Second Iteration of Learning ... 38
 3.3.4. End the Second Iteration of Learning .. 39
3.4. SAMPLE CODES AND COMPARISON OF L1 REGULARIZATION FOR LINEAR
REGRESSION ... 42
3.5. MATHEMATICS OF L2 REGULARIZATION FOR LINEAR REGRESSION 50
3.6 NUMERICAL EXAMPLE OF L2 REGULARIZATION FOR LINEAR REGRESSION ... 53
 3.6.1. Start the First Iteration of Learning .. 54
 3.6.2. End the First Iteration of Learning ... 56
 3.6.3. Start the Second Iteration of Learning ... 56
 3.6.4. End the Second Iteration of Learning .. 58
3.7. SAMPLE CODES AND COMPARISON OF L2 REGULARIZATION FOR LINEAR
REGRESSION ... 61
CONCLUSION ... 69
REFERENCES ... 69

CHAPTER 4 LOGISTIC REGRESSION .. 71

4.1. INTRODUCTION TO LOGISTIC REGRESSION .. 71
 4.2. MATHEMATICS OF LOGISTIC REGRESSION .. 72
 4.3. NUMERICAL EXAMPLE OF LOGISTIC REGRESSION ... 77

4.3.1. Start the First Iteration of Learning ... 78
4.3.2. End the First Iteration of Learning .. 80
4.3.3. Start the Second Iteration of Learning ... 81
4.3.4. End the Second Iteration of Learning .. 83

 4.4. SAMPLE CODES AND COMPARISON ... 87
 CONCLUSION .. 96
 REFERENCES ... 96

CHAPTER 5 DECISION TREE .. 97

5.1. INTRODUCTION TO DECISION TREE ... 97
5.2. ALGORITHM OF DECISION TREE .. 99
5.3. NUMERICAL EXAMPLE OF DECISION TREE.. 100
5.4. SAMPLE CODES AND COMPARISON ... 106
CONCLUSION ... 115
REFERENCES ... 115

CHAPTER 6 GRADIENT BOOSTING .. 116

6.1. INTRODUCTION TO GRADIENT BOOSTING ... 116
 6.2. MATHEMATICS OF GRADIENT BOOSTING FOR REGRESSION 117
 6.3. NUMERICAL EXAMPLE AND CODE COMPARISON OF GRADIENT BOOSTING
 6.4. MATHEMATICS OF GRADIENT BOOSTING FOR CLASSIFICATION 134
 6.5. NUMERICAL EXAMPLE AND CODE COMPARISON OF GRADIENT BOOSTING
 FOR CLASSIFICATION ... 138

CONCLUSION ... 159
REFERENCES ... 159

 CHAPTER 7 SUPPORT VECTOR MACHINE .. 160

7.1. INTRODUCTION TO SUPPORT VECTOR MACHINE .. 160
 7.2. MATHEMATICS OF SUPPORT VECTOR MACHINE: LINEARLY SEPARABLE
 CASE .. 161
 7.3. NUMERICAL EXAMPLE AND CODE COMPARISON OF SUPPORT VECTOR
 MACHINE: LINEARLY SEPARABLE CASE .. 167
 7.4. MATHEMATICS OF SUPPORT VECTOR MACHINE: LINEARLY NON-SEPARABLE
 CASE... 174
 7.5. NUMERICAL EXAMPLE AND CODE COMPARISON OF SUPPORT VECTOR
 MACHINE: LINEARLY NON-SEPARABLE CASE USING POLYNOMIAL KERNEL 178

7.6. NUMERICAL EXAMPLE AND CODE COMPARISON OF SUPPORT VECTOR
MACHINE: LINEARLY NON-SEPARABLE CASE USING RADIAL BASIS FUNCTION

 KERNEL ... 185
CONCLUSION ... 192
REFERENCES ... 193

CHAPTER 8 K-MEANS CLUSTERING ... 194

8.1. INTRODUCTION TO CLUSTERING AND DISTANCE METRICS 194
 8.1.1. Euclidean Distance ... 195
 8.1.2. Manhattan Distance .. 195
 8.1.3. Cosine Similarity .. 195
 8.1.4. Chebyshev Distance ... 196
 8.2. ALGORITHM OF K-MEANS CLUSTERING.. 196
 8.3. NUMERICAL EXAMPLE OF K-MEANS CLUSTERING ... 197
 8.4. SAMPLE CODES AND COMPARISON ... 208
 CONCLUSION ... 211
 REFERENCES .. 211

 SUBJECT INDEX .. 212

 i

PREFACE

In recent years, machine learning has become increasingly popular and pervasive,

with applications ranging from self-driving cars and facial recognition to

personalized website recommendations and stock market forecasting. The

increased availability of data and advancements in computer power have made it

possible to apply machine learning algorithms to a vast array of problems with

impressive outcomes. Machine learning is currently utilized in a variety of areas,

including banking, healthcare, marketing, and manufacturing, and it is anticipated

that it will continue to play a significant role in the development of new

technologies in the future. Consequently, machine learning has emerged as an

essential subject of study for people interested in data science, artificial

intelligence, and related fields. As machine learning continues to evolve and

expand its reach, researchers and practitioners are constantly developing new

techniques and algorithms to address specific challenges or improve upon existing

methods. In this ever-changing landscape, it is crucial for those working in the

field to stay up-to-date with the latest advancements and trends. This includes not

only mastering the fundamental concepts and algorithms, but also understanding

how to adapt and apply them in novel ways to solve real-world problems. By

embracing the interdisciplinary nature of machine learning, and collaborating with

experts from diverse fields, we can accelerate the development of innovative

solutions that have the potential to transform industries, enhance the quality of

life, and create a more sustainable future for all.

From our experiences of teaching machine learning using various textbooks, we

have noticed that there tends to be a strong emphasis on abstract mathematics

when discussing the theories of machine learning algorithms. On the other hand,

in the application of machine learning, it usually straightaway goes to import off-

the-shelf libraries such as scikit-learn, TensorFlow, Keras, and PyTorch. The

disconnect between abstract mathematical theories and practical application

creates a gap in understanding. This book bridges the gap using numerical

examples with small datasets and simple Python codes to provide a complete

walkthrough of the underlying mathematical steps of machine learning

algorithms. By working through concrete examples step by step, readers/students

can develop a well-rounded understanding of these algorithms, gain a more in-

depth knowledge of how mathematics relates to the implementation and

performance of the algorithms, and be better equipped to apply them to practical

problems.

ii

Beginning with an introduction to machine learning in Chapter 1, the remaining

chapters of the book cover seven commonly used machine learning algorithms

and techniques, including both supervised and unsupervised learning, as well as

both linear and nonlinear models. The book requires some prerequisite knowledge

of basic probability and statistics, linear algebra, calculus, and Python

programming. The book is intended for university students studying machine

learning and is used as our primary teaching material for the “Introduction to

Machine Learning” module at DigiPen Institute of Technology Singapore.

In conclusion, we would like to acknowledge Mr. Tan Chek Ming (Managing

Director), Prof. Prasanna Ghali (Provost), Ms. Caroline Tan (Deputy Director),

Ms. Angela Tay (Senior Manager), and all at DigiPen Institute of Technology

Singapore, for their consistent support and help. We also wish to thank a number

of our students (including Nelson Ng, Rhonda McGladdery, Farhan Fadzil, Lim

Li Jia, Musa Ahmad Dahlan, Jeremy Yap, and Seah Jue Chen) for their diligence

in spotting several typographical errors during their course of studies. Also, it has

been a delight working with Bentham's professional editorial and production staff.

We particularly thank Noor Ul Ain Khan, Humaira Hashmi, and Obaid Sadiq for

their consistent, timely, and kind support throughout the development of this

book. Furthermore, we extend our heartfelt appreciation to our families (including

Xiaoyue Cui, Muyuan Wang, Safura Tazeen, Khasim BI, Shirleen Chow, Adler

Teoh, Hriday Bhoyar, Swati Kolkhede, and all) for their unwavering

encouragement throughout the creation of this book. We dedicate this book to

them. The first author, Zhiyuan Wang, would also like to convey special thanks

and appreciation to his Ph.D. advisors, Prof. Zhe Wu, Prof. Xiaonan Wang, and

Prof. Gade Pandu Rangaiah from the National University of Singapore. Although

they were not involved in this book, Zhiyuan deeply cherishes their sincere and

invaluable guidance in his Ph.D. journey, which has helped him become a better

researcher and educator.

Despite our best efforts to ensure the accuracy of the content within this book,

errors may inadvertently persist. If you come across any inaccuracies or

omissions, we kindly request that you bring them to our attention by emailing us

at wangzhiyuan@u.nus.edu. We are committed to rectifying such oversights in

future editions and will post corrections on our shared folder in Google Drive:
 https://drive.google.com/drive/folders/1FqJvo4ZPazNbEH_GlHFoodqvegnQmHc

n?usp=share_link

https://drive.google.com/drive/folders/1FqJvo4ZPazNbEH_GlHFoodqvegnQmHcn?usp=share_link
https://drive.google.com/drive/folders/1FqJvo4ZPazNbEH_GlHFoodqvegnQmHcn?usp=share_link

iii

Zhiyuan Wang

DigiPen Institute of Technology Singapore

Singapore

National University of Singapore

Singapore

Sayed Ameenuddin Irfan

DigiPen Institute of Technology Singapore

Singapore

 Christopher Teoh

DigiPen Institute of Technology Singapore

Singapore

&

Priyanka Hriday Bhoyar

DigiPen Institute of Technology Singapore

Singapore

 Numerical Machine Learning, 2023, 1-5 1

Zhiyuan Wang, Sayed Ameenuddin Irfan, Christopher Teoh & Priyanka Hriday Bhoyar

All rights reserved-© 2023 Bentham Science Publishers

CHAPTER 1

Introduction to Machine Learning

Abstract: Machine learning, a rapidly growing subfield of computer science, has had a

significant impact on many industries and our lives. This chapter discusses the brief history of

machine learning, its widespread adoption as a de facto feature, and fundamental concepts such

as supervised and unsupervised learning, regression and classification, and underfitting and

overfitting. We also emphasize the importance of understanding machine learning through

numerical examples, which can bridge the gap between abstract mathematical theories and

practical applications of machine learning algorithms. By developing a strong foundation in

machine learning, readers/students can harness its potential to address challenges and

opportunities across diverse sectors.

Keywords: Numerical Examples, Machine Learning History, Supervised

Learning, Unsupervised Learning, Regression, Classification, Underfitting,

Overfitting

1.1. BRIEF HISTORY OF MACHINE LEARNING

Machine learning is a subfield of computer science that involves the creation of

algorithms that can learn from data and make predictions. It has a long and rich

history [1], with roots dating back to the 1950s when the field of artificial

intelligence was founded. This field focused on developing machines that could

perform tasks that typically require human-like intelligence, such as recognizing

patterns, learning from experience, and making decisions. The first machine

learning algorithms were developed in the 1960s, including decision tree and

nearest neighbor algorithms. The 1980s saw the rapid growth of the field with the

development of algorithms such as artificial neural network and support vector

machine. These algorithms were applied to a wide range of applications in the

1990s, including natural language processing, computer vision, and speech

recognition. In the 2000s, the field continued to evolve with the development of

new algorithms, such as gradient boosting, and the increasing use of machine

learning in industries such as finance and healthcare. The 2010s saw the widespread

adoption of machine learning, aided by the advent of big data and the development

of powerful graphics processing units (GPU) that could be used to train large and

complex machine learning models. The subfield of deep learning [2], which

typically involves the use of multi-layered neural networks, became particularly

popular and found application across a diverse range of domains. Today, machine

learning is a rapidly growing field that is currently being applied in various sectors.

2 Numerical Machine Learning Wang et al.

It has the potential to revolutionize many industries and has already had a

significant societal impact.

1.2. MACHINE LEARNING AS A DE FACTO FEATURE

Machine learning is expected to be a transformative technology over the next two

decades due to several factors. One key factor is the increasing availability of data,

which is expected to continue to grow significantly in the coming years. As machine

learning algorithms are particularly well suited for analyzing and making sense of

large amounts of data, this will create new opportunities for their application in a

variety of fields, including but not limited to healthcare, finance, transportation,

education, manufacturing, and beyond. In these and other areas, machine learning

has been adopted to automate some tasks that are currently performed by humans,

freeing up humans to focus on more creative and high-level work [3].

In addition to automation, machine learning algorithms can be used to improve

decision-making by analyzing large amounts of data and making predictions or

recommendations based on that data. This can be particularly useful in fields such

as finance, where machine learning can be used to identify patterns and trends that

can inform investment decisions, or in healthcare, where machine learning can be

used to predict patient outcomes and identify potential health risks, or in

semiconductor manufacturing, where machine learning can be employed to detect

defects and analyze their causes in real-time. By providing valuable insights and

recommendations based on data analysis, machine learning has the potential to

enhance the efficiency and effectiveness of decision-making in a wide range of

fields.

Another key benefit of machine learning is its ability to enhance personalization by

tailoring products and services to individual preferences and behaviors. For

example, machine learning can be used to recommend products or content to users

based on their past behavior, or to tailor advertising to specific audiences. By

providing personalized experiences, machine learning has the potential to improve

customer satisfaction and engagement.

Overall, machine learning is expected to have a significant impact in a wide range

of fields over the next two decades, influencing many aspects of our lives. Its ability

to automate tasks, improve decision-making, and enhance personalization make it

a technology with the potential to revolutionize industries and change the way we

live and work.

Introduction to Machine Learning Numerical Machine Learning 3

1.3. SUPERVISED AND UNSUPERVISED

Supervised and unsupervised learning are two prominent types of algorithms in

machine learning [4]. In supervised learning, a model is trained using labeled data,

which includes the correct output for each instance in the training set. The model

generates predictions based on this labeled data, enabling it to make accurate

predictions for new, previously unseen examples. Some common supervised

learning tasks include regression, which aims to predict a continuous value, and

classification, which focuses on predicting a categorical label. Conversely,

unsupervised learning involves training a model with unlabeled data, meaning the

correct output is not provided. In this case, the model must independently identify

patterns and relationships within the data. Examples of unsupervised learning tasks

encompass clustering, where the objective is to group similar examples, and

dimensionality reduction, where the goal is to decrease the number of features in

the data while preserving as much relevant information as possible.

1.4. REGRESSION AND CLASSIFICATION

In machine learning, regression and classification are two types of supervised

learning, in which a model is trained on labeled data to make predictions about new,

unseen examples. In regression, the model is used to predict a continuous value,

such as a price or probability. For example, a regression model might be used to

predict the price of a house based on features such as its size, number of bedrooms,

and location. On the other hand, classification involves predicting a categorical

value, such as a class label. For example, a classification model might be used to

predict whether an email is spam or not, or to recognize the type of object in an

image.

Both regression and classification are widely used in many fields and have a broad

range of applications. In addition to the examples mentioned earlier, regression can

be applied in finance to predict stock prices, in healthcare to predict patient

outcomes, in meteorology to predict weather patterns, and in electric vehicle

industry to predict charging demand [5]. Classification, on the other hand, is used

in a wide range of applications, such as natural language processing, where it is

used to classify text into different categories, and fraud detection, where it is used

to classify transactions as legitimate or fraudulent. Despite their differences,

regression and classification share many similarities and are both essential tools in

the field of machine learning. By understanding both, we can select the most

appropriate method for a specific problem and achieve more accurate predictions.

6 Numerical Machine Learning, 2023, 6-27

Zhiyuan Wang, Sayed Ameenuddin Irfan, Christopher Teoh & Priyanka Hriday Bhoyar

All rights reserved-© 2023 Bentham Science Publishers

CHAPTER 2

Linear Regression

Abstract: In this chapter, we delve into linear regression, a fundamental machine learning

algorithm for predicting numerical values. While maintaining a concise overview of the

mathematical theories, we prioritize an accessible approach by focusing on a concrete

numerical example with a small dataset for predicting house sale prices. Through a step-by-

step walkthrough, we illustrate the inner workings of linear regression and demonstrate its

practical implementation. Additionally, we offer sample codes and a comparison with the linear

regression model from scikit-learn to reinforce understanding. Upon completing this chapter,

readers will gain a comprehensive understanding of linear regression's inner workings and its

relationship to algorithm implementation and performance, and be better prepared to apply it

to real-world projects.

Keywords: Linear Regression, Numerical Example, Small Dataset, Housing Price

Prediction, Scikit-Learn

2.1. INTRODUCTION TO LINEAR REGRESSION

Linear regression is a supervised machine learning algorithm that aims to determine

the best-fit linear line between a dependent variable and one or more independent

variables. It typically carries out regression tasks. It is one of the easiest, most well-

understood, and most popular algorithms in many machine learning applications [1,

2]. It can be employed to predict the values of continuous numerical variables such

as salary, sales revenue, dividend yield, greenhouse gas emission, and house price,

to name a few.

Despite its simplicity, linear regression remains a powerful tool in the field of

machine learning, providing a strong foundation for understanding the underlying

input-output relationships between variables. It serves as an excellent starting point

for beginners in the field, offering a straightforward and interpretable approach to

modeling. Moreover, linear regression can act as a benchmark for evaluating the

performance of more complex algorithms, allowing practitioners to gauge the

effectiveness of their chosen models. While linear regression may not always be

the most advanced or accurate method for every situation, its ease of use,

interpretability, and versatility continue to make it a valuable asset in a variety of

real-world applications and industries.

There are several fundamental assumptions associated with linear regression [3, 4].

Firstly, it is assumed that the dependent variable is linearly correlated to the

Linear Regression Numerical Machine Learning 7

independent variable(s). Secondly, when there is more than one independent

variable, no correlation should exist between the independent variables (i.e., no

multicollinearity). Thirdly, the errors between the true values and predicted values

by the linear regression model should approximately conform to a normal

distribution, with most having errors close to 0. Fourthly, the spread of the errors

(i.e., the variance of the errors) ought to be constant along the values of the

dependent variable. This is technically known as homoscedasticity, which can be

checked by creating a scatterplot of errors versus the dependent variable.

2.2. MATHEMATICS OF LINEAR REGRESSION

The mathematics of linear regression starts from a simple linear equation, shown in

Equation (2.1) and (Fig. 2.1), where there is only one independent variable 𝑋 and

one dependent variable 𝑌.

 𝑌 = 𝑏 + 𝑤𝑋  (2.1)

Fig. (2.1). Plot of simple linear equation 𝑌 = 𝑏 + 𝑤𝑋.

Variable 𝑋 has an associated coefficient 𝑤, which is often used interchangeably

with the terms: weight, slope, or gradient. In the context of machine learning, it is

most often referred to as weight.

Likewise, 𝑏 represents the intercept with Y-axis and is often known as bias in

machine learning. The independent variable 𝑋 is commonly called input, which is

8 Numerical Machine Learning Wang et al.

used interchangeably with the following terms: input feature, attribute,

characteristic, field, and column. The dependent variable 𝑌 is commonly referred

to as output, target, class, and label.

In reality, more often than not, we will have more than one independent variable,

and Equation (2.1) would have to be updated to a general term Equation (2.2) to

cater for this.

𝑌 = 𝑏 + ∑ 𝑤𝑗𝑋𝑗
𝑛
𝑗=1 (2.2)

Here,

𝑌 is the dependent variable

𝑏 is the bias

𝑛 is the number of input features

𝑤𝑗 is the weight of the 𝑗𝑡ℎ feature

𝑋𝑗 is input value of the 𝑗𝑡ℎ feature

The goal of linear regression is to find the best-fit linear equation model that maps

the relationship between input 𝑋 and output 𝑌, in the form of Equation (2.2) with

the optimal weights and bias, which produces the least error (synonymously known

as loss in machine learning) between the known true output 𝑌 values and predicted

output 𝑌 values by the model.

Fig. (2.2). Illustration of notations using an exemplary training dataset.

Let us use lowercase 𝑥𝑖 to denote the feature values of the 𝑖𝑡ℎ sample (out of the

total 𝑚 rows of samples from the training dataset), then 𝑥𝑖𝑗 will be the value of the

𝑗𝑡ℎ feature (out of the total 𝑛 input features) at the 𝑖𝑡ℎ sample, as shown in Fig.

28 Numerical Machine Learning, 2023, 28-70

Zhiyuan Wang, Sayed Ameenuddin Irfan, Christopher Teoh & Priyanka Hriday Bhoyar

All rights reserved-© 2023 Bentham Science Publishers

CHAPTER 3

Regularization

Abstract: This chapter delves into L1 and L2 regularization techniques within the context of

linear regression, focusing on minimizing overfitting risks while maintaining a concise

presentation of mathematical theories. We explore these techniques through a concrete

numerical example with a small dataset for predicting house sale prices, providing a step-by-

step walkthrough of the process. To further enhance comprehension, we supply sample codes

and draw comparisons with the Lasso and Ridge models implemented in the scikit-learn library.

By the end of this chapter, readers will acquire a well-rounded understanding of L1 and L2

regularization in the context of linear regression, their implications on model implementation

and performance, and be equipped with the knowledge to apply these methods in practical use.

Keywords: L1 Regularization, L2 Regularization, Linear Regression, Numerical

Example, Small Dataset, Housing Price Prediction, Scikit-Learn, Lasso, Ridge

3.1. INTRODUCTION TO L1 AND L2 REGULARIZATION

Regularization is the process of adding an extra penalty to a more complicated

model with larger values of weights to prevent overfitting. A problem known as

overfitting happens when a machine learning model is made specifically for

training datasets and is unable to generalize well to previously unseen datasets.

Introducing regularization techniques into machine learning models is essential for

achieving better generalization and improved performance on new data. By

penalizing overly complex models, regularization helps lead to more accurate and

stable predictions. Some popular regularization methods include L1 and L2

regularization, which differ in the way they penalize the model's complexity.

Regularization has proven to be a critical component in the development of robust

and reliable models, particularly when dealing with high-dimensional data or noisy

datasets. It enables practitioners to build more efficient models, capable of adapting

to new and diverse situations while reducing the risk of overfitting and maintaining

interpretability.

This chapter focuses on L1 and L2 regularization, which are demonstrated in detail

by making necessary changes from the original linear regression model discussed

in Chapter 2. Bear in mind, however, that L1 and L2 regularization can also be

applied to other machine learning models (e.g., logistic regression), as well as deep

learning neural networks.

Regularization Numerical Machine Learning 29

The names of L1 and L2 regularization come from the corresponding L1 and L2

norms of the weight vector 𝑊.

The L1 norm is defined as:

‖𝑊‖1 = ∑𝑗=1
𝑛  |𝑤𝑗| = |𝑤1| + |𝑤2| + ⋯ + |𝑤𝑛|

The L2 norm is defined as:

‖𝑊‖2 = (∑𝑗=1
𝑛  𝑤𝑗

2)
1/2

= (𝑤1
2 + 𝑤2

2 + ⋯ + 𝑤𝑛
2)1/2

Here, 𝑤𝑗 is the weight of the 𝑗𝑡ℎ feature, and 𝑛 is the number of input features.

Note that ‖𝑊‖, without subscript, is also conventionally used to represent the L2

norm of the weight vector 𝑊.

A linear regression model with the L1 regularization is known as Lasso (least

absolute shrinkage and selection operator) regression [1, 2], whereas a linear

regression model with the L2 regularization is called Ridge regression [3, 4].

3.2. MATHEMATICS OF L1 REGULARIZATION FOR LINEAR

REGRESSION

The general equation of linear regression if having more than one independent

variable 𝑋 (i.e., input feature) is as follows:

𝑌 = 𝑏 + ∑  

𝑛

𝑗=1

𝑤𝑗𝑋𝑗   (3.1)

Here,

𝑌 is the output

𝑏 is the bias

𝑛 is the number of input features

𝑤𝑗 is the weight of the 𝑗𝑡ℎ feature

𝑋𝑗 is input value of the 𝑗𝑡ℎ feature

The goal of linear regression is to find the best-fit linear equation model that maps

the relationship between input 𝑋 and output 𝑌, in the form of Equation (3.1) with

30 Numerical Machine Learning Wang et al.

the optimal weights and bias, which produces the least error (synonymously known

as loss in machine learning) between the known true output 𝑌 values and predicted

output 𝑌 values by the model.

Fig. (3.1). Illustration of notations using an exemplary training dataset.

Let us use lowercase 𝑥𝑖 to denote the feature values of the 𝑖𝑡ℎ sample (out of the

total 𝑚 rows of samples from training dataset), then 𝑥𝑖𝑗 will be the value of the 𝑗𝑡ℎ

feature (out of the total 𝑛 input features) at the 𝑖𝑡ℎ sample, as shown in Fig. (3.1).

Lowercase 𝑦𝑖 is used to represent the known output value (i.e., true output value)

of the 𝑖𝑡ℎ sample, and �̂�𝑖 is used to denote the corresponding predicted output value

by the linear equation model. Equation (3.1) is then updated to Equation (3.2).

�̂�𝑖 = 𝑏 + ∑ 𝑤𝑗𝑥𝑖𝑗

𝑛

𝑗=1

   (3.2)

Here,

𝑖 𝜖[1, 𝑚]
𝑚 is the number of training samples

𝑥𝑖𝑗 is the value of the 𝑗𝑡ℎ feature at the 𝑖𝑡ℎ sample

𝑏 is the bias

𝑛 is the number of input features

𝑤𝑗 is the weight of the 𝑗𝑡ℎ feature

�̂�𝑖 is the predicted value for the 𝑖𝑡ℎ sample

Up to this step, everything is the same as the original linear regression discussed in

Chapter 2. The only difference brought by L1 regularization is the change of loss

 Numerical Machine Learning, 2023, 71-96 71

Zhiyuan Wang, Sayed Ameenuddin Irfan, Christopher Teoh & Priyanka Hriday Bhoyar

All rights reserved-© 2023 Bentham Science Publishers

CHAPTER 4

Logistic Regression

Abstract: This chapter delves into logistic regression, a widely used machine learning

algorithm for classification tasks, with a focus on maintaining accessibility by minimizing

abstract mathematical concepts. We present a concrete numerical example employing a small

dataset to predict the ease of selling houses in the property market, guiding readers through

each step of the process. Additionally, we supply sample codes and draw comparisons with the

logistic regression model available in the scikit-learn library. Upon completion of this chapter,

readers will have gained a comprehensive understanding of the inner workings of logistic

regression, its relationship to algorithm implementation and performance, and the knowledge

necessary to apply it to practical applications.

Keywords: Logistic Regression, Classification, Numerical Example, Small

Dataset, Scikit-Learn

4.1. INTRODUCTION TO LOGISTIC REGRESSION

Logistic regression is a supervised machine learning algorithm for modeling the

probability of a discrete output given input features [1, 2]. Despite its name, logistic

regression is more of a classification model than a regression model. It is commonly

used to model a dichotomous (binary) output, i.e., anything with two possible

values/classes/labels, such as true/false, yes/no, 1/0, on/off, good/bad, malignant/

benign, and pass/fail, to name a few. The foundation of logistic regression lies in

its ability to model the relationship between input features and a categorical

outcome by utilizing the logistic function, also known as the sigmoid function. This

function ensures that the predicted probabilities lie within the range of 0 and 1,

making it suitable for classification tasks. Logistic regression has gained immense

popularity due to its simplicity, interpretability, and efficiency in various real-world

applications. Some of these applications include spam filtering, customer churn

prediction, medical diagnosis, and credit risk assessment.

Unlike linear regression, logistic regression does not require the assumption of a

linear relationship between the independent (𝑋) and dependent (𝑌) variables.

Besides, the errors between the true and predicted outputs need not conform to a

normal distribution. Moreover, the spread of the errors (i.e., the variance of the

errors) need not be constant along the values of dependent variables; that is,

homoscedasticity is not required. However, there are still several essential

assumptions for logistic regression [3, 4]. Firstly, when there is more than one

independent variable (𝑋), it requires little or no correlation between the independent

72 Numerical Machine Learning Wang et al.

variables (i.e., little or no multicollinearity). Secondly, it assumes that the

independent variable(s) have a linear relationship with the logarithm of the odds;

odds is just another way of expressing probability (𝑃) and is defined as the ratio of

the probability of an event occurring to the probability of an event not occurring

(i.e.,
𝑃

1−𝑃
). Thirdly, by default, logistic regression is used to solve binary

classification problems, requiring the dependent variable (𝑌) to be dichotomous.

On the other hand, it is worth mentioning that with some modifications and

improvements like the one-vs-rest (OvR) method, logistic regression can be scaled

up for solving multi-class classification problems. Nevertheless, multi-class

classification is outside the scope of the present chapter as it focuses on binary

classification using the logistic regression algorithm.

4.2. MATHEMATICS OF LOGISTIC REGRESSION

Mathematically, the linear regression discussed in Chapter 2 can be upgraded to

logistic regression after introducing a sigmoid function for mapping the linear

output to probability and employing a different loss function.

In comparison with Equation (2.2) in Chapter 2 for linear regression, the only

change made to Equation (4.1) here is to use a variable 𝑍 (rather than 𝑌) to represent

the linear output, which is just an intermediate result in the process of logistic

regression.

𝑍 = 𝑏 + ∑  

𝑛

𝑗=1

𝑤𝑗𝑋𝑗    (4.1)

Here,

𝑍 is the intermediate linear output

𝑏 is the bias

𝑛 is the number of input features

𝑤𝑗 is the weight of the 𝑗𝑡ℎ feature

𝑋𝑗 is input value of the 𝑗𝑡ℎ feature

The sigmoid function for mapping the intermediate linear output to probability is

defined as Equation (4.2) and plotted in Fig. (4.1).

Logistic Regression Numerical Machine Learning 73

𝑌 =
1

1 + 𝑒−𝑍
    (4.2)

Here,

𝑍 is the intermediate linear output from the linear Equation (4.1)

𝑌 is the mapped probability

As can be seen from Fig. (4.1), the sigmoid function maps the linear output 𝑍 into

a probability 𝑌 that is in the range of 0 to 1. The default threshold is 0.5, meaning

that if 𝑌 ≥ 0.5, it will be rounded up to 1 and predicted as class 1; whereas, if 𝑌 <
0.5, it will be rounded down to 0 and predicted as class 0.

Fig. (4.1). Plot of the sigmoid function.

Fig. (4.2). Illustration of notations using an exemplary training dataset.

 Numerical Machine Learning, 2023, 97-115 97

Zhiyuan Wang, Sayed Ameenuddin Irfan, Christopher Teoh & Priyanka Hriday Bhoyar

All rights reserved-© 2023 Bentham Science Publishers

CHAPTER 5

Decision Tree

Abstract: In this chapter, we explore the concept of decision trees, prioritizing accessibility by

minimizing abstract mathematical theories. We examine a concrete numerical example using a

small dataset to predict the suitability of playing tennis based on weather conditions, guiding

readers through the process step-by-step. Moreover, we provide sample codes and compare

them with the decision tree classification model found in the scikit-learn library. Upon

completing this chapter, readers will have gained a comprehensive understanding of the inner

workings of decision tree machine learning, the relationship between the underlying principles,

and the implementation and performance of the algorithm, preparing them to apply their

knowledge to practical scenarios.

Keywords: Decision Tree, Classification, Numerical Example, Small Dataset,

Scikit-Learn

5.1. INTRODUCTION TO DECISION TREE

A decision tree is a diagrammatic representation of a set of choices and the results

of those choices [1]. Decision tree algorithms have become a popular choice for

both classification and regression tasks in machine learning due to their inherent

advantages. These include their ease of interpretability, as the decision-making

process is explicitly laid out in the tree structure, and their efficient training process.

Decision trees can handle missing values, automatically select relevant features,

and easily manage both numerical and categorical data. Furthermore, they are

robust to outliers and noise in the data. Some of the common applications of

decision trees include customer segmentation, fraud detection, medical diagnosis,

and risk management. Due to their comprehensible nature and ability to visualize

complex decision-making processes, decision trees have found widespread

adoption in various industries and research fields. Decision tree is a diagram

showing the several paths to reach a choice under specific constraints. Each branch

symbolizes the decision space, and its leaf nodes are the outcomes. One node, called

the root node, is the starting point for the decision tree, and many more branches,

including decision nodes and leaf nodes.

For example, as shown in Fig. (5.1), consider a situation where one needs to decide

whether to go to outdoor sports. The decision tree for this problem may look like

this:

Root node: "Should I go to outdoor sports?"

98 Numerical Machine Learning Wang et al.

Decision node: "Is weather good to support outdoor sports?"

If yes, leaf node: "Go to play"

If no, leaf node: "Do not go to play"

Fig. (5.1). A simple decision tree example.

In this example, the decision node represents the weather condition outside. If the

condition is met (i.e., the weather is good), the tree leads to the outcome of going

to play. If the condition is not met (i.e., the weather is not good), the tree leads to

the outcome of not going to play.

Now the question might be how to decide which leaf node to select as the root node

and decision node. For better decision-making, we use Hunt’s algorithm, which

helps to give a clear understanding of splitting and choosing the important

parameter for root nodes.

Decision Tree Numerical Machine Learning 99

5.2. ALGORITHM OF DECISION TREE

In the context of decision tree learning, a heuristic known as Hunt’s algorithm is

utilized to determine the optimal split for each node in the tree [2]. It is a procedure

that iteratively analyzes each feature and the possible value of the feature as a

candidate split. Then it chooses the one that yields the most significant increase in

information gain (discussed later).

Here is the general process of the Hunt algorithm:

 Calculate the entropy of the current node. Entropy is a measure of the impurity

or uncertainty of the data at the node. It is calculated based on the frequencies

of the different classes in the data.

 Consider each feature and each possible value of that feature as a candidate

split. Calculate the information gain of each candidate split by comparing the

entropy of the current node to the entropy of the child nodes that would result

from the split.

 Select the split that results in the greatest information gain.

 Repeat the process for each child node, until the desired depth of the tree is

reached, or all nodes are pure (i.e., contain only data belonging to a single class).

 Hunt's algorithm is a popular choice for decision tree learning due to its

simplicity and efficiency in constructing a decision tree from a dataset. Hunt's

algorithm has also served as a foundation for the development of other decision

tree algorithms [3], such as ID3 (Iterative Dichotomiser 3), C4.5 (an extension

of ID3 that can handle continuous attributes, missing values, and pruning), and

CART (Classification and Regression Trees).

As aforementioned, the impurity of a node in a decision tree can be measured using

entropy, shown in Equation (5.1). Entropy is calculated based on the frequencies of

the different classes in the data. If the data at a node is completely pure, with all

data belonging to a single class, then the entropy is zero. On the other hand, if the

data is equally divided among all classes, then the entropy is at its maximum.

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ −𝑃𝑖𝑙𝑜𝑔2𝑃𝑖

𝑛

𝑖=1

   (5.1)

Here, 𝑃𝑖 is the proportion of class i in the node.

Hunt's algorithm recursively splits the data into smaller and smaller subsets until

each subset contains data belonging to a single class. At each split, the algorithm

116 Numerical Machine Learning, 2023, 116-159

Zhiyuan Wang, Sayed Ameenuddin Irfan, Christopher Teoh & Priyanka Hriday Bhoyar

All rights reserved-© 2023 Bentham Science Publishers

CHAPTER 6

Gradient Boosting

Abstract: In this chapter, we explore gradient boosting, a powerful ensemble machine learning

method, for both regression and classification tasks. With a focus on accessibility, we minimize

abstract mathematical theories and instead emphasize two concrete numerical examples with

small datasets related to predicting house sale prices and ease of selling houses in the property

market. By providing a step-by-step walkthrough, we illuminate the inner workings of gradient

boosting and offer sample codes and comparisons to the gradient boosting models available in

the scikit-learn library. Upon completing this chapter, readers will possess a comprehensive

understanding of gradient boosting's mechanics, its connection to the implementation and

performance of the algorithm, and be well-prepared to apply it in real-world projects.

Keywords: Gradient Boosting, Ensemble Learning, Regression, Classification,

Numerical Example, Small Dataset, Scikit-Learn

6.1. INTRODUCTION TO GRADIENT BOOSTING

Gradient boosting is a robust ensemble machine learning model that sequentially

trains a spate of weak learners to produce a more accurate model at the end [1, 2].

A weak learner, generally a rather simple decision tree, is a rudimentary machine

learning model with low prediction accuracy but still better than random guessing.

As demonstrated in Fig. (6.1), the prediction error of the ensemble model is reduced

with each new decision tree added and integrated with all the prior decision trees

[3]. Gradient boosting is an efficient and accurate algorithm that has been applied

to regression and classification problems in many fields, including engineering,

healthcare, natural language processing, and computer vision, among others. One

of the key strengths of gradient boosting is its ability to leverage the collective

knowledge of multiple weak learners, ultimately generating a more robust and

accurate model. This is achieved by iteratively focusing on the areas where previous

weak learners have failed to make accurate predictions and subsequently improving

upon those areas. As a result, gradient boosting has become a popular choice for

tackling complex problems and achieving state-of-the-art performance in various

applications, even outperforming other ensemble methods, such as random forests

in certain contexts. Its versatility and adaptability make gradient boosting a valuable

tool in the arsenal of machine learning practitioners and researchers alike.

The rest of this chapter is organized as follows. Section 6.2 presents the

mathematics of gradient boosting for regression, followed by the demonstration of

a numerical example in detail and code comparison in Section 6.3. Analogously,

Gradient Boosting Numerical Machine Learning 117

Section 6.4 presents the mathematics of gradient boosting for classification,

followed by the demonstration of a numerical example in detail and code

comparison in Section 6.5.

Fig. (6.1). Illustration of gradient boosting.

6.2. MATHEMATICS OF GRADIENT BOOSTING FOR REGRESSION

The basic idea of gradient boosting is to iteratively improve the overall model by

fitting the weak learners to the residuals or gradient of the loss function with respect

to the previous model's predictions. This process can be viewed as a numerical

optimization technique that minimizes the loss function over the training dataset.

The algorithm starts by initializing the model with a constant value. The main loop

of the algorithm iterates for a predetermined number of iterations (𝑀), and in each

iteration, the following four steps are performed. Firstly, the pseudo-residuals are

computed by taking the negative gradient of the loss function with respect to the

current model's predictions. These pseudo-residuals represent the direction in

which the model needs to move to minimize the loss function. Secondly, a weak

learner, typically a decision tree, is fit to the pseudo-residuals. The tree is

constructed by splitting the input feature space into regions and learning the optimal

value for each region to minimize the loss function. Thirdly, the optimal values,

118 Numerical Machine Learning Wang et al.

denoted by 𝛾, are computed for each region by minimizing the loss function with

respect to the previous model's predictions plus the new weak learner's output.

Fourthly, the model is updated by adding the weighted output of the new weak

learner to the previous model's predictions; the weight here, denoted by 𝛼, is a

shrinkage parameter that controls the learning rate of gradient boosting. Finally,

these four steps are repeated for 𝑀 iterations, and the final model is a combination

of weak learners that can make accurate predictions by collectively minimizing the

loss function. Together with the generic pseudocode [4], the mathematics used in

gradient boosting for regression is presented in Table 6.1. Common symbols used

throughout the chapter are 𝑥𝑖, denoting the feature values of the 𝑖𝑡ℎ sample (out of

the total 𝑛 samples from training dataset); 𝑦𝑖 and 𝐹(𝑥𝑖), representing the true and

predicted output for the 𝑖𝑡ℎ sample, respectively; 𝑚 and 𝑀, denoting the index of a

decision tree and the total number of decision trees in the gradient boosting model;

𝑟𝑖𝑚, representing the residual of the 𝑖𝑡ℎ sample in the 𝑚𝑡ℎ decision tree; 𝑅𝑗𝑚,

denoting the 𝑗𝑡ℎ leaf node of the 𝑚𝑡ℎ decision tree; 𝛼, referring to the learning rate

when building the model.

Table 6.1 Pseudocode and mathematics of gradient boosting for regression.

Input: Training dataset {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛 and a differentiable Loss Function 𝐿(𝑦𝑖 , 𝐹(𝑥𝑖)) =

1

2
[𝑦𝑖 − 𝐹(𝑥𝑖)]2

Step 1: Initialize model with a constant value 𝐹0(𝑥) = argmin
𝛾

∑  𝑛
𝑖=1 𝐿(𝑦𝑖 , 𝛾)

Step 2: for 𝑚 = 1 𝑡𝑜 𝑀:

(a) Find pseudo-residuals 𝑟𝑖𝑚 = − [
∂𝐿(𝑦𝑖,𝐹(𝑥𝑖))

∂𝐹(𝑥𝑖)
]

𝐹(𝑥)=𝐹𝑚−1(𝑥)
 for 𝑖 = 1,2, … , 𝑛

(b) Fit the regression tree to the training dataset {(𝑥𝑖 , 𝑟𝑖𝑚)}𝑖=1
𝑛

(c) For 𝑗 = 1 … 𝐽𝑚 compute 𝛾𝑗𝑚 = argmin
𝛾

∑  𝑥𝑖∈𝑅𝑗𝑚
𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + 𝛾)

(d) Update 𝐹𝑚(𝑥𝑖) = 𝐹𝑚−1(𝑥𝑖) + 𝛼(𝛾𝑗𝑚|𝑥𝑖 ∈ 𝑅𝑗𝑚)

Step 3: Output 𝐹𝑚(𝑥)

160 Numerical Machine Learning, 2023, 160-193

Zhiyuan Wang, Sayed Ameenuddin Irfan, Christopher Teoh & Priyanka Hriday Bhoyar

All rights reserved-© 2023 Bentham Science Publishers

CHAPTER 7

Support Vector Machine

Abstract: In this chapter, we investigate Support Vector Machines (SVM) for both linearly

separable and linearly non-separable cases, emphasizing accessibility by minimizing abstract

mathematical theories. We present concrete numerical examples with small datasets and

provide a step-by-step walkthrough, illustrating the inner workings of SVM. Additionally, we

offer sample codes and comparisons with the SVM model available in the scikit-learn library.

Upon completing this chapter, readers will gain a comprehensive understanding of SVM's

mechanics, and its connection to the implementation and performance of the algorithm, and be

well-prepared to apply it in their practical applications.

Keywords: Support Vector Machine, Linearly Separable, Linearly Non-Separable,

Polynomial Kernel, Radial Basis Function Kernel, Numerical Example, Small

Dataset, Scikit-Learn

7.1. INTRODUCTION TO SUPPORT VECTOR MACHINE

Support vector machine (abbreviated as SVM) is a powerful and widely applicable

machine learning algorithm that has been successfully employed across various

domains, such as image and speech recognition, natural language processing,

bioinformatics, and finance, to name a few. The goal of the SVM algorithm is to

determine, in the space of N dimensions (where N is the number of features), a

hyperplane that classifies the data points in a clearly distinguishable manner. It is

defined in such a way that the margin distance between data points from different

classes is maximized in the N-dimensional space [1, 2]. If the margin distance is

maximized, then subsequent new data points (previously unseen) will be classified

with greater confidence. For the linearly non-separable dataset, SVM primarily

employs a kernel function to map the original data to a high-dimensional Hilbert

Space to achieve linear separability and thereby resolve the linear non-separable

problem [3]. Besides, it is worth mentioning that support vectors are just the

training data points that are closer to the hyperplane. These data points are more

relevant and critical to constructing an SVM model, as they help determine the

equation of the separating hyperplane [4]. Fig. (7.1) illustrates a hyperplane,

support vectors, and margin using a dataset with 10 samples from 2 classes, namely,

positive (+) and negative (−) classes.

Support Vector Machine Numerical Machine Learning 161

Fig. (7.1). Illustration of SVM hyperplane, support vectors, and margin.

7.2. MATHEMATICS OF SUPPORT VECTOR MACHINE: LINEARLY

SEPARABLE CASE

The dataset utilized in Fig. (7.1) has been simplified in an effort to reduce

complexity. As such, there are now only 2 data points belonging to the positive

class (+), and 2 data points belonging to the negative class (−), as shown in Fig.

(7.2). The objective is to find the hyperplane that is tied to the maximum margin.

Next, we draw a vector �⃗⃗� (any length) that starts from the origin and is

perpendicular to the hypothetical hyperplane. In addition, suppose we also have

previously unseen data �⃗� , and we would like to predict the class of �⃗� , whether it is

in the + or − class.

Fig. (7.2). Illustration of 2 data points of + class, 2 data points of – class, �⃗⃗� perpendicular to the

hypothetical margin, and a previously unseen �⃗� .

162 Numerical Machine Learning Wang et al.

Project �⃗� down to the vector perpendicular to the margin (i.e., �⃗⃗�), if that projection

is greater than or equal to (≥) certain constant 𝑐, which crosses the median line,

then it must be a positive (+) data point. This can be expressed mathematically as:

�⃗⃗� ⋅ �⃗� ≥ 𝑐, then �⃗� is labeled +

Simple transformations are performed:

�⃗⃗� ⋅ �⃗� − 𝑐 ≥ 0

�⃗⃗� ⋅ �⃗� + 𝑏𝑡 ≥ 0, where 𝑏𝑡 = −c

The median line of the margin:

�⃗⃗� ⋅ �⃗� + 𝑏𝑡 = 0

The edge line (near +) of the margin:

�⃗⃗� ⋅ �⃗� + 𝑏𝑡 = 𝛿

Here, 𝛿 is a positive constant

Divide both sides by 𝛿:

�⃗⃗�

𝛿
⋅ �⃗� +

𝑏𝑡
𝛿
= 1

Let �⃗⃗⃗� =
�⃗⃗�

𝛿
 and 𝑏 =

𝑏𝑡

𝛿
,

The edge line (near +) of the margin is updated to:

�⃗⃗⃗� ⋅ �⃗� + 𝑏 = 1

The median line of the margin is updated to:

�⃗⃗⃗� ⋅ �⃗� + 𝑏 = 0

Symmetrically, as shown in Fig. (7.3), the edge line (near −) of the margin is

updated to:

�⃗⃗⃗� ⋅ �⃗� + 𝑏 = −1

194 Numerical Machine Learning, 2023, 194-211

Zhiyuan Wang, Sayed Ameenuddin Irfan, Christopher Teoh & Priyanka Hriday Bhoyar

All rights reserved-© 2023 Bentham Science Publishers

CHAPTER 8

K-means Clustering

Abstract: In this chapter, we explore the K-means clustering algorithm, emphasizing an

accessible approach by minimizing abstract mathematical theories. We present a concrete

numerical example with a small dataset to illustrate how clusters can be formed using the K-

means clustering algorithm. Additionally, we provide sample codes and comparisons with the

K-means model available in the scikit-learn library. Upon completing this chapter, readers will

gain a comprehensive understanding of the mechanics behind K-means clustering, and its

connection to the implementation and performance of the algorithm, and be well-prepared to

apply it in practical use.

Keywords: K-Means Clustering, Distance Metrics, Numerical Example, Small

Dataset, Scikit-Learn

8.1. INTRODUCTION TO CLUSTERING AND DISTANCE METRICS

In unsupervised learning, the algorithm is not provided with labeled training data.

Instead, it is only given a set of input examples, and the primary objective of

unsupervised learning is to uncover the inherent structure or patterns within the

data, enabling the algorithm to make predictions, decisions, or recommendations

based on these discovered patterns [1]. This contrasts with supervised learning,

where the algorithm is given both input examples and corresponding labeled

outputs and can learn by making predictions and comparing them to the true labels.

The ability of unsupervised learning algorithms to discover hidden structures and

relationships in the data without relying on labeled examples makes them

particularly valuable in situations where obtaining labeled data is challenging, time-

consuming, or expensive.

Unsupervised learning has a variety of applications, such as anomaly detection,

clustering, and dimensionality reduction. For example, an unsupervised learning

algorithm might be used to cluster customers based on their usage of electronic

devices, with the goal of identifying potential users of blue light filter lenses. One

cluster may consist of customers who spend a significant amount of time on screens

and use multiple devices frequently, indicating that they may be potential users of

blue light filter lenses. Another cluster may consist of customers who use electronic

devices infrequently, indicating that they may not be interested in purchasing blue

light filter lenses. The clustering information can provide valuable insights for

marketing efforts and enable precise targeting of potential customers.

K-means Clustering Numerical Machine Learning 195

There are numerous unsupervised machine learning algorithms available, including

K-means clustering, principal component analysis, and hierarchical clustering. In

this chapter, we will delve into the details of K-means clustering. Before using the

K-means clustering algorithm, it is important to note that distance metrics are

crucial for accurately measuring the distance between data points in two to n-

dimensional space and forming appropriate clusters. There are four popular

distance metrics, namely, Euclidean distance, Manhattan distance, Cosine

similarity, and Chebyshev distance.

8.1.1. Euclidean Distance

Euclidean distance is a commonly used distance metric that calculates the distance

between two points by determining the shortest path between them. The formula

for calculating Euclidean distance is the square root of the sum of the squared

differences in the coordinates of the two points. This measure is useful for

understanding the relationship between data points in a multi-dimensional space.

Euclidean distance between points A and B is defined as:

𝐷𝐴𝐵 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + ⋯ + (𝑧2 − 𝑧1)2   (8.1)

Here, the coordinate of point A is (𝑥1, 𝑦1, … , 𝑧1) and point B is (𝑥2, 𝑦2, … , 𝑧2).

8.1.2. Manhattan Distance

Manhattan distance, also known as the taxicab distance, is a distance metric that

calculates the distance between two points by adding up the absolute differences in

their coordinates. It is called the taxicab distance because it represents the distance

that a taxicab would have to travel to get from one location to another if it could

only move horizontally or vertically.

Manhattan distance between points A and B is defined as:

𝐷𝐴𝐵 = |𝑥2 − 𝑥1| + |𝑦2 − 𝑦1| + ⋯ + |𝑧2 − 𝑧1|   (8.2)

Here, the coordinate of point A is (𝑥1, 𝑦1, … , 𝑧1) and point B is (𝑥2, 𝑦2, … , 𝑧2)

8.1.3. Cosine Similarity

The cosine similarity is a distance metric that determines how similar two vectors

are to one another by computing the cosine of the angle that separates them.

196 Numerical Machine Learning Wang et al.

Cosine similarity between A and B is defined as:

 cos(𝜃) =
𝐴 ⋅ 𝐵

‖𝐴‖ ‖𝐵‖
   (8.3)

Here, 𝜃 is the angle between the vectors A and B.

𝐴 ⋅ 𝐵 is the dot product of vectors A and B

‖𝐴‖ and ‖𝐵‖ are L2 norm of the vectors A and B, respectively.

8.1.4. Chebyshev Distance

Chebyshev distance, also known as the chessboard distance, is another metric that

measures the distance between two vectors in a vector space. It is calculated by

determining the greatest difference between the two vectors along any coordinate

dimension.

Chebyshev distance between points A and B is defined as:

𝐷𝐴𝐵 = 𝑀𝑎𝑥(|𝑥2 − 𝑥1|, |𝑦2– 𝑦1|, … , |𝑧2– 𝑧1|)   (8.4)

Here, the coordinate of point A is (𝑥1, 𝑦1, … , 𝑧1) and point B is (𝑥2, 𝑦2, … , 𝑧2).

8.2. ALGORITHM OF K-MEANS CLUSTERING

K-means clustering was first developed by Stuart Lloyd at Bell Labs in 1957 for

pulse-code modulation. The idea was not publicly published outside of the company

until 1982. The K-means clustering algorithm is also known as the Lloyd-Forgy

algorithm due to the development of a nearly identical method by Edward W. Forgy

in 1965 [2]. It has since become a widely used algorithm in the field of unsupervised

machine learning for clustering data into groups with similar characteristics.

Let us understand the working of the K-means algorithm and how it forms clusters.

If we were given the centroids for an unlabeled dataset, it would be easy to label all

the samples by assigning each of them to the cluster with the closest centroid. On

the other hand, if we were provided with the labels for all the samples, we could

easily find all the centroids by calculating the mean of the samples for each cluster.

However, since neither the labels nor the centroids are given to us, it is unclear how

to proceed. To get started, we can simply place the centroids randomly (e.g., by

selecting k samples at random and using their positions as the initial centroids). The

212 Numerical Machine Learning, 2023, 212-215

Zhiyuan Wang, Sayed Ameenuddin Irfan, Christopher Teoh & Priyanka Hriday Bhoyar

All rights reserved-© 2023 Bentham Science Publishers

SUBJECT INDEX

A

Algorithm 1, 3, 4, 5, 6, 96, 97, 98, 99, 105,

115, 116, 117, 159, 160, 192, 194

 complex 6

 decision tree building 105

 nearest neighbor 1

Applications 1, 2, 3, 4, 5, 6, 71, 116, 160, 194

 real-world 6, 71

Artificial 1

 intelligence 1

 neural network 1

C

Complex decision-making processes 97

Computer vision 1, 116

Cosine similarity 195

Credit risk assessment 71

Cross-entropy loss function 74, 136, 137

Customer churn prediction 71

D

Dataset 4, 23, 46, 64, 92, 99, 100, 107, 160,

161, 196, 197

 small categorical 100

 unlabeled 196

Decision tree(s) 97, 99, 100, 101, 109, 115,

117, 118, 121, 122, 125, 126, 134, 149,

158

 algorithms 97, 99

 learning 99, 100

 machine learning 97

De facto feature 1, 2

Differentiable loss function 118, 119, 136,

139

Distance 160, 195, 196, 197, 199, 200, 202,

203, 205, 206, 207

 chessboard 196

 margin 160

 squared 197

E

Electric vehicle industry 3

Electronic devices 194

Encoded data 111

Encoding 101

Ensemble Learning 116

Entropy 87, 88, 90, 99, 100, 101, 102, 103,

104, 107, 108, 109, 114, 115

 def 107

 value, calculated 107

F

Feature(s) 8, 11, 12, 30, 34, 35, 41, 50, 53, 74,

77, 78, 103, 104, 105, 107, 109, 118

 less important 41

 num 12, 35, 53, 78

 outlook 103, 104, 105

 returned 109

 selection 41

 size 12, 35, 53, 78

 values 8, 11, 30, 34, 50, 53, 74, 77, 107, 118

G

Google drive 19, 43, 61, 87, 106, 132, 155,

170, 181, 190, 208

Gradient boosting 116, 118, 119, 125, 131,

132, 138, 149

 algorithm 132, 138

 model 116, 118, 125, 131, 149

 regression model 119, 131

Gradient descent 9, 20, 31, 33, 43, 52, 62, 75,

89

 of updating weights 33

 optimization algorithm 9, 20, 31, 43, 52,

62, 75, 89

Graphics processing units (GPU) 1

Subject Index Numerical Machine Learning 213

Greenhouse gas emission 6

H

Homoscedasticity 7, 71

Housing price prediction 6, 28

Hunt algorithm 99

I

Industries, revolutionize 2

K

Kernel 171, 174, 175, 177, 182, 185, 190

 coefficient 175, 185

Kernel function 160, 174, 175, 177, 179, 180

 polynomial 175, 179

K-means clustering 194, 195, 196, 197, 200,

201, 202, 203, 204, 205, 206, 207, 208,

210

 algorithm 194, 195, 196, 197, 202, 205,

208, 210

 first iteration of 200, 201

 second iteration of 203, 204

 third iteration of 206, 207

L

Labeled data 3

Layman’s term 9

Learning iterations 17, 18, 40, 41, 47, 58, 59,

66, 84, 85

Learning process 11, 12, 16, 34, 35, 40, 53,

58, 77, 78, 84

 machine 11, 12, 34, 35, 53, 77, 78

Light filter lenses, blue 194

Linear 29, 50, 160

 regression, equation of 29, 50

 separability 160

Lloyd-Forgy algorithm 196

Logistic 71, 72, 73, 74, 75, 76, 77, 78, 79, 81,

83, 95, 96, 136, 137

 function 71

 regression 71, 72, 73, 74, 75, 76, 77, 78,

79, 81, 83, 95, 96, 136, 137

Logistic regression 71, 72, 74, 77, 78, 84, 86,

91, 95, 96

 algorithm 72

 model 71, 74, 77, 78, 84, 86, 91, 95, 96

Log 22, 44, 62, 74

 loss function 74

 of loss/MSE history 22, 44, 62

Loss 9, 16, 19, 20, 22, 30, 31, 43, 45, 47, 52,

61, 63, 66, 74, 75, 90, 92

 logistic 74

 training of linear regression model 47, 66

M

Machine learning 4, 5

 application of 4, 5

 teaching 4

Machine learning algorithms 1, 2, 4, 5, 6, 71,

160, 195

 applicable 160

 supervised 6, 71

 unsupervised 195

Machine learning models 1, 28, 114, 116

 complex 1

 robust ensemble 116

Manufacturing, semiconductor 2

Mathematical theories 6, 28

Mathematics 72, 161, 174

 of logistic regression 72

 of support vector machine 161, 174

Max-min 11, 23, 34, 46, 64, 78, 92

 normalization for linear regression 11, 34

 min normalization for logistic regression 78

 normalization technique 23, 46, 64, 92

Mean squared error (MSE) 9, 16, 18, 20, 22,

24, 40, 41, 43, 45, 48, 58, 59, 61, 63, 66

Method 116, 197

 elbow 197

 ensemble machine learning 116

MSE 17, 18, 19, 40, 43, 50, 59, 61, 69

 function 19, 43, 61

 plummets 40

 values 17, 18, 40, 50, 59, 69

N

Natural language processing 1, 3, 116, 160

Neural networks 1, 28

 multi-layered 1

Notations, mathematical 10, 33, 76

Numerical optimization technique 117

214 Numerical Machine Learning Wang et al.

O

Off-the-shelf library 26, 69, 96, 115, 159, 210

Outlook temperature play 100, 101, 110, 111,

113

P

Polynomial kernel expression 177

Predicted 7, 9, 16, 19, 30, 31, 40, 43, 51, 58,

61, 71, 84, 89, 93, 94, 95, 119, 120, 133,

136, 137, 138, 139, 140, 154, 158

 output values 9, 16, 19, 30, 31, 40, 43, 51,

58, 61, 84, 89

 probability 71, 93, 94, 95, 136, 137, 138,

140, 154, 158

 value 7, 9, 30, 31, 51, 119, 120, 133, 137,

139

Predictions, stable 28

Probability 71, 72, 73, 74, 75, 87, 93, 95, 107,

134, 135, 148, 152, 156, 158

 calculated 152

 expressing 72

 mapped 73, 74, 75, 87

Problems 3, 4, 5, 28, 31, 97, 165, 174

 separable 174

 solving skills, developing 4

Process 23, 28, 46, 65, 71, 72, 92, 97, 99, 100,

106, 117

 decision-making 97, 100

Pseudocode 118, 119, 139

 generic 118

Python 10, 19, 20, 33, 42, 43, 61, 62, 76, 87,

89, 106

 codes 10, 20, 33, 43, 62, 76, 89, 106

 IDE 19, 42, 61, 87

R

Radial basis function 185

RBF Kernel function 187, 188

Recursive function 109

Regression 6, 97, 99, 118, 122, 127, 136, 142

 tasks 6, 97

 tree 99, 118, 122, 127, 136, 142

Regularization 28, 40

 mechanism 40

 techniques 28

Return 20, 43, 61, 107, 109

 entropy 107

 index 109

 MSE 20, 43, 61

Ridge regression 29

Risk management 97

S

Scikit-learn 25, 28, 67, 71, 94, 97, 106, 112,

115, 116, 155, 160, 171, 173, 182, 184,

189, 190, 192, 194, 210

 decision tree classifier 115

 K-means model 210

 library 25, 28, 67, 71, 94, 97, 106, 112,

116, 155, 160, 189, 194

 predicted output 171, 182, 190

 SVM classifier 173, 184, 192

Scikit-learn gradient boosting 134, 158

 classifier 158

 regressor 134

Second iteration 14, 16, 37, 39, 56, 58, 81, 83,

202, 203, 208

 of learning 14, 16, 37, 39, 56, 58, 81, 83

Second-order differentiation 146

Sigmoid function 71, 72, 73, 74, 87, 88, 137

Single objective optimization (SOO) 165

Small training dataset 10, 33, 53, 77, 119, 138,

139, 167

Space 160, 174, 185, 195

 higher-dimensional 174, 185

 low-dimensional input 174, 185

 multi-dimensional 195

Speech recognition 1, 160

Support vector(s) 160, 161, 163, 164, 166,

167, 168, 173, 174, 175, 176, 177, 178,

181, 184, 185, 186, 189, 192

 dual coefficients of 173, 184, 192

 machines (SVM) 160, 166, 174, 178, 181,

185, 186, 189, 192

 transformed 176, 177

SVM 160, 161, 174, 192

 algorithm 160

 for linearly separable 174

 hyperplane 161

 machine learning 192

T

Technology, transformative 2, 5

Subject Index Numerical Machine Learning 215

Tennis 97, 101

 column 101

 playing 97

Training 17, 18, 22, 24, 25, 28, 30, 40, 41, 42,

44, 49, 58, 59, 60, 62, 67, 84, 86, 90, 91,

93, 94, 95, 100, 117, 118, 119, 122, 133,

136, 139, 156

 dataset 28, 30, 40, 42, 93, 94, 95, 117, 118,

119, 122, 133, 136, 139, 156

 efficient 100

 process 17, 18, 22, 40, 42, 44, 58, 60, 62,

84, 86, 90

Transactions 3

Transformations 137, 165

Transportation 2

Tree 98, 99, 100, 109, 110, 111, 112, 114,

117, 123, 133, 134, 144, 156, 157

 explored binary 110

V

Values 3, 7, 8, 9, 10, 13, 15, 30, 31, 33, 36,

38, 39, 51, 53, 55, 57, 60, 76, 79, 80, 82,

83, 102, 104, 105, 107, 108, 109, 110,

111, 117, 122, 123, 124, 127, 129, 130,

131, 133, 134, 143, 144, 147, 156, 158,

173, 184, 192, 197

 alpha 133, 156

 categorical 3, 111

 gamma 123, 134, 144, 147, 158

 intercept 173, 184, 192

 optimal 117, 122, 127, 143, 197

 residual 124, 129, 130

 small 10, 33, 53, 60, 76

 temperature 105

 true 7, 9, 31, 51

 unique 102, 104

Variables 6, 7, 8, 29, 50, 71, 72, 119, 143,

145, 180

 continuous numerical 6

 dependent 6, 7, 8, 71, 72, 119

 free 180

 independent 6, 7, 8, 29, 50, 71, 72, 119, 143,

145

Vector(s) 161, 162, 163, 164, 169, 171, 175,

184, 189, 191, 195, 196

 normal 163, 164

 perpendicular 162

Vector space 175, 196

 one-dimensional 175

W

WCSS measures 197

Weak learners 116, 117, 118

 multiple 116

Weighted sum of entropy 108

Within-cluster sum 197, 198, 210

 of squares (WCSS) 197, 198, 210

	Cover
	Title
	Copyright
	End User License Agreement
	Content
	Preface
	Introduction to Machine Learning
	Linear Regression
	Regularization
	Logistic Regression
	Decision Tree
	Gradient Boosting
	Support Vector Machine
	K-means Clustering
	Subject Index

