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PREFACE 

 

Nowadays, huge amounts of chemicals are commercialized, shipped, stored, and 

converted to ensure the commercial availability of goods for daily use. Different 

hazards are involved in the use of these chemicals due to their intrinsic 

physicochemical properties, such as flammability, explosibility, and toxicity. 

Several accidents such as explosions, fires, and toxic exposure occurred in the 

past due to these hazards in chemical and process industries and serious 

consequences for people, buildings, and the environment resulted from these 

accidental events. 

The present e-book has been developed in the framework of the European project 

“Erasmus+ Programme – Strategic Partnership SAFENGINE (Project Nr: 2020-1-

RO01-KA203-080085)”. The book has been designed for Bachelors and Masters’ 

students in chemical, materials, and environmental engineering, chemistry, 

environmental science, and related disciplines.  The possible audience of this 

book also includes PhD students and experts with a background in chemical 

and/or environmental engineering. It provides basic knowledge of safety 

procedures and experimental techniques for evaluating risks related to the storage, 

transport, and transformation of hazardous materials. To regard safety issues 

within industrial plants from a broader perspective, the e-book discusses  the 

management of contaminated industrial sites, focusing on risk assessment to set 

remediation goals. Moreover, as the design and realization of most of these 

industrial plants undergo the Environmental Impact Assessment (EIA) procedure, 

their operation may turn out to be a relevant scenario for the preventive evaluation 

of the wider health implications. To this end, the course will also approach the 

Health Impact Assessment within EIA studies. 

The book is organized as follows. Fundamentals of thermal explosions and 

calorimetric techniques are presented in Chapters 1-3. Homogeneous and 

heterogeneous explosions are described in detail in Chapters 4-7. Consequences 

of fires and heterogeneous explosions are introduced in Chapter 8, along with 

selected approaches to properly estimate damages related to these accidents in 

chemical and process industries. Basic knowledge of industrial hygiene and 

toxicology in the chemical industry is provided in Chapter 9. Preventive safety 

measures (i.e., inertization and ventilation of working environments) and 

protective measures (i.e., venting and use of extinguishing agents) are presented 

in Chapter 10 as an approach to reduce the risk related to potentially dangerous 
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chemicals in chemical and environmental processes. The risk assessment applied 

to industrially contaminated sites is fully presented in Chapter 11. Finally, the 

health impact assessment within environmental impact assessment studies is 

described in Chapter 12. 

The chemical and environmental safety procedures thoroughly discussed in the 

present book aim at addressing many of the Sustainable Development Goals 

(SDGs) formulated in 2015 by the United Nations General Assembly.  

More in detail, theoretical principles and practical examples of safety approaches 

are provided to meet the following targets: 

- Goal 3 (i.e., “Good health and well-being”). A reduction in illnesses and deaths from 

hazardous chemicals and pollution may arise by adopting the safety procedures and 

assessments reported in Chapter 10, 11, and 12. 

- Goal 6 (i.e., “Clean water and sanitation”). An improvement in water quality, 

wastewater treatment and safe reuse, along with increased protection of water-related 

ecosystems may result from the application of the chemical and environmental 

approaches described in Chapter 9, 10, 11, and 12. 

- Goal 7 (i.e., “Affordable and clean energy”). An expansion and upgrade of energy 

services may arise from the safe management of energy companies. In this regard, the 

basic principles of explosions and fires reported in Chapters 1-8 should be known to 

properly design and control industrial work environments. 

- Goal 8 (i.e., “Decent work and economic growth”). The overall content of the present 

book aims at improving resource efficiency in consumption and production (i.e., 

Chapters 1÷8) and promoting safe working environments (Chapters 9÷12). 

- Goal 9 (i.e., “Industry, Innovation, and Infrastructure”). The overall book content 

seeks to promote inclusive and sustainable industrialization. 

- Goal 12 (i.e., “Responsible consumption and production”) The following specific 

targets are covered in  the present book: i) achieving the environmentally sound 

management of chemicals and waste throughout their life cycle; ii) reducing waste 

generation through prevention, reduction, recycling, and reuse; iii) encouraging 

companies to adopt sustainable practices. 

- Goal 14 (i.e., “Life below water”) and Goal 15 (i.e., “Life on land”). The safe 

practices regarding the proper management of thermally unstable substances and 

toxic chemicals reported in this book aim at protecting terrestrial and marine 

ecosystems. 
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CHAPTER 1 

Introduction to Chemical Safety in Chemical and 

Process Industries 

Abstract: Accidental events in chemical and process industries may have catastrophic 

consequences. The present chapter aims at discussing the hazards and risks in chemical and 

process industries, where chemical species are used and/or transformed. After defining the 

concept of chemical risk, the possible accidental events in the process industry are presented 

based on their probability of occurrence. Some examples of relevant chemical accidents that 

occurred in the past are thoroughly discussed further. Safety measures (i.e., preventive and 

protective procedures) in safety and process industries and primary and secondary reactions are 

also described. Finally, a screening method capable of providing a hazard evaluation by 

calculating the power released during the thermal decomposition of a substance (i.e., the 

CHETAH method) is presented. 

Keywords: Accidents, Risk, Probability, Primary and Secondary Reactions, 

Chetah Method. 

INTRODUCTION 

Although not frequently, even at the beginning of the third millennium, accidents 

still happen in the process industry. Governmental agencies (e.g., the US Chemical 

Safety Board) and private associations provide up-to-date databases reporting 

accidents in chemical and process industries in different countries and their 

consequences. In 2012, the European Parliament approved the European directive 

2012/18 to reduce the frequency of occurrence and mitigate the consequences of 

chemical accidents. An in-depth knowledge of the specific site, the properties of 

the substances used, the equipment and the safety measures to be adopted are 

needed to comply with the European Directive 2012/18. More in detail, this 

directive applies to all sites where dangerous substances are employed in 

quantities greater than a fixed threshold value [1]. As a chemical plant consists of 

hundreds of devices, it is necessary to understand on what equipment the attention 

should be focused on to carry out a detailed and appropriate safety analysis [2]. 

This approach can be implemented by means of the so-called index methods in 

which, based on the values assumed by certain indices, the equipment to be 

submitted to a more detailed analysis is selected. 
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Once the equipment is identified, suited procedures should be applied to evaluate 

in what incidental scenarios the system may be involved (see the examples below). 

All incidents in process and chemical industries evolve in three phases: 

1. Initiation: it represents the event that initiates the accidental event. 

2. Propagation: it represents the phase allowing the accidental event to evolve. 

3. Termination: it represents the event that stops the accident. 

The intrinsic properties of the substances are as follows: 

 Flammability. 

 Explosivity. 

 Toxicity. 

The intrinsic properties cannot be eliminated. However, their manifestation can be 

prevented. 

RISK IN CHEMICAL AND PROCESS INDUSTRIES 

In order to properly define accidental scenarios, it is necessary to know the 

consequences of accidents and the probabilities of their occurrence. This approach 

is part of the risk analysis [1, 2]. 

The risk of accidental events is the product between the impact of likelihood (i.e., 

P, probability) and the impact of magnitude (i.e., M, consequence): 

                                                         R = P ∙ Mα   (1) 

where α is an amplification superscript value (>1) accounting for the impact of the 

accidental event on public opinion. 

To decrease the risk, the probability or the magnitude (or both) has to be reduced. 

Example 1 

A jacketed reactor, in which an exothermic reaction is carried out and cooling water 

flows to remove the heat generated, is considered in Fig. (1).  

The reactor is batch-type with respect to A and continuous with respect to B (i.e., 

fed-batch reactor). 
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Fig. (1). Example of chemical reactor: batch mode with respect to A; continuous mode with respect 

to B. 

The following procedures to identify and analyze incidental scenarios can be 

employed: 

1. Hazop. 

2. “What if” analysis. 

According to the “What if” analysis, the following questions are considered: what 

happens if the cooling pump breaks? What happens if the actual supply flow rate 

of B is greater than its project flow rate? 

The result of this analysis is the identification of possible accidental scenarios and 

safety measures to reduce the frequency of occurrence and/or the consequences of 

accidents in chemical and process industries. 

For example, a temperature sensor could be inserted for the previous reactor (see 

Fig. (2)) so that, as soon as the temperature exceeds a certain value, the alarm sound 

starts up and a technician activates an auxiliary cooling circuit or closes a valve that 

interrupts the supply of B: 

 

Fig. (2). Example of reactor endowed with temperature sensor. 

By  means  of  logical procedures (i.e., the “event tree” and the “fault tree”, see Fig. 

(3)) an initiating event, such as the rupture of the pump, is set. Subsequently, a chain 

of events that can lead to an explosion is generated: 
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CHAPTER 2 

Theory of Thermal Explosions 

Abstract: The theory on thermal explosions according to Semenov’s approach is thoroughly 

described in this chapter. The main calorimetric tests to be carried out for a safe thermal analysis 

are also reported. The thermal inertia is defined and its effects on the characterization of reactive 

chemical systems is evaluated. 

Keywords: Adiabatic Condition, Non-Adiabatic Case, Runaway Phenomenon, 

Semenov Theory, Thermal Inertia. 

INTRODUCTION 

Thermal explosions occur in chemical systems due to the presence of thermally 

unstable substances that decompose at certain temperatures, releasing high amounts 

of energy and gas [1]. 

The following conditions are needed for a thermal explosion to occur:  

- An exothermic reaction that is capable of developing heat during its evolution. 

- A runaway phenomenon (i.e., a system overheating) since the power generated 

is greater than the power exchanged with the surroundings. 

- A pressure increase due to the generation of gases by the reaction and/or the 

increase in vapour pressure of the liquid mixture. 

RUNAWAY PHENOMENON 

As shown in Fig. (1), an anomaly causing an incomplete heat removal occurs in the 

cooling system at t0 time. 

Subsequently, the rate of the heat released by the reaction and the temperature 

increase resulting in a further increase of the reaction rate. This dependence can be 

easily predicted based on the kinetic constant dependence on the temperature [2]. 

The reaction rate may be expressed by the following law: 

v =  k0 ∙ exp (−
E

RT
) ∙ f(C)              (1) 
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Where: 

k0 = Pre-exponential factor. 

E = Activation energy of the reaction. 

f(C) = Function of the reagent concentration. 

 

Fig. (1). At t = t0 a runaway phenomenon occurs. 

If no significant pressure increases happen during this event, no explosions occur.  

However, the production of gaseous species is often associated to a runaway 

phenomenon, resulting into a pressure increase.  

The following exothermic reaction can be considered: 

A → P                    ∆H < 0   

The thermal power generated by this reaction can be evaluated by using the 

following equation: 

 PG = V ∙ v ∙ Q   (2) 

Where: 



30    Safety in Chemical and Process Industries Fabbricino et al. 

V = Volume of the reacting mass. 

v = Reaction rate (moles/ volume∙time). 

Q = Heat developed by the reaction (energy/moles). 

SEMENOV THEORY 

The Semenov theory [1] has been developed in the following two parts: 

1. Under adiabatic conditions. 

2. When heat exchange is allowed. 

Adiabatic Case 

A substance defined as potentially hazardous based on preliminary screenings (i.e., 

by using the CHETAH method) should be submitted to further experimental 

assessment via calorimetric tests under adiabatic conditions. 

This theory considers a generic exothermic reaction A (reagent) → P(product) 

occurring under adiabatic conditions. 

If this is the case, the (T, t) diagram reported in Fig. (2) can be considered: 

 

Fig. (2). Thermogram for identifying the time to maximum rate. 

where: 

T0 = Starting temperature. 

Tf = Final temperature achieved when all the reagent is consumed. 
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CHAPTER 3 

Calorimetric Techniques for Thermokinetic 

Characterization 

Abstract: Calorimetric techniques allow us to evaluate the kinetics and heat developed during 

a reaction. In this chapter, adiabatic and scanning calorimeters are presented. An application of 

adiabatic calorimetry to evaluate Self Accelerating Decomposition Temperature (SADT) is also 

presented. 

Keywords: Adiabatic Calorimetry, Scanning Calorimetry, Sadt Determination, 

Dta, Dsc. 

INTRODUCTION 

Calorimetric studies enable complete kinetic and thermodynamic analyses of 

thermal decomposition reactions [1]. 

Two different approaches may be employed to characterize the thermal behavior of 

a chemical system: 

 Adiabatic calorimetry; 

 Scanning calorimetry. 

Adiabatic Calorimetry 

Adiabatic calorimeters are used to observe the behaviour of the investigated 

systems in the worst conditions. Until a few decades ago, in order to achieve 

adiabatic conditions, heat exchange was prevented by using materials with low 

exchange coefficients and increasing their thickness.  

Indeed, the exchanged power PS can be estimated as follows: 

 PS = U ∙ a ∙ (T − TE)   (1) 

Where: 

U is the global heat transfer coefficient. 
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a is the surface area through which the heat transfer takes place. 

T − TE is the driving force. 

Modern adiabatic calorimeters (i.e., Accelerating Rate Calorimeters, ARC) try to 

reduce the T − TE driving force [1]. 

ARC calorimeters try to keep the driving force nearly zero during the run. The 

layout of an ARC calorimeter is reported in Fig. (1). 

 

Fig. (1). ARC calorimeter scheme. 

In the area where the chemical system is inserted, heat is developed so that T rises. 

A thermocouple reads the T1 temperature of the reacting mixture container and 

compares its value with the T2 temperature of the surrounding walls. 

If T1>T2, a heat exchange occurs. 

If T1≃T2, no heat exchange occurs. 

The walls of the calorimeter contain electric resistances connected to an electric 

power generator. 

A controller measures and compares T1 and T2. As T1 increases, it activates the 

power generator to ensure that T2 increases accordingly. 
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An interesting feature of the instrument is that it is equipped with a pressure 

transducer. Consequently, it is possible to obtain a pressure-time diagram, in 

addition to the temperature-time trace (Fig. 2). 

On the other hand, ARC calorimeters present the following drawbacks: 

 ARC devices are not suitable for quick thermal decomposition reactions 

(
dT

dt
> 10°C/min): In this case, instrument electronics cannot immediately 

ensure that ΔT≃0; 

 Reacting mixture containers are metallic (steel or titanium). They are very small 

(volume of about 5 millilitres). Possible catalytic effects may be observed 

during calorimetric tests. 

 

Fig. (2) Thermogram obtained during an ARC test. 

To carry out calorimetric tests correctly, it is necessary to know (at least 

approximately) the temperature at which the system shows reactivity. The system 

is initially provided with a certain amount of heat which can cause a temperature 

increase from ambient value to one which has been chosen on the basis of literature 

indications. Once this temperature is reached, the system waits a certain time so 

that everything is balanced, switching off the generator. 
dT

dt
  value is calculated in a 

certain time interval and it is compared with a threshold value, which is typically 

about 0.02°C/min: 
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CHAPTER 4 

Homogeneous Explosions 

Abstract: Gas and vapour explosions can be classified as homogeneous and heterogeneous. 

Homogeneous explosions are characterized by an autoignition temperature and a delay time to 

ignition. 

Keywords: Homogeneous Explosion, Heterogeneous Explosion, Autoignition 

Temperature, Delay to Ignition. 

INTRODUCTION 

The classification of possible explosions in process industry is reported in Fig. (1). 

 

Fig. (1). Classification of possible explosions in process industry. 

Thermal explosions affect liquids and solids, and their occurrence does not require 

the presence of an ignition source. 

Triggered explosions concern mixtures of gases and vapors and require the 

presence of a mixture of fuel and oxidizer. In this case, a luminous zone appears 

and spreads by supplying energy at a certain point of the mixture containing a 

flammable species. As a result, over time, the mixture is increasingly affected by a 

flame propagation phenomenon. 
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If the same mixture is brought to a temperature higher than the surroundings in the 

absence of a conventional triggering (for example, spark, little flame, etc.), a 

luminous phenomenon always occurs instantly affecting the whole gaseous volume. 

STUDY OF EXPLOSIONS IN GAS AND VAPOUR SYSTEMS 

Therefore, gas and vapour explosions are divided into two categories [4]:   

 Homogeneous explosions in which the flame instantly affects the entire volume;  

 Heterogeneous explosions in which the flame first appears in a certain zone of 

the mixture and then extends to the whole volume (flame propagation 

phenomenon). 

Homogeneous explosions are nominally classified as not triggered. However, high 

temperatures could be considered as the trigger of the gas/vapour mixture. 

In case of homogeneous explosions, there is a common general trend of the pressure 

against the temperature as reported in Fig. (2). 

 

Fig. (2). Explosive and non-explosive areas. 

The plane is divided into two areas by the curve: an explosive zone and a non-

explosive zone, in which the curve is the geometric locus of the points representing 

boundary values of temperature and pressure. 
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At a fixed pressure P1, the system produces a homogeneous explosion only if the 

corresponding temperature reaches a value a little higher than T1.  

T1 is defined as autoignition temperature TAi [4]. 

However, it is noteworthy that for temperature values lower than TAi, the system is 

reactive, but the rates of the reaction are rather contained so that no explosive 

phenomena occur. 

Some examples of common substances such as benzene, ethylbenzene and toluene 

showing this behaviour are reported in Fig. (3). 

 

Fig. (3). Diagram Pressure-temperature for Benzene, toluene and ethylbenzene.  

It is necessary to underline that when a system is not explosive, it doesn’t mean that 

it is not reactive: there is a zone called slow oxidation where the systems can also 

be reactive, but reaction rates are rather contained to not lead to an explosive 

phenomenon. 
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CHAPTER 5 

Heterogeneous Explosions I 

Abstract: Heterogeneous explosions are very common accidental typologies in chemical and 

process industries. The lower and upper flammability limits are presented in the present chapter. 

These threshold values differ depending on the mixture composition, as reported in detail. 

Keywords: Heterogeneous Explosion, Fire Triangle, Flammability Test, Lower 

Flammability Limit, Upper Flammability Limit. 

INTRODUCTION 

Heterogeneous explosions are very common in the chemical industry.  

Their typical phenomenology involves a luminous phenomenon that appears at a 

certain point of the mixture and then expands in the whole volume. 

An ignition source located in the surroundings of this primary point provides the 

energy required to trigger the explosion. 

Heterogeneous explosions are very different from autoignition phenomena and 

occur only if the local ignition source is present. 

A complete prevention of explosive phenomena by eliminating all possible ignition 

sources cannot be ensured, as undisclosed ignition sources may be present.  

THE FIRE TRIANGLE 

As shown in Fig. (1), three conditions are necessary, but not sufficient, to have 

heterogeneous explosions [2]: 

1.  A fuel should be present; 

2.  An oxidizing agent or air should be present; 

3.  An ignition source should trigger the combustion reaction. 

4. The fuel must be present in a certain concentration under the flammability 

range. 
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Fig. (1). The fire triangle. 

In some cases no explosions occur even if all those three conditions are verified 

since a further condition should be satisfied: 

Flammability Test 

The following testing tube is commonly employed to evaluate phenomena related 

to heterogeneous explosions: 

 

Fig. (2). Glass tube for flammability test. 
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The use of a glass tube allows an accurate cleaning after each test and lets the 

operator check the phenomenon progression inside the tube. 

The glass tube has a length of about 150 centimeters and a diameter of about 10 

centimeters. 

At the beginning of the test, the tube is totally closed and is put in connection with 

a vacuum pump. Vacuum conditions are necessary to guarantee the complete 

elimination of air and the regulation of oxygen concentration to a fixed value. 

Thanks to the small taps reported in Fig. (2), air and fuel are fed in a specific ratio. 

A small fan is used to homogenize the mixture in the tube and obtain the same 

concentration of fuel and air at each point of the vessel. 

The system should be open during the explosion in order to avoid the tube rupture 

by increasing the pressure inside it. 

As an example, the behaviour of a methane-air mixture can be considered.  

After creating vacuum conditions, methane is fed and the fan homogenizes the 

mixture to obtain a fuel concentration of about 1 vol.%. 

An ignition source is needed to trigger the reaction. The trigger should be located 

near the tube side that has been opened to avoid vessel rupture. 

This outlet let all gases produced by the combustion out of the vessel. The trigger 

can be represented by the ignition candle of a combustion engine (i.e., a small 

electrical circuit emitting a spark with a certain quantity of energy). 

With a methane concentration in air of about 1 vol.%, no explosions occur.  

The experiment can be repeated several times by using the following procedure:  

1. Creating vacuum conditions;  

2. Preparing the mixture at a fixed fuel concentration;    

3. Homogenizing the mixture in the vessel;   

4. Opening the tube on one side before triggering. 

By fixing a methane concentration in air of 5 vol.%, a bright area (i.e., the flame) 

appears in the surroundings of the ignition point: 
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CHAPTER 6 

Heterogeneous Explosions II 

Abstract: Flammability limits depend on different parameters, such as pressure and flame 

propagation direction. In the present Chapter, Le Chatelier’s equations and the Flash Point and 

Upper temperature are presented. The Minimum Oxygen Content is also defined. 

Keywords: Flammability limitss, Le Chatelier’s equations, Flash Point 

temperature, Upper temperature, Minimum Oxygen Content. 

INTRODUCTION 

As reported in Chapter 5, heterogeneous explosions may occur only if the three 

required components of the fire triangle (i.e., combustible, comburent, and ignition 

source) are present. Moreover, each component should have specific values for the 

heterogeneous explosion to happen. More in detail, the volume percentage of 

combustible should belong to a flammability range and the oxygen content should 

exceed a minimum value. The flammability of the vapours in equilibrium with a 

liquid combustible stored in a tank can also be evaluated by estimating the Flash 

Point and Upper temperature, as reported below. 

FLAMMABILITY LIMITS 

Flammability limits also depend on pressure. Indeed, different values of LFL and 

UFL may be observed at a pressure higher than the atmospheric pressure. Table 1 

reports literature data on the effect of the starting pressure of a mixture on the 

flammability range. 

The lower flammability limits do not depend on the starting pressure. On the other 

hand, an increase in the upper flammability limits is observed with increasing 

pressure, thus extending the flammability range. A remarkable increase in the upper 

flammability limit is observed for methane-air mixtures with increasing starting 

pressure. 

For practical purposes, it is noteworthy to remember that increasing values of 

temperature and pressure result in a lower level of safety. Indeed, wider 

flammability ranges and higher likelihoods of explosive phenomena occur with 
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rising temperature and pressure conditions. Preventing the formation of flammable 

mixtures is the best approach to avoid irreversible explosive phenomena [1]. 

Table 1. Variation in flammability limits as a function of pressure. 

GAS PAIR 

PRESSURE 

10 atm 50 atm 124 atm 

Hydrogen - air 10.1 - 68.7 10.0 - 73.3 9.9 - 75.0 

Methane - air 5.9 - 17.2 5.7 - 29.5 5.7 - 45.5 

 

By considering a testing tube in which the ignition source is located close to the 

outlet, three different flame propagation directions may be adopted (Fig. 1): 

1. Upward: the flame moves from the bottom to the upper part of the tube. 

2. Downward: the flame moves from the upper part to the bottom of the tube. 

3. Horizontal: the tube’s direction is parallel to the ground plane. 

 

Fig. (1). Different propagation directions to the flame in a testing tube. 

Table 2 reports the data obtained in experiments on the flammability limits of a 

methane-air mixture at ambient temperature and atmospheric pressure depending 

on the flame propagation direction. Small differences in the flammability limits 

may be observed in three cases. 
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Table 2. Flammability limits of methane in air depending on the flame propagation 

direction. 

TUBE DIAMETER 

(cm) 

PROPAGATION 

UPWARD HORIZONTAL DOWNWARD 

2.5 5.80 - 13.20 6.20 - 12.90 6.30 - 12.80 

5.0 5.40 - 14.25 5.65 - 13.95 6.12 - 13.25 

7.5 5.35 - 14.85 5.40 - 13.95 5.95 - 13.35 

 

It is necessary to show  dependence of the flammability limits on the starting 

temperature of the mixture. In particular, the following expressions may be 

employed: 

 LFLT = LFL25 −
0.75

│ΔHC│
(T − 25) (1) 

 UFLT = UFL25 +
0.75

│ΔHC│
(T − 25) (2) 

Where T is the temperature expressed in °C and ΔHC is the combustion enthalpy 

given in Kcal/mol. 

If T > 25 ⇒ −
0.75

│ΔHC│
(T − 25) has negative values ⇒ LFLT < LFL25. 

Fig. (2) shows an example of diagrams regarding the flammability limits that can 

be easily found in the literature survey [1]. It reports on the effect of the starting 

temperature on the flammability limits of ammonia in the air at atmospheric 

pressure (the different symbols indicate measurements performed by different 

researchers). As the starting temperature increases, the flammability range extends. 
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CHAPTER 7 

Heterogeneous Explosions III 

Abstract: Triangular flammability diagrams are herein presented as useful tools to evaluate the 

flammability of air-combustible mixtures. The nose-type diagrams and the Minimum Ignition 

Energy are also described in the following chapter. 

Keywords: Triangular Flammability Diagram, Nose-Type Diagrams, Minimum 

Ignition Energy, Quenching Diameter, Flame Arrester. 

INTRODUCTION 

By referring once again to the fire triangle presented in Chapter 6, heterogeneous 

explosions may occur only if an ignition source is present. Moreover, a minimum 

ignition energy is required for the explosion to take place. Besides the fire triangle, 

another complex and more detailed tool (i.e., the triangular flammability diagram) 

maybe employed to evaluate the flammability of all possible ternary mixtures made 

of air and comburent. In addition, the NOSE-type diagrams are used to evaluate the 

volume percentage of inert gas to be employed in order to inhibit the flame 

propagation phenomenon. 

TRIANGULAR FLAMMABILITY DIAGRAM 

To have a complete picture of the behavior of a ternary mixture formed by fuel, 

oxygen, and an inert, triangular flammability diagrams may be used (Fig. 1): 

Triangular flammability diagrams provide several information on the flammability 

of the infinite possible ternary mixtures made of a comburent, a combustible, and 

an inert gas at T=25°C and P=1 atm. Indeed, data on MOC and flammability limits 

are available in the literature survey only for a limited number of mixtures. 

As shown in Fig. (1), the three vertexes of the triangle refer to the pure elements 

(i.e., fuel, inert species, and comburent). The sides represent the binary mixtures of 

the two pure components at the corresponding vertexes. The internal points of the 

triangle represent ternary mixtures.  
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Fig. (1). Triangular flammability diagram of different possible fuel O2-N2 mixtures (T=25°C and 

P=1 atm). 

In order to evaluate the composition of ternary mixtures represented by the red point 

in Fig. (1), a simple procedure may be employed. By drawing three lines 

intersecting the red point and parallel to the triangle sides, the volume concentration 

of each pure component opposite to the parallel line can be evaluated. As an 

example, by drawing a line intersecting the red point and parallel to the side ''O2-

fuel mixtures'', a constant concentration of N2 may be obtained, that is the N2 

concentration of the considered mixture. 

The area filled with green dotted lines represents the flammability zone. On the 

oxygen-nitrogen side, the point representing the air composition is indicated in Fig. 

(1). The flammability zone may be obtained via experimental investigations. 

By connecting the air point and the fuel vertex, the air line (purple) representing all 

possible air-fuel mixtures is obtained. Where the air line intersects the flammability 

zone, the flammability limits (i.e., LFL and UFL) of the fuel in the air may be 

identified. 

On the O2-fuel side, that is where the N2 concentration is zero, the LFL and UFL 

values in O2 may be distinguished. By connecting the stoichiometric O2 

concentration with the N2 vertex, the green dotted segment may be obtained. The 

intersection of this segment with the MOC line represents the vertex of the 

flammability zone. 
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By simply connecting the point representing a mixture with the air point, it can be 

concluded that an explosion in the air may occur if this segment crosses the 

flammability zone. 

In conclusion, the triangular flammability diagram allows us to directly estimate 

the flammability risk of a gaseous mixture [1]. 

Nose-type Flammability Diagrams 

By adding a certain quantity of inert species to a fuel-air mixture whose 

composition belongs to the flammability range, the flame propagation phenomenon 

may be inhibited. To this aim, the number of inert species to be added depends on 

the starting volumetric percentage of the fuel and the inert substance considered. 

The ''Nose-type diagrams'' are obtained by plotting the volume percentage of inert 

gas versus the volume percentage of fuel in air. An example of a nose-type diagram 

for methane-air mixtures in the presence of different inert gases is reported in Fig. 

(2). In the absence of additional inert gases (i.e., when x=0), an LFL value of 5% 

and a UFL value of 15% may be obtained for the methane-air mixture, as previously 

reported. By increasing the inert gas percentage on the x-axis, the flammability 

range progressively narrows until no propagation phenomena may occur. 

 

Fig. (2). Flammability limits of various methane-inert gas-air mixtures at T=25°C and P=1atm. 
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CHAPTER 8 

Consequences of Heterogeneous Explosions and 

Fires 

Abstract: Heterogeneous explosions may occur in confined systems, thus leading to confined 

explosions. In the present chapter, mechanical and chemical explosions in confined and 

unconfined systems are considered, focusing the attention on their consequences by adopting 

the TNT-Equivalency method. Additional incidental typologies, such as Pool fire and BLEVE, 

are also described. 

Keywords: Bleve, Chemical Explosion, Confined Explosions, Mechanical 

Explosion, Multi-Energy Method, Pool Fire, Tnt-Equivalency Method.  

INTRODUCTION 

The possibility of a heterogeneous explosion to occur in confined or unconfined 

environments leads to different possible accidental scenarios with potentially 

dangerous consequences for people and industrial facilities. Heterogeneous 

explosions may be classified in chemical explosions (i.e., where a combustible is 

triggered in the presence of a comburent and an ignition source) and mechanical 

explosions (e.g., explosions caused by the rupture of a tank containing a 

compressed inert gas). Several methods to evaluate the consequences of these 

accidental events are reported. Herein, the TNT-equivalency method is described 

in detail. Moreover, further incidental typologies, such as Pool fire and BLEVE, are 

presented. 

CONFINED EXPLOSIONS 

A heterogeneous explosion in a completely confined system is considered, that is, 

in a system in which the mixture is contained in a non-adiabatic vessel capable of 

withstanding the final pressure (i.e., no vessel breakage occurs) [1]. 

The spherical vessel shown in Fig. (1) is considered. 

Where r is the radius of the container and rB is the radius of the sphere containing 

burnt gases at a time t after ignition. 
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Fig. (1). Schematization of the flame propagation in a closed spherical vessel. 

Vacuum is preventively created inside the vessel and then the flammable mixture 

is loaded at a fuel concentration in air within the flammable range. Initially, 

atmospheric pressure and ambient temperature conditions are adopted. The mixture 

is triggered from the center of the vessel by giving the mixture an amount of energy 

enough for the ignition of a deflagration phenomenon for the fuel adopted. In the 

case of a spherical container, gradually, a spherical reaction front expands at a speed 

lower than that of the sound in the same medium and its radius grows up r which is 

reached when the mixture is completely consumed. 

From the phenomenological point of view, starting from the atmospheric initial 

pressure, the pressure trend versus time reported in Fig. (2) is observed, (PM is the 

maximum pressure observed).  

 

Fig. (2). Trend of pressure versus time measured inside a vessel during a confined explosion. 
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In the first stage, a sigmoid is observed, that is, a curve with an inflection point at 

which the derivative 
dP

dT
 reaches a maximum. For longer reaction times, since the 

container is not adiabatic, the pressure trend is described by the blue dotted curve 

in Fig. (2). 

Even for vessels with good heat exchange capacities, if the phenomenon is fast 

(e.g., in the case of a combustion) the first stage until PM can be considered as 

adiabatic because the time scale is very small. 

An empirical law, known as cubic law, is associated to this phenomenon: 

 
dP

dt
(max)V1/3 = KG   (1) 

With KG being a constant. It is possible to use an approximate model to explain the 

cubic law. 

It can be assumed that the relationship of Lewis-Von Elbe is valid: 

 
P−PI

PM−PI
=

mB

m0
   (2) 

Where: 

- P is a generic pressure at time t; 

- PI is the initial pressure; 

- PM is the maximum pressure; 

- mB is the mass of burnt gases; 

- m0 is the total initial mass.  

P and mB vary over time. 

The relationship of Lewis-Von Elbe intuitively shows how, as the mass of burnt 

gases increases, P also increases. Therefore: 

 mB = 0 ⟶  P = PI and mB ↑⟶  P ↑   (3) 

The ratio between the masses can be assumed to be proportional to the ratio of the 

volume of the burnt gases and the volume of the sphere through a proportionality 

coefficient α =
ρB

ρ0
: 
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CHAPTER 9 

Toxicology and Industrial Hygiene 

Abstract: In this chapter, the main routes of exposure to toxic chemicals and methods of 

eliminating them by the human body are presented. In particular, both defense and 

biotransformation mechanisms are described. The threshold limit values (TLV) and Material 

Safety Data Sheets are also introduced. 

Keywords: Biotransformation,  Industrial Hygiene,  Material Safety  Data  Sheets, 

N-Octanol-Water Partition Coefficient, Toxicology, Threshold Limit Values. 

INTRODUCTION 

Toxic substances are chemicals capable of exerting adverse effects on biological 

organisms. Toxicity is thus an important property of substances that may cause 

damage to the human body. 

Toxicology 

Toxicology examines the way the uptake of toxic substances may occur in living 

organisms (e.g., contact, stomach, and inhalation). The toxic effect of hazardous 

chemicals on both ecosystems and human health is also considered, along with the 

possible defense mechanisms (i.e., excretion or accumulation) [1]. 

As reported in Fig. (1), four different routes of exposure to toxic chemicals may be 

distinguished: 

1. Ingestion: eating and drinking may allow the chemicals to enter the body. 

2. Inhalation: chemical species may be deposited in the alveoli of human lungs, 

potentially interfering with respiratory and cardiovascular functions. 

3. Skin absorption: in this case, the uptake depends on skin permeability and 

chemical species. 

4. Injection: injection of chemicals may occur through syringes or wounds already 

present on the skin. 

In the presence of toxic substances, the following preventive and protective 

measures are commonly adopted: 
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Fig. (1). Routes of exposure to toxic chemicals in human body. 

 Prohibition of eating and drinking in working environment. 

 Use of proper masks and respirators. Moreover, the operators must manipulate 

chemicals inside fume hoods. 

 Use of suitable gloves and coats. Non-flammable and chemical resistant 

materials should be selected for these personal protective equipments (PPE). 

Fig. (2) plots the concentration of the substance in the blood against the time elapsed 

since its administration for the possible routes of exposure. 

The maximum concentration in the blood is reached at different times and has 

different values, depending on the route of contact: injection exhibits the most 

dangerous effect, as high concentration of the toxic substance can be reached in the 

blood after a short time from its administration. 
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After approaching a maximum value, each curve shows a decreasing trend, thus 

proving the presence of defense mechanisms lowering the toxic species 

concentration in the blood.  

 

Fig. (2). Toxic blood level concentration as a function of route of exposure. 

BIOTRANSFORMATION 

Human body can rely on the following defense mechanisms to decrease the 

concentration of toxic species: 

 Excretion: the body releases substances independently of their effects. 

 Accumulation in adipose tissues: to understand this aspect, the example related 

to drugs is useful. Commercial drugs are substances that have a very low 

tendency to accumulate in the adipose tissues, otherwise, during 

pharmacological therapies, they would accumulate and could continue to exert 

their effects even when the human body does not need them anymore. 

The first defense mechanism (e.g., excretion) relies, in turn, on two different 

mechanisms allowing the human body to release some chemical species: 

1. Biotransformation 1. 

2. Biotransformation 2. 
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CHAPTER 10 

Preventive and Protective Measures 

Abstract: Preventive measures are used to prevent explosive phenomena. In particular, 

inertization and ventilation procedures are discussed. Despite the adoption of these measures, 

explosive phenomena may still occur. Therefore, protective measures are necessary to reduce 

damages. Fire classes are also presented in this chapter. 

Keywords: Fire Classes, Pressure Purging, Rupture Discs, Sweep-Through 

Purging, Siphon Purging, Ventilation, Vacuum Purging. 

INTRODUCTION 

Whenever a flammable substance is fed in an industrial container, oxygen 

concentration may be reduced below the MOC value to prevent explosive 

phenomena. To this aim, inertization procedures are used. On the other hand, 

whenever the presence of workers is required in an industrial environment, the 

concentration of flammable or toxic species may be reduced by adopting ventilation 

procedures [1]. 

As soon as an explosive phenomenon occurs, protective measures (i.e., valves and 

rupture discs) are taken to contain the related damages. The technical bases to 

properly dimension the above mentioned preventive and protective measures are 

herein discussed. 

INERTIZATION PROCEDURES 

In order to prevent explosive phenomena, the most suitable inertization technique 

should be applied by considering the type of container, costs due to the consumption 

of inert gas, and the time required for inertization. 

To this aim, the following four inertization procedures may be employed: 

1. Vacuum purging; 

2. Pressure purging; 

3. Sweep-through purging; 

4. Siphon purging. 
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Vacuum Purging 

Vacuum purging can be performed only if the tank is able to withstand vacuum. To 

decrease the risk, the probability or the magnitude (or both) has to be reduced. 

Evolution of pressure over time during Vacuum Purging is reported in Fig. (1). 

 

Fig. (1). Evolution of pressure over time during Vacuum Purging. 

In the starting conditions, the container to be inertized has a high-pressure value PH 

equal to 1 atm and a mole fraction of oxygen y0 equal to 0.21. Indeed, air is initially 

present inside the container. 

In order to obtain vacuum-pressure conditions, air is sucked out of the system until 

reaching a low-pressure PL (e.g., 20-30 mmHg). In this first part of the cycle, 

oxygen concentration y0 has a constant value of 0.21. Indeed, oxygen and nitrogen 

are simultaneously drawn out in their starting ratio. In the second part of the cycle, 

an inert gas restoring the atmospheric pressure and lowering the molar fraction of 

oxygen to the y1 value is introduced into the system. 

For this system, the following equations can be obtained: 

 nH =
PHV

RT
= total moles at high pressure PH (1) 

 nL =
PLV

RT
= total moles at low pressure PL (2) 
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Where V and T are the system volume and the ambient temperature, respectively, 

and they are constant during the operation.  

By performing a mass balance on the oxygen moles after creating vacuum 

conditions during the first cycle of the procedure, the following equations can be 

obtained: 

 y0nL = y1nH (3) 

 y1 = y0
nL

nH
= y0

PL

PH
 (4) 

 nL < nH ⇒ y1 < y0 (5) 

Hence, the molar fraction of oxygen is reduced by performing a single inertization 

cycle. However, y1 could still be higher than MOC. Therefore, an additional cycle 

should be repeated until obtaining the following values. 

 y2 = y1
nL

nH
= y0 (

nL

nH
)

2
 (6) 

After performing j cycles: 

 yj = y0 (
nL

nH
)

j
= y0 (

PL

PH
)

j
 (7) 

Where y0 = 0.21 and yj is the final molar fraction of oxygen to be obtained. 

In order to evaluate the number of cycles j: 

 
yj

y0
= (

PL

PH
)

j
 (8) 

 ln
yj

y0
= jln

PL

PH
 (9) 

 j =
ln

yj

y0

ln
PL
PH

 (10) 

By knowing the number of cycles, the molar consumption of inert gas may be also 

evaluated: 
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CHAPTER 11 

The Risk Assessment Applied to Industrially 

Contaminated Sites 

Abstract: Emissions of dangerous substances from ordinary industrial activities or industrial 

accidents may compromise the quality of soil and water. Indeed, industrial sites can be 

contaminated by a wide range of compounds, which represent a risk to the health of workers. 

To individuate whether the presence of contaminants represent a risk and how it is possible to 

remediate contaminated sites, it is necessary to apply the Risk Assessment technique. Risk 

assessment allows evaluation of the risk associated with the presence of contaminants, as well 

as remediation goals. The present chapter provides fundamentals on the risk assessment 

procedure applied to industrial contaminated sites. The main object is to provide a methodology 

to individuate contaminated sites and evaluate the remediation goals. To this aim, the main 

contents of the chapter are: basic concepts on contaminated sites, a description of the risk 

assessment method, an overview of the possible remediation techniques. Moreover, a practical 

exercise as well as a list of the most used software are provided. 

Keywords: Contaminated sites, Industrial contamination, Remediation techniques, 

Remediation goals, Risk assessment, and Workers’ safety. 

INTRODUCTION 

Potentially harmful chemical compounds are being added to soils since humans 

started mining. However, the phenomena that started speeding up the contamination 

of soils were the Industrial Revolution in the 19th century and the technological 

development in the 20th century. These events determined more than a proportional 

increase in the emissions of contaminants. Moreover, soils have been often 

intentionally used as a dump.  

In the early 1970s, several countries introduced a few policies to protect soils from 

contamination. Nevertheless, only in the late 1970s did several notorious 

environmental events, such as the Love Canal disaster, led to a sudden awareness 

among the general public and decision-makers [1]. 

Nowadays, the presence of contaminated sites is a common issue in industrialized 

countries. Industrial activities can cause local and diffuse contamination, to such an 

extent that it might threaten the health of workers [2]. Moreover, when an industrial 

accident - such as the explosion or the fire of a chemical facility - occurs, soil 

contamination can easily occur and a subsequent risk mitigation is needed [3]. 
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Currently, there is no official definition of industrially contaminated sites agreed at 

European level. However, a common definition is: 

“Areas hosting or having hosted industrial human activities which have produced 

or might produce, directly or indirectly (waste disposals), chemical contamination 

of soil, surface or ground-water, air, food-chain, resulting or being able to result in 

human health impacts”. In Europe, the industrialization process and poor 

environmental management practices have left a legacy of thousands of 

contaminated sites. 

In August 2007, the European Environment Agency (EEA) published the first 

report titled “Progress in management of contaminated sites in Europe” [4], 

describing the state of the actual knowledge about contaminated sites in Europe. 

Successively (2011), the EEA urged member countries to identify contaminated 

sites in their territories and to formulate national remediation strategies. 

Subsequently, the responsibility for the identification and management of 

contaminated sites in Europe passed to the Joint Research Center of the European 

Commission, which published an updated report in 2014. 

According to the mentioned report, about 1,170,000 Potentially Contaminated Sites 

have been identified, to date. However, this number is estimated to be about the 45 

% of the number of total possible potentially contaminated sites. Among them, one 

third of the estimated total of 342,000 have been confirmed to be identified 

Contaminated Sites for the EEA-39 and about 15 % of the estimated total have been 

remediated. However, there are still substantial differences in the underlying site 

definitions and interpretations used in different countries. 

Some examples of industrially contaminated sites in Europe are: 

 In the Swansea valley in the UK, where metal processing industries generated 

a major human health risk due to exposure to heavy metals; 

 At a Norwegian Fjord near Bergen, where fish exploitation has been inhibited 

on a long-term basis due to PCB contaminated fjord sediments generated by 

industrial waste water discharges; 

 In the Apulia region in Italy, where steel plants and refineries caused an 

environmental and public health disaster due to environmental emissions which 

have concerned national and European authorities for many years. 
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In Europe, waste disposal and treatment (37%), together with industrial and 

commercial activities (33%), have caused almost two thirds of the contamination. 

Considering that municipal and industrial waste contributes with similar shares, it 

can be concluded that Industrial and commercial activities are the main cause of 

soil contamination. 

Regarding the type of industrial activities, of course, each country has its own 

specific industrial and commercial focuses. On average, at European level, the 

production sector has contributed to the contamination of about the 60% of sites, 

whilst the second polluting sector is that of service (32% of sites). To a lesser extent, 

mining activities are also important contributors to soil contamination (i.e. in 

Cyprus, Slovakia, FYROM). Concerning the production sector, textiles, leather, 

wood and paper industries are of minor importance (5%), while metal industries are 

most frequently reported (13%), followed by chemical industry (8%), oil industry 

(7%), and energy production (7%) that sum up around 35% of the production sector. 

Regarding service sector, gasoline stations are the most frequently reported (15%), 

followed by car service stations ( >6%) [3]. 

CONTAMINANTS AND TRANSPORT MECHANISMS 

The main categories of compounds that can contaminate a site are: Chlorinated 

Hydrocarbons (CHC), mineral oil, polycyclic Aromatic Hydrocarbons (PAH), 

heavy metals, phenols, cyanides and aromatic hydrocarbons (BTEX). The EEA also 

reported the distribution of these categories of contaminants in Europe, affecting 

the solid and the liquid (ground and surface water, leachate) matrix respectively. 

The distribution of the different contaminants is similar in the liquid and the solid 

matrix. The main contaminant categories are mineral oils and heavy metals. 

Moreover, the data suggests that phenols and cyanides make a negligible 

contribution to the total contaminant loading [3]. Depending on their properties, 

each contaminant can harm workers’ health through different exposure mechanisms 

and cause different health effects. Concerning the possible health effects, which can 

be caused by the exposition to contaminants, some examples include: geohelminth 

infection and potentially harmful elements Via soil ingestion, cancers caused by the 

inhalation of fibrous minerals, hookworm disease, and podoconiosis caused by skin 

contact with soils. Nonetheless, human health can also be influenced in more 

indirect ways, as soils interact with the atmosphere, biosphere and hydrosphere [5]. 

The properties of contaminants influence the mechanisms through which they are 

transferred from the source of the contamination to the environmental 
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CHAPTER 12 

The Health Impact Assessment within 

Environmental Impact Assessment Studies 

Abstract: Sustainability and sustainable development play a central role in addressing 

strategies and policies at the national and international level. Both these concepts have been 

largely discussed and different approaches have been proposed over time to promote their 

practical implementation, including the preventive one. In this context, Environmental Impact 

Assessment (EIA) has been built and developed to prevent or mitigate the negative impacts of 

a variety of anthropogenic activities on several environmental factors, including human health. 

Among the activities undergoing EIA, the building and operation of various chemical industrial 

plants may represent relevant scenarios to assess their wider health implications from a 

preventive perspective. The evaluation of these impacts on human health has been recently 

approached following a formally identified procedure, namely the Health Impact Assessment 

(HIA). 

This chapter aims at providing an overview on HIA, with particular reference to its integration 

within the EIA procedures: the legislative framework is thus figured out and the main features 

of HIA are discussed to point out its strengths and weaknesses as a decision supporting tool 

during the assessment of the environmental impacts of projects. 

Keywords: Environmental Impact, Hazard, Health, Precaution and Prevention 

Principles, Risk Assessment. 

INTRODUCTION 

Over the past decades, population growth, rapid technological development, 

industrialization, and agricultural expansion have developed rapidly, determining 

severe pressures on the natural environment. The depletion of natural resources, the 

release of waste streams and gaseous emissions have affected the features of natural 

ecosystems, raising the issue of the environmental effects of industrialization.  

As reported by Bruhn Tysk and Eklund [1], the global concern on this issue was 

firstly approached at the Stockholm Conference in 1972, but it was only in 1987 

that the need to bring together environmental and developmental problems was 

claimed in the report Our Common Future, also known as the Brundtland Report, 

published by the United Nations’ World Commission on Environment and 

Development. This document clearly pointed out that many of the natural systems 

on which we depend were under increasing stress and addressed the synthesis 

between the need to protect the environment and that of ensuring the socio-
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economic development. Since then, the concepts of “sustainability” and 

“sustainable development” have been largely debated and different definitions have 

been presented, but the most widely known is that provided in the Brundtland 

report: “… development that meets the needs of the present without compromising 

the ability of future generations to meet their own needs”. The ability of present and 

future generations to meet their needs depends strongly on the environmental 

functions supporting life, so that the concern for the environmental health became 

inherent in the definition of sustainable development [2]. 

Later, the concept of “sustainable development” was further developed and the Rio 

Declaration that came after the Rio Conference in 1992 showed the main 

achievements in this field, which included an address towards a preventive 

approach to ensure the sustainability of development [1]. The 17th principle of the 

Rio Declaration calls for environmental impact assessment (EIA) to be undertaken 

as a national instrument “for proposed activities that are likely to have a significant 

adverse impact on the environment and are subject to a decision of a competent 

national authority”. Nowadays EIA is a well-established approach to prevent or 

mitigate the negative impacts from a variety of anthropogenic activities, including 

those related to the realization and operation of different kinds of industrial plants, 

including those susceptible to chemical accidents, as described in the previous 

chapters. 

Within EIA, the assessment of the effects of these activities on human health has 

also been carried out and, over the past two decades, it has gained great importance, 

maturing as a form of impact assessment [3]. For the projects undergoing EIA, their 

building and operation stages may represent, indeed, relevant scenarios to assess 

their wider health implications from a preventive perspective. 

This chapter aims at providing an overview on the health impact assessment, with 

particular reference to its integration within the environmental impact assessment 

procedures. To this end, EIA features and legislative frameworks are introduced; 

the main objectives and steps of the health impact assessment are then figured out, 

to approach its application to describe and assess the direct and indirect significant 

effects of a project on ‘population and human health’ in accordance with the 

Directive 2014/52/EU. 

THE ENVIRONMENTAL IMPACT ASSESSMENT (EIA) 

The Environmental Impact Assessment (EIA) was initiated in the United States in 

1969, when the National Environmental Policy Act (NEPA) introduced the so-
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called Environmental Impact Statement (EIS). The EIS was expected to become, 

among others, a tool to assess the environmental effects of plans and projects.  

The introduction of such a procedure in Europe goes back to 1976, in France, with 

the enforcement of the Law n. 76-629 of the 10th of July Relative à la protection de 

la nature, dealing with environmental protection. This law laid the groundwork for 

the Directive 85/337CEE, approved on the 27th of June 1985 by the Council of the 

European Community, introducing the EIA for defined categories of projects. Since 

then, both the Directive and the corresponding laws transposed by the Member 

States developed. One of the major aspects to be updated over time was the list of 

works whose project had to undergo the EIA process. 

This list was first split into two groups, depending on the extent of the potential 

impacts of the project: for those characterized by great impacts, Member States 

were in charge of the EIA process; in case of minor impacts, local Authorities 

carried out the process. Over time, due to an extension of the existing knowledge, 

the kind of works to be considered under the EIA legislation varied as well.  

The rationale of EIA is that some projects can produce relevant effects on both 

environmental and human health. Therefore, it is important to properly evaluate 

these effects, due to the need to: 

 Protect human health and enhance the quality of life by safeguarding the 

environment; 

 Contribute to maintain the biodiversity; 

 Keep the generation capacity of natural ecosystems. 

Over time, this process has evolved and in the European Union, the last Directive 

2014/52/EU has greatly emphasised the assessment of population and human 

health. 

Nowadays, EIA is a well-established procedure that aims to provide a high level of 

protection to the environment and to promote the sustainable development of the 

territory, in accordance with the principles of prevention and precaution. 

EIA is inspired indeed by the prevention principle, since it aims to either eliminate 

or reduce the adverse environmental effects before the project of a work comes to 

life. Similarly, it is based on the precaution principle, whereby projects likely to 

significantly affect the environmental health are made subject to an environmental 

assessment, prior to their approval or authorisation. In this regard, the assessment 
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