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PREFACE 

In recent years, machine learning has become increasingly popular and pervasive, 

with applications ranging from self-driving cars and facial recognition to 

personalized website recommendations and stock market forecasting. The 

increased availability of data and advancements in computer power have made it 

possible to apply machine learning algorithms to a vast array of problems with 

impressive outcomes. Machine learning is currently utilized in a variety of areas, 

including banking, healthcare, marketing, and manufacturing, and it is anticipated 

that it will continue to play a significant role in the development of new 

technologies in the future. Consequently, machine learning has emerged as an 

essential subject of study for people interested in data science, artificial 

intelligence, and related fields. As machine learning continues to evolve and 

expand its reach, researchers and practitioners are constantly developing new 

techniques and algorithms to address specific challenges or improve upon existing 

methods. In this ever-changing landscape, it is crucial for those working in the 

field to stay up-to-date with the latest advancements and trends. This includes not 

only mastering the fundamental concepts and algorithms, but also understanding 

how to adapt and apply them in novel ways to solve real-world problems. By 

embracing the interdisciplinary nature of machine learning, and collaborating with 

experts from diverse fields, we can accelerate the development of innovative 

solutions that have the potential to transform industries, enhance the quality of 

life, and create a more sustainable future for all. 

 

From our experiences of teaching machine learning using various textbooks, we 

have noticed that there tends to be a strong emphasis on abstract mathematics 

when discussing the theories of machine learning algorithms. On the other hand, 

in the application of machine learning, it usually straightaway goes to import off- 

the-shelf libraries such as scikit-learn, TensorFlow, Keras, and PyTorch. The 

disconnect between abstract mathematical theories and practical application 

creates a gap in understanding. This book bridges the gap using numerical 

examples with small datasets and simple Python codes to provide a complete 

walkthrough of the underlying mathematical steps of machine learning 

algorithms. By working through concrete examples step by step, readers/students 

can develop a well-rounded understanding of these algorithms, gain a more in-

depth knowledge of how mathematics relates to the implementation and 

performance of the algorithms, and be better equipped to apply them to practical 

problems. 
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Beginning with an introduction to machine learning in Chapter 1, the remaining 

chapters of the book cover seven commonly used machine learning algorithms 

and techniques, including both supervised and unsupervised learning, as well as 

both linear and nonlinear models. The book requires some prerequisite knowledge 

of basic probability and statistics, linear algebra, calculus, and Python 

programming. The book is intended for university students studying machine 

learning and is used as our primary teaching material for the “Introduction to 

Machine Learning” module at DigiPen Institute of Technology Singapore. 
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Li Jia, Musa Ahmad Dahlan, Jeremy Yap, and Seah Jue Chen) for their diligence 

in spotting several typographical errors during their course of studies. Also, it has 

been a delight working with Bentham's professional editorial and production staff. 

We particularly thank Noor Ul Ain Khan, Humaira Hashmi, and Obaid Sadiq for 

their consistent, timely, and kind support throughout the development of this 

book. Furthermore, we extend our heartfelt appreciation to our families (including 

Xiaoyue Cui, Muyuan Wang, Safura Tazeen, Khasim BI, Shirleen Chow, Adler 
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encouragement throughout the creation of this book. We dedicate this book to 

them. The first author, Zhiyuan Wang, would also like to convey special thanks 

and appreciation to his Ph.D. advisors, Prof. Zhe Wu, Prof. Xiaonan Wang, and 

Prof. Gade Pandu Rangaiah from the National University of Singapore. Although 

they were not involved in this book, Zhiyuan deeply cherishes their sincere and 

invaluable guidance in his Ph.D. journey, which has helped him become a better 

researcher and educator. 

 

Despite our best efforts to ensure the accuracy of the content within this book, 

errors may inadvertently persist. If you come across any inaccuracies or 
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at wangzhiyuan@u.nus.edu. We are committed to rectifying such oversights in 
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n?usp=share_link 
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CHAPTER 1 

Introduction to Machine Learning  

Abstract: Machine learning, a rapidly growing subfield of computer science, has had a 

significant impact on many industries and our lives. This chapter discusses the brief history of 

machine learning, its widespread adoption as a de facto feature, and fundamental concepts such 

as supervised and unsupervised learning, regression and classification, and underfitting and 

overfitting. We also emphasize the importance of understanding machine learning through 

numerical examples, which can bridge the gap between abstract mathematical theories and 

practical applications of machine learning algorithms. By developing a strong foundation in 

machine learning, readers/students can harness its potential to address challenges and 

opportunities across diverse sectors. 

Keywords: Numerical Examples, Machine Learning History, Supervised 

Learning, Unsupervised Learning, Regression, Classification, Underfitting, 

Overfitting 

1.1. BRIEF HISTORY OF MACHINE LEARNING 

Machine learning is a subfield of computer science that involves the creation of 

algorithms that can learn from data and make predictions. It has a long and rich 

history [1], with roots dating back to the 1950s when the field of artificial 

intelligence was founded. This field focused on developing machines that could 

perform tasks that typically require human-like intelligence, such as recognizing 

patterns, learning from experience, and making decisions. The first machine 

learning algorithms were developed in the 1960s, including decision tree and 

nearest neighbor algorithms. The 1980s saw the rapid growth of the field with the 

development of algorithms such as artificial neural network and support vector 

machine. These algorithms were applied to a wide range of applications in the 

1990s, including natural language processing, computer vision, and speech 

recognition. In the 2000s, the field continued to evolve with the development of 

new algorithms, such as gradient boosting, and the increasing use of machine 

learning in industries such as finance and healthcare. The 2010s saw the widespread 

adoption of machine learning, aided by the advent of big data and the development 

of powerful graphics processing units (GPU) that could be used to train large and 

complex machine learning models. The subfield of deep learning [2], which 

typically involves the use of multi-layered neural networks, became particularly 

popular and found application across a diverse range of domains. Today, machine 

learning is a rapidly growing field that is currently being applied in various sectors. 
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It has the potential to revolutionize many industries and has already had a 

significant societal impact. 

1.2. MACHINE LEARNING AS A DE FACTO FEATURE 

Machine learning is expected to be a transformative technology over the next two 

decades due to several factors. One key factor is the increasing availability of data, 

which is expected to continue to grow significantly in the coming years. As machine 

learning algorithms are particularly well suited for analyzing and making sense of 

large amounts of data, this will create new opportunities for their application in a 

variety of fields, including but not limited to healthcare, finance, transportation, 

education, manufacturing, and beyond. In these and other areas, machine learning 

has been adopted to automate some tasks that are currently performed by humans, 

freeing up humans to focus on more creative and high-level work [3]. 

In addition to automation, machine learning algorithms can be used to improve 

decision-making by analyzing large amounts of data and making predictions or 

recommendations based on that data. This can be particularly useful in fields such 

as finance, where machine learning can be used to identify patterns and trends that 

can inform investment decisions, or in healthcare, where machine learning can be 

used to predict patient outcomes and identify potential health risks, or in 

semiconductor manufacturing, where machine learning can be employed to detect 

defects and analyze their causes in real-time. By providing valuable insights and 

recommendations based on data analysis, machine learning has the potential to 

enhance the efficiency and effectiveness of decision-making in a wide range of 

fields. 

Another key benefit of machine learning is its ability to enhance personalization by 

tailoring products and services to individual preferences and behaviors. For 

example, machine learning can be used to recommend products or content to users 

based on their past behavior, or to tailor advertising to specific audiences. By 

providing personalized experiences, machine learning has the potential to improve 

customer satisfaction and engagement. 

Overall, machine learning is expected to have a significant impact in a wide range 

of fields over the next two decades, influencing many aspects of our lives. Its ability 

to automate tasks, improve decision-making, and enhance personalization make it 

a technology with the potential to revolutionize industries and change the way we 

live and work. 
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1.3. SUPERVISED AND UNSUPERVISED 

Supervised and unsupervised learning are two prominent types of algorithms in 

machine learning [4]. In supervised learning, a model is trained using labeled data, 

which includes the correct output for each instance in the training set. The model 

generates predictions based on this labeled data, enabling it to make accurate 

predictions for new, previously unseen examples. Some common supervised 

learning tasks include regression, which aims to predict a continuous value, and 

classification, which focuses on predicting a categorical label. Conversely, 

unsupervised learning involves training a model with unlabeled data, meaning the 

correct output is not provided. In this case, the model must independently identify 

patterns and relationships within the data. Examples of unsupervised learning tasks 

encompass clustering, where the objective is to group similar examples, and 

dimensionality reduction, where the goal is to decrease the number of features in 

the data while preserving as much relevant information as possible. 

1.4. REGRESSION AND CLASSIFICATION 

In machine learning, regression and classification are two types of supervised 

learning, in which a model is trained on labeled data to make predictions about new, 

unseen examples. In regression, the model is used to predict a continuous value, 

such as a price or probability. For example, a regression model might be used to 

predict the price of a house based on features such as its size, number of bedrooms, 

and location. On the other hand, classification involves predicting a categorical 

value, such as a class label. For example, a classification model might be used to 

predict whether an email is spam or not, or to recognize the type of object in an 

image. 

Both regression and classification are widely used in many fields and have a broad 

range of applications. In addition to the examples mentioned earlier, regression can 

be applied in finance to predict stock prices, in healthcare to predict patient 

outcomes, in meteorology to predict weather patterns, and in electric vehicle 

industry to predict charging demand [5]. Classification, on the other hand, is used 

in a wide range of applications, such as natural language processing, where it is 

used to classify text into different categories, and fraud detection, where it is used 

to classify transactions as legitimate or fraudulent. Despite their differences, 

regression and classification share many similarities and are both essential tools in 

the field of machine learning. By understanding both, we can select the most 

appropriate method for a specific problem and achieve more accurate predictions. 
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CHAPTER 2 

Linear Regression  

Abstract: In this chapter, we delve into linear regression, a fundamental machine learning 

algorithm for predicting numerical values. While maintaining a concise overview of the 

mathematical theories, we prioritize an accessible approach by focusing on a concrete 

numerical example with a small dataset for predicting house sale prices. Through a step-by-

step walkthrough, we illustrate the inner workings of linear regression and demonstrate its 

practical implementation. Additionally, we offer sample codes and a comparison with the linear 

regression model from scikit-learn to reinforce understanding. Upon completing this chapter, 

readers will gain a comprehensive understanding of linear regression's inner workings and its 

relationship to algorithm implementation and performance, and be better prepared to apply it 

to real-world projects. 

Keywords: Linear Regression, Numerical Example, Small Dataset, Housing Price 

Prediction, Scikit-Learn 

2.1. INTRODUCTION TO LINEAR REGRESSION 

Linear regression is a supervised machine learning algorithm that aims to determine 

the best-fit linear line between a dependent variable and one or more independent 

variables. It typically carries out regression tasks. It is one of the easiest, most well-

understood, and most popular algorithms in many machine learning applications [1, 

2]. It can be employed to predict the values of continuous numerical variables such 

as salary, sales revenue, dividend yield, greenhouse gas emission, and house price, 

to name a few. 

Despite its simplicity, linear regression remains a powerful tool in the field of 

machine learning, providing a strong foundation for understanding the underlying 

input-output relationships between variables. It serves as an excellent starting point 

for beginners in the field, offering a straightforward and interpretable approach to 

modeling. Moreover, linear regression can act as a benchmark for evaluating the 

performance of more complex algorithms, allowing practitioners to gauge the 

effectiveness of their chosen models. While linear regression may not always be 

the most advanced or accurate method for every situation, its ease of use, 

interpretability, and versatility continue to make it a valuable asset in a variety of 

real-world applications and industries. 

There are several fundamental assumptions associated with linear regression [3, 4]. 

Firstly, it is assumed that the dependent variable is linearly correlated to the 
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independent variable(s). Secondly, when there is more than one independent 

variable, no correlation should exist between the independent variables (i.e., no 

multicollinearity). Thirdly, the errors between the true values and predicted values 

by the linear regression model should approximately conform to a normal 

distribution, with most having errors close to 0. Fourthly, the spread of the errors 

(i.e., the variance of the errors) ought to be constant along the values of the 

dependent variable. This is technically known as homoscedasticity, which can be 

checked by creating a scatterplot of errors versus the dependent variable. 

2.2. MATHEMATICS OF LINEAR REGRESSION 

The mathematics of linear regression starts from a simple linear equation, shown in 

Equation (2.1) and (Fig. 2.1), where there is only one independent variable 𝑋 and 

one dependent variable 𝑌. 

 𝑌 = 𝑏 + 𝑤𝑋    (2.1) 

 

Fig. (2.1). Plot of simple linear equation 𝑌 = 𝑏 + 𝑤𝑋. 

Variable 𝑋 has an associated coefficient 𝑤, which is often used interchangeably 

with the terms: weight, slope, or gradient. In the context of machine learning, it is 

most often referred to as weight. 

Likewise, 𝑏 represents the intercept with Y-axis and is often known as bias in 

machine learning. The independent variable 𝑋 is commonly called input, which is 
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used interchangeably with the following terms: input feature, attribute, 

characteristic, field, and column. The dependent variable 𝑌 is commonly referred 

to as output, target, class, and label. 

In reality, more often than not, we will have more than one independent variable, 

and Equation (2.1) would have to be updated to a general term Equation (2.2) to 

cater for this. 

𝑌 = 𝑏 + ∑ 𝑤𝑗𝑋𝑗
𝑛
𝑗=1              (2.2) 

Here, 

𝑌 is the dependent variable 

𝑏 is the bias 

𝑛 is the number of input features 

𝑤𝑗 is the weight of the 𝑗𝑡ℎ feature 

𝑋𝑗 is input value of the 𝑗𝑡ℎ feature 

The goal of linear regression is to find the best-fit linear equation model that maps 

the relationship between input 𝑋 and output 𝑌, in the form of Equation (2.2) with 

the optimal weights and bias, which produces the least error (synonymously known 

as loss in machine learning) between the known true output 𝑌 values and predicted 

output 𝑌 values by the model. 

 

Fig. (2.2). Illustration of notations using an exemplary training dataset. 

Let us use lowercase 𝑥𝑖 to denote the feature values of the 𝑖𝑡ℎ sample (out of the 

total 𝑚 rows of samples from the training dataset), then 𝑥𝑖𝑗 will be the value of the 

𝑗𝑡ℎ feature (out of the total 𝑛 input features) at the 𝑖𝑡ℎ sample, as shown in Fig. 
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CHAPTER 3 

Regularization  

Abstract: This chapter delves into L1 and L2 regularization techniques within the context of 

linear regression, focusing on minimizing overfitting risks while maintaining a concise 

presentation of mathematical theories. We explore these techniques through a concrete 

numerical example with a small dataset for predicting house sale prices, providing a step-by-

step walkthrough of the process. To further enhance comprehension, we supply sample codes 

and draw comparisons with the Lasso and Ridge models implemented in the scikit-learn library. 

By the end of this chapter, readers will acquire a well-rounded understanding of L1 and L2 

regularization in the context of linear regression, their implications on model implementation 

and performance, and be equipped with the knowledge to apply these methods in practical use. 

Keywords: L1 Regularization, L2 Regularization, Linear Regression, Numerical 

Example, Small Dataset, Housing Price Prediction, Scikit-Learn, Lasso, Ridge 

3.1. INTRODUCTION TO L1 AND L2 REGULARIZATION 

Regularization is the process of adding an extra penalty to a more complicated 

model with larger values of weights to prevent overfitting. A problem known as 

overfitting happens when a machine learning model is made specifically for 

training datasets and is unable to generalize well to previously unseen datasets. 

Introducing regularization techniques into machine learning models is essential for 

achieving better generalization and improved performance on new data. By 

penalizing overly complex models, regularization helps lead to more accurate and 

stable predictions. Some popular regularization methods include L1 and L2 

regularization, which differ in the way they penalize the model's complexity. 

Regularization has proven to be a critical component in the development of robust 

and reliable models, particularly when dealing with high-dimensional data or noisy 

datasets. It enables practitioners to build more efficient models, capable of adapting 

to new and diverse situations while reducing the risk of overfitting and maintaining 

interpretability.  

This chapter focuses on L1 and L2 regularization, which are demonstrated in detail 

by making necessary changes from the original linear regression model discussed 

in Chapter 2. Bear in mind, however, that L1 and L2 regularization can also be 

applied to other machine learning models (e.g., logistic regression), as well as deep 

learning neural networks. 
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The names of L1 and L2 regularization come from the corresponding L1 and L2 

norms of the weight vector 𝑊.  

The L1 norm is defined as: 

‖𝑊‖1 = ∑𝑗=1
𝑛  |𝑤𝑗| = |𝑤1| + |𝑤2| + ⋯ + |𝑤𝑛| 

The L2 norm is defined as: 

‖𝑊‖2 = (∑𝑗=1
𝑛  𝑤𝑗

2)
1/2

= (𝑤1
2 + 𝑤2

2 + ⋯ + 𝑤𝑛
2)1/2 

Here, 𝑤𝑗 is the weight of the 𝑗𝑡ℎ feature, and 𝑛 is the number of input features. 

Note that ‖𝑊‖, without subscript, is also conventionally used to represent the L2 

norm of the weight vector 𝑊. 

A linear regression model with the L1 regularization is known as Lasso (least 

absolute shrinkage and selection operator) regression [1, 2], whereas a linear 

regression model with the L2 regularization is called Ridge regression [3, 4]. 

3.2. MATHEMATICS OF L1 REGULARIZATION FOR LINEAR 

REGRESSION 

The general equation of linear regression if having more than one independent 

variable 𝑋 (i.e., input feature) is as follows: 

𝑌 = 𝑏 + ∑  

𝑛

𝑗=1

𝑤𝑗𝑋𝑗                                                (3.1) 

Here, 

𝑌 is the output 

𝑏 is the bias 

𝑛 is the number of input features 

𝑤𝑗 is the weight of the 𝑗𝑡ℎ feature 

𝑋𝑗 is input value of the 𝑗𝑡ℎ feature 

 

The goal of linear regression is to find the best-fit linear equation model that maps 

the relationship between input 𝑋 and output 𝑌, in the form of Equation (3.1) with 
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the optimal weights and bias, which produces the least error (synonymously known 

as loss in machine learning) between the known true output 𝑌 values and predicted 

output 𝑌 values by the model. 

 

Fig. (3.1). Illustration of notations using an exemplary training dataset. 

Let us use lowercase 𝑥𝑖 to denote the feature values of the 𝑖𝑡ℎ sample (out of the 

total 𝑚 rows of samples from training dataset), then 𝑥𝑖𝑗 will be the value of the 𝑗𝑡ℎ 

feature (out of the total 𝑛 input features) at the 𝑖𝑡ℎ sample, as shown in Fig. (3.1). 

Lowercase 𝑦𝑖 is used to represent the known output value (i.e., true output value) 

of the 𝑖𝑡ℎ sample, and �̂�𝑖 is used to denote the corresponding predicted output value 

by the linear equation model. Equation (3.1) is then updated to Equation (3.2). 

�̂�𝑖 = 𝑏 + ∑ 𝑤𝑗𝑥𝑖𝑗

𝑛

𝑗=1

                                           (3.2) 

Here, 

𝑖 𝜖[1, 𝑚] 
𝑚 is the number of training samples 

𝑥𝑖𝑗 is the value of the 𝑗𝑡ℎ feature at the 𝑖𝑡ℎ sample 

𝑏 is the bias 

𝑛 is the number of input features 

𝑤𝑗 is the weight of the 𝑗𝑡ℎ feature 

�̂�𝑖 is the predicted value for the 𝑖𝑡ℎ sample 

 

Up to this step, everything is the same as the original linear regression discussed in 

Chapter 2. The only difference brought by L1 regularization is the change of loss 
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CHAPTER 4 

Logistic Regression  

Abstract: This chapter delves into logistic regression, a widely used machine learning 

algorithm for classification tasks, with a focus on maintaining accessibility by minimizing 

abstract mathematical concepts. We present a concrete numerical example employing a small 

dataset to predict the ease of selling houses in the property market, guiding readers through 

each step of the process. Additionally, we supply sample codes and draw comparisons with the 

logistic regression model available in the scikit-learn library. Upon completion of this chapter, 

readers will have gained a comprehensive understanding of the inner workings of logistic 

regression, its relationship to algorithm implementation and performance, and the knowledge 

necessary to apply it to practical applications. 

Keywords: Logistic Regression, Classification, Numerical Example, Small 

Dataset, Scikit-Learn 

4.1. INTRODUCTION TO LOGISTIC REGRESSION 

Logistic regression is a supervised machine learning algorithm for modeling the 

probability of a discrete output given input features [1, 2]. Despite its name, logistic 

regression is more of a classification model than a regression model. It is commonly 

used to model a dichotomous (binary) output, i.e., anything with two possible 

values/classes/labels, such as true/false, yes/no, 1/0, on/off, good/bad,  malignant/ 

benign, and pass/fail, to name a few. The foundation of logistic regression lies in 

its ability to model the relationship between input features and a categorical 

outcome by utilizing the logistic function, also known as the sigmoid function. This 

function ensures that the predicted probabilities lie within the range of 0 and 1, 

making it suitable for classification tasks. Logistic regression has gained immense 

popularity due to its simplicity, interpretability, and efficiency in various real-world 

applications. Some of these applications include spam filtering, customer churn 

prediction, medical diagnosis, and credit risk assessment. 

Unlike linear regression, logistic regression does not require the assumption of a 

linear relationship between the independent (𝑋) and dependent (𝑌) variables. 

Besides, the errors between the true and predicted outputs need not conform to a 

normal distribution. Moreover, the spread of the errors (i.e., the variance of the 

errors) need not be constant along the values of dependent variables; that is, 

homoscedasticity is not required. However, there are still several essential 

assumptions for logistic regression [3, 4]. Firstly, when there is more than one 

independent variable (𝑋), it requires little or no correlation between the independent 
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variables (i.e., little or no multicollinearity). Secondly, it assumes that the 

independent variable(s) have a linear relationship with the logarithm of the odds; 

odds is just another way of expressing probability (𝑃) and is defined as the ratio of 

the probability of an event occurring to the probability of an event not occurring 

(i.e., 
𝑃

1−𝑃
). Thirdly, by default, logistic regression is used to solve binary 

classification problems, requiring the dependent variable (𝑌) to be dichotomous. 

On the other hand, it is worth mentioning that with some modifications and 

improvements like the one-vs-rest (OvR) method, logistic regression can be scaled 

up for solving multi-class classification problems. Nevertheless, multi-class 

classification is outside the scope of the present chapter as it focuses on binary 

classification using the logistic regression algorithm. 

4.2. MATHEMATICS OF LOGISTIC REGRESSION 

Mathematically, the linear regression discussed in Chapter 2 can be upgraded to 

logistic regression after introducing a sigmoid function for mapping the linear 

output to probability and employing a different loss function. 

In comparison with Equation (2.2) in Chapter 2 for linear regression, the only 

change made to Equation (4.1) here is to use a variable 𝑍 (rather than 𝑌) to represent 

the linear output, which is just an intermediate result in the process of logistic 

regression. 

𝑍 = 𝑏 + ∑  

𝑛

𝑗=1

𝑤𝑗𝑋𝑗                                       (4.1) 

Here,  

𝑍 is the intermediate linear output 

𝑏 is the bias 

𝑛 is the number of input features 

𝑤𝑗 is the weight of the 𝑗𝑡ℎ feature 

𝑋𝑗 is input value of the 𝑗𝑡ℎ feature 

 

The sigmoid function for mapping the intermediate linear output to probability is 

defined as Equation (4.2) and plotted in Fig. (4.1). 
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𝑌 =
1

1 + 𝑒−𝑍
                                                      (4.2) 

Here, 

𝑍 is the intermediate linear output from the linear Equation (4.1) 

𝑌 is the mapped probability 

 

As can be seen from Fig. (4.1), the sigmoid function maps the linear output 𝑍 into 

a probability 𝑌 that is in the range of 0 to 1. The default threshold is 0.5, meaning 

that if 𝑌 ≥ 0.5, it will be rounded up to 1 and predicted as class 1; whereas, if 𝑌 <
0.5, it will be rounded down to 0 and predicted as class 0. 

 

Fig. (4.1). Plot of the sigmoid function. 

 

Fig. (4.2). Illustration of notations using an exemplary training dataset. 
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CHAPTER 5 

Decision Tree  

Abstract: In this chapter, we explore the concept of decision trees, prioritizing accessibility by 

minimizing abstract mathematical theories. We examine a concrete numerical example using a 

small dataset to predict the suitability of playing tennis based on weather conditions, guiding 

readers through the process step-by-step. Moreover, we provide sample codes and compare 

them with the decision tree classification model found in the scikit-learn library. Upon 

completing this chapter, readers will have gained a comprehensive understanding of the inner 

workings of decision tree machine learning, the relationship between the underlying principles, 

and the implementation and performance of the algorithm, preparing them to apply their 

knowledge to practical scenarios. 

Keywords: Decision Tree, Classification, Numerical Example, Small Dataset, 

Scikit-Learn 

5.1. INTRODUCTION TO DECISION TREE 

A decision tree is a diagrammatic representation of a set of choices and the results 

of those choices [1]. Decision tree algorithms have become a popular choice for 

both classification and regression tasks in machine learning due to their inherent 

advantages. These include their ease of interpretability, as the decision-making 

process is explicitly laid out in the tree structure, and their efficient training process. 

Decision trees can handle missing values, automatically select relevant features, 

and easily manage both numerical and categorical data. Furthermore, they are 

robust to outliers and noise in the data. Some of the common applications of 

decision trees include customer segmentation, fraud detection, medical diagnosis, 

and risk management. Due to their comprehensible nature and ability to visualize 

complex decision-making processes, decision trees have found widespread 

adoption in various industries and research fields. Decision tree is a diagram 

showing the several paths to reach a choice under specific constraints. Each branch 

symbolizes the decision space, and its leaf nodes are the outcomes. One node, called 

the root node, is the starting point for the decision tree, and many more branches, 

including decision nodes and leaf nodes. 

For example, as shown in Fig. (5.1), consider a situation where one needs to decide 

whether to go to outdoor sports. The decision tree for this problem may look like 

this: 

Root node: "Should I go to outdoor sports?" 
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Decision node: "Is weather good to support outdoor sports?" 

If yes, leaf node: "Go to play" 

If no, leaf node: "Do not go to play" 

 

Fig. (5.1). A simple decision tree example. 

In this example, the decision node represents the weather condition outside. If the 

condition is met (i.e., the weather is good), the tree leads to the outcome of going 

to play. If the condition is not met (i.e., the weather is not good), the tree leads to 

the outcome of not going to play. 

Now the question might be how to decide which leaf node to select as the root node 

and decision node. For better decision-making, we use Hunt’s algorithm, which 

helps to give a clear understanding of splitting and choosing the important 

parameter for root nodes. 
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5.2. ALGORITHM OF DECISION TREE 

In the context of decision tree learning, a heuristic known as Hunt’s algorithm is 

utilized to determine the optimal split for each node in the tree [2]. It is a procedure 

that iteratively analyzes each feature and the possible value of the feature as a 

candidate split. Then it chooses the one that yields the most significant increase in 

information gain (discussed later). 

Here is the general process of the Hunt algorithm: 

 Calculate the entropy of the current node. Entropy is a measure of the impurity 

or uncertainty of the data at the node. It is calculated based on the frequencies 

of the different classes in the data. 

 Consider each feature and each possible value of that feature as a candidate 

split. Calculate the information gain of each candidate split by comparing the 

entropy of the current node to the entropy of the child nodes that would result 

from the split. 

 Select the split that results in the greatest information gain. 

 Repeat the process for each child node, until the desired depth of the tree is 

reached, or all nodes are pure (i.e., contain only data belonging to a single class). 

 Hunt's algorithm is a popular choice for decision tree learning due to its 

simplicity and efficiency in constructing a decision tree from a dataset. Hunt's 

algorithm has also served as a foundation for the development of other decision 

tree algorithms [3], such as ID3 (Iterative Dichotomiser 3), C4.5 (an extension 

of ID3 that can handle continuous attributes, missing values, and pruning), and 

CART (Classification and Regression Trees). 

As aforementioned, the impurity of a node in a decision tree can be measured using 

entropy, shown in Equation (5.1). Entropy is calculated based on the frequencies of 

the different classes in the data. If the data at a node is completely pure, with all 

data belonging to a single class, then the entropy is zero. On the other hand, if the 

data is equally divided among all classes, then the entropy is at its maximum. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ −𝑃𝑖𝑙𝑜𝑔2𝑃𝑖

𝑛

𝑖=1

                                   (5.1) 

Here, 𝑃𝑖 is the proportion of class i in the node. 

Hunt's algorithm recursively splits the data into smaller and smaller subsets until 

each subset contains data belonging to a single class. At each split, the algorithm 
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CHAPTER 6 

Gradient Boosting  

Abstract: In this chapter, we explore gradient boosting, a powerful ensemble machine learning 

method, for both regression and classification tasks. With a focus on accessibility, we minimize 

abstract mathematical theories and instead emphasize two concrete numerical examples with 

small datasets related to predicting house sale prices and ease of selling houses in the property 

market. By providing a step-by-step walkthrough, we illuminate the inner workings of gradient 

boosting and offer sample codes and comparisons to the gradient boosting models available in 

the scikit-learn library. Upon completing this chapter, readers will possess a comprehensive 

understanding of gradient boosting's mechanics, its connection to the implementation and 

performance of the algorithm, and be well-prepared to apply it in real-world projects. 

Keywords: Gradient Boosting, Ensemble Learning, Regression, Classification, 

Numerical Example, Small Dataset, Scikit-Learn 

6.1. INTRODUCTION TO GRADIENT BOOSTING 

Gradient boosting is a robust ensemble machine learning model that sequentially 

trains a spate of weak learners to produce a more accurate model at the end [1, 2]. 

A weak learner, generally a rather simple decision tree, is a rudimentary machine 

learning model with low prediction accuracy but still better than random guessing. 

As demonstrated in Fig. (6.1), the prediction error of the ensemble model is reduced 

with each new decision tree added and integrated with all the prior decision trees 

[3]. Gradient boosting is an efficient and accurate algorithm that has been applied 

to regression and classification problems in many fields, including engineering, 

healthcare, natural language processing, and computer vision, among others. One 

of the key strengths of gradient boosting is its ability to leverage the collective 

knowledge of multiple weak learners, ultimately generating a more robust and 

accurate model. This is achieved by iteratively focusing on the areas where previous 

weak learners have failed to make accurate predictions and subsequently improving 

upon those areas. As a result, gradient boosting has become a popular choice for 

tackling complex problems and achieving state-of-the-art performance in various 

applications, even outperforming other ensemble methods, such as random forests 

in certain contexts. Its versatility and adaptability make gradient boosting a valuable 

tool in the arsenal of machine learning practitioners and researchers alike.  

The rest of this chapter is organized as follows. Section 6.2 presents the 

mathematics of gradient boosting for regression, followed by the demonstration of 

a numerical example in detail and code comparison in Section 6.3. Analogously, 
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Section 6.4 presents the mathematics of gradient boosting for classification, 

followed by the demonstration of a numerical example in detail and code 

comparison in Section 6.5. 

 

Fig. (6.1). Illustration of gradient boosting. 

6.2. MATHEMATICS OF GRADIENT BOOSTING FOR REGRESSION 

The basic idea of gradient boosting is to iteratively improve the overall model by 

fitting the weak learners to the residuals or gradient of the loss function with respect 

to the previous model's predictions. This process can be viewed as a numerical 

optimization technique that minimizes the loss function over the training dataset. 

The algorithm starts by initializing the model with a constant value. The main loop 

of the algorithm iterates for a predetermined number of iterations (𝑀), and in each 

iteration, the following four steps are performed. Firstly, the pseudo-residuals are 

computed by taking the negative gradient of the loss function with respect to the 

current model's predictions. These pseudo-residuals represent the direction in 

which the model needs to move to minimize the loss function. Secondly, a weak 

learner, typically a decision tree, is fit to the pseudo-residuals. The tree is 

constructed by splitting the input feature space into regions and learning the optimal 

value for each region to minimize the loss function. Thirdly, the optimal values, 
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denoted by 𝛾, are computed for each region by minimizing the loss function with 

respect to the previous model's predictions plus the new weak learner's output. 

Fourthly, the model is updated by adding the weighted output of the new weak 

learner to the previous model's predictions; the weight here, denoted by 𝛼, is a 

shrinkage parameter that controls the learning rate of gradient boosting. Finally, 

these four steps are repeated for 𝑀 iterations, and the final model is a combination 

of weak learners that can make accurate predictions by collectively minimizing the 

loss function. Together with the generic pseudocode [4], the mathematics used in 

gradient boosting for regression is presented in Table 6.1. Common symbols used 

throughout the chapter are 𝑥𝑖, denoting the feature values of the 𝑖𝑡ℎ sample (out of 

the total 𝑛 samples from training dataset); 𝑦𝑖 and 𝐹(𝑥𝑖), representing the true and 

predicted output for the 𝑖𝑡ℎ sample, respectively; 𝑚 and 𝑀, denoting the index of a 

decision tree and the total number of decision trees in the gradient boosting model; 

𝑟𝑖𝑚, representing the residual of the 𝑖𝑡ℎ sample in the 𝑚𝑡ℎ decision tree; 𝑅𝑗𝑚, 

denoting the 𝑗𝑡ℎ leaf node of the 𝑚𝑡ℎ decision tree; 𝛼, referring to the learning rate 

when building the model. 

Table 6.1 Pseudocode and mathematics of gradient boosting for regression. 

Input: Training dataset {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛  and a differentiable Loss Function 𝐿(𝑦𝑖 , 𝐹(𝑥𝑖)) =

1

2
[𝑦𝑖 − 𝐹(𝑥𝑖)]2 

Step 1: Initialize model with a constant value 𝐹0(𝑥) = argmin
𝛾

∑  𝑛
𝑖=1 𝐿(𝑦𝑖 , 𝛾)  

Step 2: for 𝑚 =  1 𝑡𝑜 𝑀: 

(a) Find pseudo-residuals 𝑟𝑖𝑚 = − [
∂𝐿(𝑦𝑖,𝐹(𝑥𝑖))

∂𝐹(𝑥𝑖)
]

𝐹(𝑥)=𝐹𝑚−1(𝑥)
 for 𝑖 = 1,2, … , 𝑛 

(b) Fit the regression tree to the training dataset {(𝑥𝑖 , 𝑟𝑖𝑚)}𝑖=1
𝑛  

(c) For 𝑗 = 1 … 𝐽𝑚 compute 𝛾𝑗𝑚 = argmin
𝛾

∑  𝑥𝑖∈𝑅𝑗𝑚
𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + 𝛾) 

(d) Update 𝐹𝑚(𝑥𝑖) = 𝐹𝑚−1(𝑥𝑖) + 𝛼(𝛾𝑗𝑚|𝑥𝑖 ∈ 𝑅𝑗𝑚) 

Step 3: Output 𝐹𝑚(𝑥) 
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CHAPTER 7 

Support Vector Machine   

Abstract: In this chapter, we investigate Support Vector Machines (SVM) for both linearly 

separable and linearly non-separable cases, emphasizing accessibility by minimizing abstract 

mathematical theories. We present concrete numerical examples with small datasets and 

provide a step-by-step walkthrough, illustrating the inner workings of SVM. Additionally, we 

offer sample codes and comparisons with the SVM model available in the scikit-learn library. 

Upon completing this chapter, readers will gain a comprehensive understanding of SVM's 

mechanics, and its connection to the implementation and performance of the algorithm, and be 

well-prepared to apply it in their practical applications. 

Keywords: Support Vector Machine, Linearly Separable, Linearly Non-Separable, 

Polynomial Kernel, Radial Basis Function Kernel, Numerical Example, Small 

Dataset, Scikit-Learn 

7.1. INTRODUCTION TO SUPPORT VECTOR MACHINE 

Support vector machine (abbreviated as SVM) is a powerful and widely applicable 

machine learning algorithm that has been successfully employed across various 

domains, such as image and speech recognition, natural language processing, 

bioinformatics, and finance, to name a few. The goal of the SVM algorithm is to 

determine, in the space of N dimensions (where N is the number of features), a 

hyperplane that classifies the data points in a clearly distinguishable manner. It is 

defined in such a way that the margin distance between data points from different 

classes is maximized in the N-dimensional space [1, 2]. If the margin distance is 

maximized, then subsequent new data points (previously unseen) will be classified 

with greater confidence. For the linearly non-separable dataset, SVM primarily 

employs a kernel function to map the original data to a high-dimensional Hilbert 

Space to achieve linear separability and thereby resolve the linear non-separable 

problem [3]. Besides, it is worth mentioning that support vectors are just the 

training data points that are closer to the hyperplane. These data points are more 

relevant and critical to constructing an SVM model, as they help determine the 

equation of the separating hyperplane [4]. Fig. (7.1) illustrates a hyperplane, 

support vectors, and margin using a dataset with 10 samples from 2 classes, namely, 

positive (+) and negative (−) classes.  
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Fig. (7.1). Illustration of SVM hyperplane, support vectors, and margin. 

7.2. MATHEMATICS OF SUPPORT VECTOR MACHINE: LINEARLY 

SEPARABLE CASE 

The dataset utilized in Fig. (7.1) has been simplified in an effort to reduce 

complexity. As such, there are now only 2 data points belonging to the positive 

class (+), and 2 data points belonging to the negative class (−), as shown in Fig. 

(7.2). The objective is to find the hyperplane that is tied to the maximum margin. 

Next, we draw a vector �⃗⃗�  (any length) that starts from the origin and is 

perpendicular to the hypothetical hyperplane. In addition, suppose we also have 

previously unseen data �⃗� , and we would like to predict the class of �⃗� , whether it is 

in the + or − class. 

 

Fig. (7.2). Illustration of 2 data points of + class, 2 data points of – class, �⃗⃗�  perpendicular to the 

hypothetical margin, and a previously unseen �⃗� . 
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Project �⃗�  down to the vector perpendicular to the margin (i.e., �⃗⃗� ), if that projection 

is greater than or equal to (≥) certain constant 𝑐, which crosses the median line, 

then it must be a positive (+) data point. This can be expressed mathematically as: 

�⃗⃗� ⋅ �⃗� ≥ 𝑐, then �⃗�  is labeled + 

Simple transformations are performed: 

�⃗⃗� ⋅ �⃗� − 𝑐 ≥ 0 

�⃗⃗� ⋅ �⃗� + 𝑏𝑡 ≥ 0, where 𝑏𝑡 = −c 

The median line of the margin:  

�⃗⃗� ⋅ �⃗� + 𝑏𝑡 = 0 

The edge line (near +) of the margin:  

�⃗⃗� ⋅ �⃗� + 𝑏𝑡 = 𝛿 

Here, 𝛿 is a positive constant 

Divide both sides by 𝛿: 

�⃗⃗� 

𝛿
⋅ �⃗� +

𝑏𝑡
𝛿
= 1 

Let �⃗⃗⃗� =
�⃗⃗� 

𝛿
  and 𝑏 =

𝑏𝑡

𝛿
, 

The edge line (near +) of the margin is updated to: 

�⃗⃗⃗� ⋅ �⃗� + 𝑏 = 1 

The median line of the margin is updated to: 

�⃗⃗⃗� ⋅ �⃗� + 𝑏 = 0 

Symmetrically, as shown in Fig. (7.3), the edge line (near −) of the margin is 

updated to: 

�⃗⃗⃗� ⋅ �⃗� + 𝑏 = −1 
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CHAPTER 8 

K-means Clustering  

Abstract: In this chapter, we explore the K-means clustering algorithm, emphasizing an 

accessible approach by minimizing abstract mathematical theories. We present a concrete 

numerical example with a small dataset to illustrate how clusters can be formed using the K-

means clustering algorithm. Additionally, we provide sample codes and comparisons with the 

K-means model available in the scikit-learn library. Upon completing this chapter, readers will 

gain a comprehensive understanding of the mechanics behind K-means clustering, and its 

connection to the implementation and performance of the algorithm, and be well-prepared to 

apply it in practical use. 

Keywords: K-Means Clustering, Distance Metrics, Numerical Example, Small 

Dataset, Scikit-Learn 

8.1. INTRODUCTION TO CLUSTERING AND DISTANCE METRICS 

In unsupervised learning, the algorithm is not provided with labeled training data. 

Instead, it is only given a set of input examples, and the primary objective of 

unsupervised learning is to uncover the inherent structure or patterns within the 

data, enabling the algorithm to make predictions, decisions, or recommendations 

based on these discovered patterns [1]. This contrasts with supervised learning, 

where the algorithm is given both input examples and corresponding labeled 

outputs and can learn by making predictions and comparing them to the true labels. 

The ability of unsupervised learning algorithms to discover hidden structures and 

relationships in the data without relying on labeled examples makes them 

particularly valuable in situations where obtaining labeled data is challenging, time-

consuming, or expensive. 

Unsupervised learning has a variety of applications, such as anomaly detection, 

clustering, and dimensionality reduction. For example, an unsupervised learning 

algorithm might be used to cluster customers based on their usage of electronic 

devices, with the goal of identifying potential users of blue light filter lenses. One 

cluster may consist of customers who spend a significant amount of time on screens 

and use multiple devices frequently, indicating that they may be potential users of 

blue light filter lenses. Another cluster may consist of customers who use electronic 

devices infrequently, indicating that they may not be interested in purchasing blue 

light filter lenses. The clustering information can provide valuable insights for 

marketing efforts and enable precise targeting of potential customers. 
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There are numerous unsupervised machine learning algorithms available, including 

K-means clustering, principal component analysis, and hierarchical clustering. In 

this chapter, we will delve into the details of K-means clustering. Before using the 

K-means clustering algorithm, it is important to note that distance metrics are 

crucial for accurately measuring the distance between data points in two to n-

dimensional space and forming appropriate clusters. There are four popular 

distance metrics, namely, Euclidean distance, Manhattan distance, Cosine 

similarity, and Chebyshev distance. 

8.1.1. Euclidean Distance  

Euclidean distance is a commonly used distance metric that calculates the distance 

between two points by determining the shortest path between them. The formula 

for calculating Euclidean distance is the square root of the sum of the squared 

differences in the coordinates of the two points. This measure is useful for 

understanding the relationship between data points in a multi-dimensional space. 

Euclidean distance between points A and B is defined as:  

𝐷𝐴𝐵 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + ⋯ + (𝑧2 − 𝑧1)2                (8.1) 

Here, the coordinate of point A is (𝑥1, 𝑦1, … , 𝑧1) and point B is (𝑥2, 𝑦2, … , 𝑧2). 

8.1.2. Manhattan Distance 

Manhattan distance, also known as the taxicab distance, is a distance metric that 

calculates the distance between two points by adding up the absolute differences in 

their coordinates. It is called the taxicab distance because it represents the distance 

that a taxicab would have to travel to get from one location to another if it could 

only move horizontally or vertically.  

Manhattan distance between points A and B is defined as:  

𝐷𝐴𝐵 = |𝑥2 − 𝑥1| + |𝑦2 − 𝑦1| + ⋯ + |𝑧2 − 𝑧1|                      (8.2) 

Here, the coordinate of point A is (𝑥1, 𝑦1, … , 𝑧1) and point B is (𝑥2, 𝑦2, … , 𝑧2) 

8.1.3. Cosine Similarity 

The cosine similarity is a distance metric that determines how similar two vectors 

are to one another by computing the cosine of the angle that separates them. 
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Cosine similarity between A and B is defined as:   

 cos(𝜃) =
𝐴 ⋅ 𝐵

‖𝐴‖ ‖𝐵‖
                                                (8.3) 

Here, 𝜃 is the angle between the vectors A and B. 

𝐴 ⋅ 𝐵 is the dot product of vectors A and B 

‖𝐴‖ and ‖𝐵‖ are L2 norm of the vectors A and B, respectively. 

8.1.4. Chebyshev Distance 

Chebyshev distance, also known as the chessboard distance, is another metric that 

measures the distance between two vectors in a vector space. It is calculated by 

determining the greatest difference between the two vectors along any coordinate 

dimension. 

Chebyshev distance between points A and B is defined as:  

𝐷𝐴𝐵 = 𝑀𝑎𝑥(|𝑥2 − 𝑥1|, |𝑦2– 𝑦1|, … , |𝑧2– 𝑧1|)                  (8.4) 

Here, the coordinate of point A is (𝑥1, 𝑦1, … , 𝑧1) and point B is (𝑥2, 𝑦2, … , 𝑧2). 

8.2. ALGORITHM OF K-MEANS CLUSTERING 

K-means clustering was first developed by Stuart Lloyd at Bell Labs in 1957 for 

pulse-code modulation. The idea was not publicly published outside of the company 

until 1982. The K-means clustering algorithm is also known as the Lloyd-Forgy 

algorithm due to the development of a nearly identical method by Edward W. Forgy 

in 1965 [2]. It has since become a widely used algorithm in the field of unsupervised 

machine learning for clustering data into groups with similar characteristics. 

Let us understand the working of the K-means algorithm and how it forms clusters. 

If we were given the centroids for an unlabeled dataset, it would be easy to label all 

the samples by assigning each of them to the cluster with the closest centroid. On 

the other hand, if we were provided with the labels for all the samples, we could 

easily find all the centroids by calculating the mean of the samples for each cluster. 

However, since neither the labels nor the centroids are given to us, it is unclear how 

to proceed. To get started, we can simply place the centroids randomly (e.g., by 

selecting k samples at random and using their positions as the initial centroids). The 
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