

Basics of Python Programming:
A Quick Guide for Beginners

Authored by

Krishna Kumar Mohbey
Department of Computer Science
Central University of Rajasthan

Rajasthan, India

 &

Malika Acharya
Department of Computer Science
Central University of Rajasthan

Rajasthan, India

Basics of Python Programming: A Quick Guide for Beginners

 Authors: Krishna Kumar Mohbey and Malika Acharya

ISBN (Online): 978-981-5179-63-7

ISBN (Paperback): 978-981-5179-65-1

© 2023, Bentham Books imprint.

Published by Bentham Science Publishers Pte. Ltd. Singapore. All Rights Reserved.

ISBN (Print): 978-981-5179-64-4

First published in 2023.

BENTHAM SCIENCE PUBLISHERS LTD.
End User License Agreement (for non-institutional, personal use)

This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement
carefully before using the ebook/echapter/ejournal (“Work”). Your use of the Work constitutes your
agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms
and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the
Work subject to and in accordance with the following terms and conditions. This License Agreement is for
non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please
contact: permission@benthamscience.net.

Usage Rules:
All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the1.
Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify,
remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way
exploit the Work or make the Work available for others to do any of the same, in any form or by any
means, in whole or in part, in each case without the prior written permission of Bentham Science
Publishers, unless stated otherwise in this License Agreement.
You may download a copy of the Work on one occasion to one personal computer (including tablet,2.
laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it.
The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject3.
you to liability for substantial money damages. You will be liable for any damage resulting from your
misuse of the Work or any violation of this License Agreement, including any infringement by you of
copyrights or proprietary rights.

Disclaimer:

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that
it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is
provided "as is" without warranty of any kind, either express or implied or statutory, including, without
limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the
results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science
Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of
products liability, negligence or otherwise, or from any use or operation of any methods, products instruction,
advertisements or ideas contained in the Work.

Limitation of Liability:

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages,
including, without limitation, special, incidental and/or consequential damages and/or damages for lost data
and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire
liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

General:
Any dispute or claim arising out of or in connection with this License Agreement or the Work (including1.
non-contractual disputes or claims) will be governed by and construed in accordance with the laws of
Singapore. Each party agrees that the courts of the state of Singapore shall have exclusive jurisdiction to
settle any dispute or claim arising out of or in connection with this License Agreement or the Work
(including non-contractual disputes or claims).
Your rights under this License Agreement will automatically terminate without notice and without the2.

mailto:permission@benthamscience.net

need for a court order if at any point you breach any terms of this License Agreement. In no event will any
delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement
constitute a waiver of any of its rights.
You acknowledge that you have read this License Agreement, and agree to be bound by its terms and3.
conditions. To the extent that any other terms and conditions presented on any website of Bentham Science
Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License
Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail.

Bentham Science Publishers Pte. Ltd.
80 Robinson Road #02-00
Singapore 068898
Singapore
Email: subscriptions@benthamscience.net

mailto:subscriptions@benthamscience.net

CONTENTS
FOREWORD .. i

PREFACE ... ii

 CHAPTER 1 INTRODUCTION TO PYTHON ... 1
INTRODUCTION ... 1
TECHNICAL STRENGTHS OF PYTHON ... 3

Portability .. 3
Object-Oriented ... 3
Community Support ... 3
Advanced Features ... 3
Memory Management .. 4
Ease of Use .. 4
Installing Python .. 4
Windows Installer .. 5
Ubuntu ... 6
Linux Mint ... 6
Python IDLE .. 7
Anaconda Open-source Distribution ... 7
Installing Anaconda on Windows .. 7
Installing Anaconda on Linux ... 9
First Python Program ... 9
Python Keywords ... 10
Identifiers ... 10
Statements .. 11
Indentation ... 12
Comments .. 13
Coding Styles ... 14
Functional .. 14
Imperative .. 14
Procedural .. 15
Object-oriented .. 15

CONCLUDING REMARKS .. 16

 CHAPTER 2 DATA TYPES, OPERATORS, AND EXPRESSIONS 17
INTRODUCTION ... 17
NUMBER ... 18

Sequence .. 19
DICTIONARY ... 21
BOOLEAN ... 22
SET .. 23
TYPE CONVERSION .. 23

Implicit Type Conversion .. 23
Explicit Type Conversion .. 24

OPERATORS .. 25
Arithmetic Operators ... 25

Addition (+) Operator ... 25
Subtraction (-) Operator .. 26
Multiplication (*) Operator ... 26
Division (/) Operator ... 26
Modulus (%) Operator ... 26

Exponent (**) Operator ... 26
Floor Division (//) Operator .. 26

Relational Operators .. 27
Greater than (>) Operator .. 27
Greater than or equal to (>=) Operator ... 27
Less than (<) Operator .. 27
Less than or equal to (<=) Operator ... 27
Equal to (==) Operator ... 28
Not equal to (! =) Operator ... 28

Assignment Operator ... 28
Assignment (=) Operator ... 28
Add AND (+=) Operator ... 28
Subtract AND (-=) Operator ... 28
Multiply AND (*=) Operator ... 28
Divide AND (/=) Operator .. 28
Modulus AND (%=) Operator ... 28
Exponent AND (**=) Operator ... 29
Floor Division (//=) Operator ... 29

Unary Operators ... 30
Bitwise Operators .. 30

Binary AND (&) Operator ... 30
Binary OR (|) Operator .. 30
Binary XOR (^) Operator ... 30
Binary One's Complement (~) Operator .. 30
Binary Left Shift (<<) Operator .. 30
Binary Right Shift (>>) Operator .. 31

Logical Operators .. 31
Logical AND Operator .. 31
Logical OR Operator ... 32
Logical NOT Operator ... 32

Membership Operators .. 32
Operator (in) .. 32
Operator (not) .. 32

Identity Operators .. 33
Operator (is) .. 33
Operator (is not) .. 33

Operators' Precedence and Associativity ... 34
EXPRESSIONS ... 35

Identifiers ... 35
Literals ... 35
Operators .. 35

STRING OPERATIONS .. 36
Accessing Values in Strings .. 36
Triple Quotes ... 37

CONCLUDING REMARKS .. 42

 CHAPTER 3 CONTROL FLOW ... 43
INTRODUCTION ... 43
SEQUENTIAL STATEMENTS .. 43
DECISION CONTROL STRUCTURES .. 44

If Statements .. 44

If-else Statements ... 46
Nested if ... 46
if-elif-else ... 49

LOOPING STATEMENTS .. 50
For Loop .. 50
While Loop .. 53
Nested Loop ... 54
Break Statement ... 56
Continue Statement .. 57
The Pass Statement .. 59

CONCLUDING REMARKS .. 60

 CHAPTER 4 FUNCTIONS ... 61
INTRODUCTION ... 61

Definition ... 61
PREDEFINED FUNCTIONS ... 62
USER-DEFINED FUNCTIONS ... 64

Function Call ... 65
Function Parameters and Arguments ... 66
Default Arguments ... 67
Variable Scope and Lifetime ... 68
Scope of the Variable ... 68
Local Scope ... 69
Global Scope .. 69
The Lifetime of the Variable ... 69
Local and Global Variables ... 70
Global Variables .. 70
Global Statement ... 71
Return Statement ... 72
Lambda Functions ... 72
Recursive Functions ... 73
Function Redefinition .. 75

CONCLUDING REMARKS .. 76

 CHAPTER 5 SEQUENCE-STRING AND LIST .. 77
INTRODUCTION ... 77
STRING .. 77

String Concatenation ... 80
Using + Operator ... 80
Using join() Method .. 80
Using % Operator .. 81
Using Format() Function ... 81
Appending Strings ... 82
Using += Operator ... 82
Using Join() ... 83
Multiplying Strings .. 84
Immutable Strings .. 84
String Formatting Operator .. 85
Built-in String Functions ... 86
Slice Operation .. 88
The ord() Function ... 90
The chr() Function ... 90

String Comparison ... 91
Using Relational Operators .. 91
Using is and is not ... 92
Using User-defined Function ... 92
Iterating String ... 93
split() Function ... 94
re.findall() Function ... 96
The String Module ... 97
String Module Constants ... 97

string.ascii_letters .. 97
string.ascii_lowercase ... 97
string.ascii_uppercase ... 97
string.digits .. 97
string.hexdigits ... 97
string.punctuation .. 97

String capwords() Function ... 98
String Module Classes ... 99
Formatter .. 99
Template .. 99
Regular Expression .. 100

LISTS .. 102
Using List Index .. 103
List Operations ... 104
Updating Values in Lists ... 106
Nested List ... 106
Aliasing .. 108
Cloning Lists .. 109
Cloning List using Slicing ... 109
Cloning List using Extend() ... 110
Cloning List using List() .. 110
Cloning List using List Comprehension .. 111
Cloning List using Append() ... 111
Cloning List using Copy() ... 112
Built-in Functions .. 112
List Built-in List Methods ... 113
List as Arrays ... 115
Loops in Lists .. 116
For Loop in the List ... 116
While Looping in the List .. 117
List Comprehension ... 118
Enumerate() Method .. 118
Numpy in Loop .. 119
List in Functions .. 119

CONCLUDING REMARKS .. 120

 CHAPTER 6 TUPLE AND DICTIONARIES ... 121
INTRODUCTION ... 121
TUPLE .. 121

TheTuple ()Function ... 123
Accessing Tuple ... 124
Tuple Indexes ... 124

Tuple Slicing .. 125
Updating Tuple .. 125
Deleting Elements from a Tuple .. 126
Tuple Operations ... 127
Tuple Basic Functions ... 128
Tuple Assignment .. 130
Tuples and Functions ... 132
Nesting of Tuples ... 133
Tuples from String and List ... 134
zip() Function ... 135
Inverse zip(*) Function .. 136
Tuple Sorting ... 137

DICTIONARY ... 138
Dictionary Creation ... 140
Accessing Dictionary Values ... 142
Modifying Dictionary .. 143
Delete an Element from the Dictionary ... 144
The Clear () Function .. 146
Sorting Dictionaries ... 147

Sorting Dictionary by Value .. 148
Sorting Dictionary in Reverse Order ... 150

Iterating Over a Dictionary .. 150
Nested Dictionaries .. 153
Updating Nested Dictionary .. 155
Deleting Elements from a Nested Dictionary .. 155
Deleting a Dictionary from the Nested Dictionary .. 156
Iterating Through a Nested Dictionary .. 157
Built-in Dictionary Functions .. 158
The Copy () Method .. 160
Formatting Dictionaries ... 161

CONCLUDING REMARKS .. 162

 CHAPTER 7 FILE HANDLING .. 163
INTRODUCTION ... 163
FILE .. 163

Open() Function ... 164
Close() Function .. 166
Write() Function .. 166
Writelines() Method ... 167
Writing Numbers to a File ... 168
Read() Method ... 169
Readline() Method ... 170
Readlines() Method() ... 171
Reading Contents with a Loop .. 171
Creating a New File ... 172
File Object Attributes .. 173
File Positions ... 174
File Rename ... 176
Deleting a File .. 177
Binary Files .. 177
Directory Operations ... 178

Current Working Directory .. 178
List of Directories .. 179
Creating a Directory .. 179
Change Directory ... 180
Renaming a Directory .. 180
Delete a Directory .. 180

CONCLUDING REMARKS .. 181

 CHAPTER 8 EXCEPTION HANDLING .. 182
INTRODUCTION ... 182
HANDLING EXCEPTIONS .. 184
EXCEPT BLOCK ... 186
ELSE AND FINALLY, KEYWORD ... 188
RAISING EXCEPTIONS ... 189

Built-in Exceptions .. 191
User-defined Exceptions .. 193

CONCLUDING REMARK .. 194

 CHAPTER 9 MODULES AND PACKAGES ... 195
INTRODUCTION ... 195
MODULES ... 195

Import Statement ... 196
From…Import Statement ... 197
Renaming A Module .. 198
Dir() Built-In Function .. 199
Reload () Function ... 200
Built-In Modules .. 200

PACKAGE ... 202
Creating Package ... 202
Sub Packages ... 206

CONCLUDING REMARK .. 207

 CHAPTER 10 OBJECT-ORIENTED PROGRAMMING 208
INTRODUCTION ... 208
CLASS AND OBJECT .. 209
DATA ABSTRACTION ... 209
ENCAPSULATION .. 209
INHERITANCE .. 209
POLYMORPHISM ... 210

Defining a Class ... 210
Creating an Object ... 211
Deleting Properties or Object .. 212
Data Abstraction Example ... 215

CONSTRUCTORS .. 216
Parameterized Constructor ... 218
Default Constructor ... 218

INHERITANCE IN PYTHON ... 219
TYPES OF INHERITANCE .. 220

Single Inheritance .. 220
Multi-level Inheritance .. 222
Multiple Inheritance ... 224
Hierarchical Inheritance ... 226

The issubclass(sub,sup) method() .. 227
The isinstance (obj, class) method() .. 228

POLYMORPHISM IN PYTHON .. 229
Polymorphism in Operators ... 229
Function Polymorphism ... 229
Polymorphism in Class Methods ... 230
Method Overriding .. 231
Built-in Class Functions .. 232
Built-in Class Attributes .. 233
Static Variables .. 234

CONCLUDING REMARKS .. 236

 CHAPTER 11 PYTHON FOR MACHINE LEARNING .. 237
INTRODUCTION ... 237
IMPORTANT PYTHON LIBRARIES ... 239

• NUMPY ... 239
• PANDAS .. 240
• SCIKIT-LEARN .. 241
• MATPLOTLIB ... 243
• TENSORFLOW ... 244
• KERAS ... 245
• PYTORCH ... 245
• NLTK ... 246
Installing NLTK on Mac/ Unix ... 247
Installing NLTK on Windows ... 247

CONCLUDING REMARKS .. 250

 CHAPTER 12 PROGRAMMING WITH PYTHON ... 251
INTRODUCTION ... 251
BASIC PYTHON PROGRAM ... 251

Program to Solve a Quadratic Equation .. 251
Program to Swap Two Numbers .. 252
Program to Find the Factorial of Two Numbers .. 252
Program for Fibonacci Series Using Recursion ... 253
Sorting Elements of Array in Ascending Order .. 254
Program to Print the Sum of Elements of Array .. 254
Program to Transpose a Matrix ... 255
Program to Reverse a String .. 255
Program to Concatenate Two Strings .. 256
Program to Append Elements to the List ... 256
Program to Delete an Element of List ... 256
Program for Linear Search ... 257
Program for Binary Search .. 257
Program to Perform Time Series Analysis .. 258

CONCLUDING REMARKS .. 259

BIBLIOGRAPHY .. 260

 SUBJECT INDEX ... 261

i

FOREWORD

The fact that Python programming is employed across most fields contributes to its growing
popularity in recent years. It is possible to generate software at any level, from the simplest of
programs to a fully functional application. Even every company, institution, organization, or
researcher uses Python programming in their work, albeit they may do so in various methods.
Python makes it possible to develop algorithms that are both effective and efficient as well as
to manage more significant amounts of data in today's world. The proposed book covers
various Python programming topics, ranging from the fundamentals to more advanced
techniques. This book, which serves as a helpful guide to becoming a programmer, will
significantly benefit the community.

D. S. Rajput

School of Information Technology and Engineering
Vellore Institute of Technology

Vellore, India

ii

PREFACE

It gives immense pleasure to bring the book "Basics of Python Programming: A Quick
Guide for Beginners." The most extensively used programming language today is Python,
which also happens to be the most popular programming language. Students enrolled in
various classes who can efficiently use this high-level programming language as a problem-
solving tool are this Book's target audience. Python is not only employed in the field of
computer science; instead, it is used in the development of applications for all areas.

Python programming can be swiftly learned by anybody with a fundamental understanding of
computers and the ability to reason logically. Because of this inspiration, we could write this
Book clearly and concisely. After reading the Book, you will have a fundamental
understanding of how to do programming in Python. We have attempted to present the
intricacies of Python in a very colloquial language such that the potential readers require no
special expertise to refer to the book. It is apt for beginners as the concepts are explained in
simple language with suitable demonstrative examples to facilitate both theory and practical
learning.

Our primary goal in writing this book is to provide an approachable resource for beginners
new to programming or with limited coding experience. We understand that learning a
programming language can be intimidating, especially for those starting from scratch. With
"Basics of Python Programming: A Quick Guide for Beginners", we have consciously
designed the content to be beginner-friendly, focusing on simplicity and clarity of
explanations. We believe that our book's accessible style will empower beginners to grasp the
fundamental concepts of Python programming swiftly and confidently.

We recognize that many aspiring programmers are looking for a resource that allows them to
learn Python quickly and efficiently. While there are extensive books available that provide
in-depth coverage of Python, our book takes a different approach. We have distilled the core
concepts and essential components of Python programming into a concise guide that can be
absorbed quickly. By focusing on the basics, we aim to provide beginners with a solid
foundation in Python programming without overwhelming them with excessive information.

We firmly believe that practical application is critical to mastering Python programming.
Therefore, our book emphasizes hands-on learning and incorporates numerous practical
examples throughout the chapters. By engaging in coding exercises and mini-projects, readers
can actively apply the concepts they learn, solidifying their understanding of Python. Our
approach encourages learners to gain practical experience alongside theoretical knowledge,
enabling them to build their coding skills from the very beginning.

iii

&

Malika Acharya
Department of Computer Science

Central University of Rajasthan
Rajasthan, India

We firmly believe that "Basics of Python Programming: A Quick Guide for Beginners" offers
a unique value proposition to individuals looking to kick-start their journey in Python
programming. Its simplicity, efficiency, hands-on approach, clear progression, and
supplementary resources set it apart from other books. We hope this book is a valuable tool
for learning Python programming and unlocks the door to exciting possibilities.

Krishna Kumar Mohbey
Department of Computer Science

Central University of Rajasthan
Rajasthan, India

Basics of Python Programming: A Quick Guide for Beginners, 2023, 1-16 1

CHAPTER 1

Introduction to Python

Abstract: Python is an object-oriented programming language that can support a wide
range of applications like web development, desktop applications, etc. Its general-
purpose programming features make coding easy, comprehensive and readable even for
beginners.

Keywords: Development environments, Object-oriented programming, Operating
system, Shuffle exchange network, Virtual machine.

INTRODUCTION

Python has grown to be a mainstream language. Its simple syntax and
comprehensible code make it a popular general-purpose programming language
among developers, engineers, and amateurs with limited programming skills. Its
open-source features with a wide variety of libraries facilitate efficient
programming. The first chapter of this book provides a brief introduction to
Python along with a stepwise guide to installation on Windows and Linux. It will
familiarize you with the Python IDE and editors, thus paving your journey to
Python programming.

Guido van Rossum, Python's Benevolent Dictator for Life, developed Python in
the 1990s. After that, several versions of Python were released. With the end of
life of version 2.7, currently, versions 3.6 and 3.9 are widely used. Python is an
open-source project maintained by the Python Software Foundation. We can take
a tour of the Python universe at www.python.org.

Python is an object-oriented language that, due to its interoperability with existing
codes in C and Fortran, gears up to the developer's demands and enhances the
programmer's productivity while cutting down the time consumed. Python has
become the developer's choice in various fields. For example, some of the
prominent areas where Python is used are NASA's Jet Propulsion Laboratory, the
Lawrence Livermore National Laboratory, Shell Research Boeing, Industrial
Light and Magic, Sony Entertainment, and Procter & Gamble. Python is a high-
level language; thus, the programs coded in it are easy and comprehensible.
Python codes execute on a virtual machine; hence, a layer of abstraction exists

Krishna Kumar Mohbey & Malika Acharya
All rights reserved-© 2023 Bentham Science Publishers

http://www.python.org

2 Basics of Python Programming: A Quick Guide for Beginners Mohbey and Acharya

between the code and the executing platform. Thus, Python is an interpreted
language and produces portable codes that are cross-platform executable. Fig. (1)
depicts the execution of a simple Python program. Unlike Fortran, Python is a
dynamically typed language that uses an interpreter to interpret the representative
types at the run time. The layer of abstraction abstracts the underlying
optimization from the code. Python binds Fortran and C libraries using an
interpreter to perform intensive computation.

Fig. (1). Execution schematic of Python code.

You must have previously understood various languages like C++, Java, Perl,
Scheme, or BASIC. All these languages are high-level languages. Nevertheless,
computer hardware understands only low-level language called machine
language. So, high-level language needs to be converted into machine language.
For this, we have two translators: a compiler and an interpreter. A compiler is a
program that translates the entire program into machine language. The high-level
program is known as the source code, and the output is machine code. An
interpreter is also a program that takes high-level language and converts it into
machine code instruction by instruction. Compiled code can be run any number of
times without repeated compiling or the source code.

print("Hello World") COMPILER

BYTE CODE

VIRTUAL
MACHINE

Hello World

Library Modules

Interpreter

Input

Output

Introduction to Python Basics of Python Programming: A Quick Guide for Beginners 3

In contrast, interpreted code requires an interpreter and source code every time.
Thus, interpreted code makes the programming environment more user-friendly
and enhances portability. Every CPU has its machine code, but we can run a high-
level language program with the interpreter.

TECHNICAL STRENGTHS OF PYTHON

Portability

As already discussed, Python is a portable language that requires Byte Code for
execution on any platform. An executable byte code converts the source code to
platform-independent code. Python consists of a Tkinter toolkit to support the Tk
GUI interface so the graphical user interface can run on all GUI's supported
platforms without program changes. Python's original, standard implementation
was given in ANSI C, making it executable on all major platforms ranging from
PDAs to supercomputers.

Object-Oriented

Python is an object-oriented programming language. The language is extensible,
i.e., the programs can be extended to C, C++, and Java. It uses a class model to
support polymorphism, operator overloading, and other notions. It is a powerful
scripting tool for other object-oriented system languages, like C++, Java, and C#.
The recent versions of Python also support functional programming. This includes
generators, comprehensions, closures, maps, etc.

Community Support

Python community support is quite active and responsive to the user's queries.
The community consists of Python creator Guido van Rossum, the Benevolent
Dictator for Life (BDFL), and a crew of thousands of workers. Python is more
conservative than other languages in terms of changes, i.e., the changes need to be
approved by the community, especially BDFL.

Advanced Features

Python provides full support for features of scripting languages like PERL. The
scheme facilitates the use of software development tools that are easily found in
compiled languages. It is a product of the FLOSS community, i.e., Python is a
Free, Libre, and Open-Source Software that assists in knowledge sharing. Some
of the salient features of Python are:

Basics of Python Programming: A Quick Guide for Beginners, 2023, 17-42 17

CHAPTER 2

Data Types, Operators, and Expressions

Abstract: Now that you have been familiarised with the installation and basics of
Python programming, it's time to dig in a little more and understand the different data
types that are available along with the operators and expressions that make the
programming more user-friendly. In this chapter, we will learn about data type
categorization and the operators present. Here you will learn the following nuances:

1. Data types supported by the Python.
2. Use of variables to store and access the data.
3. Operators do mathematical works and logical functions.
4. Variety of expressions to serve the range of applications.

Keywords: Associativity, Literals, Operators, Precedence.

INTRODUCTION

In computer programming, a data type is a classification of the many kinds of
information that may be saved in a variable. Since Python is a dynamically typed
language, we do not need to specify the variable type when we declare it.

The value is bound to its type in a way that the interpreter does not explicitly
specify—for example, X=100. We did not declare the type of the variable X, yet it
now holds the integer value 100. In Python, the integers are by default treated to
be of integer data type. To check the type of the variable, we use type() function
available to us in Python, and it returns the type of the variable that was handed
in. The following example illustrates how to specify the values for a variable and
to check their types.

Example:

Krishna Kumar Mohbey & Malika Acharya
All rights reserved-© 2023 Bentham Science Publishers

18 Basics of Python Programming: A Quick Guide for Beginners Mohbey and Acharya

Output:

Python has a wide variety of standard data types, each of which can have a unique
storage mechanism defined for it. The data types defined in Python are listed
below:

Numbers1.
Sequence2.
Dictionary3.
Boolean4.
Set5.

NUMBER

The number is responsible for storing numerical values. A Python Numbers data
type is responsible for storing all integer, float, and complex values. To check the
data type of a variable, Python has a function called type(). It also has the
isinstance() function that checks whether or not an object belongs to a specific
class. When a number is assigned to a variable in Python, Number objects are
created automatically. A number data type can store int, float, and complex type
values.

The integer value can be any length. There is no limitation on the length of an●

integer in Python.
Float is used to store floating-point numbers which is accurate up to 15 decimal●

points.
A complex number is specified in the form of a + ib, where a and b stand for the●

real and imaginary components of the number, respectively.

Data Types Basics of Python Programming: A Quick Guide for Beginners 19

Example:

Output:

Sequence

The language treats Python's string, list, and tuple datatypes as sequence types.
The character sequence enclosed in quote marks is an example of the string,
which may be defined as that sequence. When defining a string, Python allows us
to use single quotes, double quotes, or triple quotations. As Python includes
predefined functions and operators that may be used to execute various actions on
strings, managing strings in Python is a simple process. The “Hello World!” is the
result of the operation “Hello” + “World!”, which uses the plus (+) operator to
concatenate the two strings. Similarly to repeat the strings we can use the
repetition operator (*). For example “India” *7 outputs
IndiaIndiaIndiaIndiaIndiaIndiaIndia '.

Example:

Output:

Basics of Python Programming: A Quick Guide for Beginners, 2023, 43-60 43

CHAPTER 3

Control Flow

Abstract: It's now the time for the readers to acquaint themselves with the control flow
in the programming. So far the users have seen the linear path of execution, where the
execution commences from the top and moves sequentially to the bottom. Further, our
world is filled with tasks required to run in loops, for example in banking applications,
unless the user enters the correct password the system prompts the dialogue “Please
enter the correct password”. In this chapter, we introduce the concept of control flow
through which the users can decide the execution path for the program and the looping
constructs to iterate through the tasks. Our key takeaways from this chapter are listed
below:

1. Understanding the decision control statements.
2. Programming with if-else ladder and its variants.
3. A hand on for, and while loop statements.
4. Understanding the control flow alterations the jump statements like break, continue
and pass.

Keywords: Control flow, Conditional processing, Looping constructs.

INTRODUCTION

The control flow of a program is illustrated by a statement known as a control
flow statement. In addition, it determines the sequence in which the code of the
program is executed. Conditional statements, loops, and function calls are the
primary mechanisms that direct how a Python program executes its instructions.
Python programming utilizes three distinct types of control structures in its many
applications.

Sequential statements1.
Decision control statements2.
Looping statements3.

SEQUENTIAL STATEMENTS

It uses a default mode because the control will move line by line in a program.
Moreover, it is a series of statements that are executed in a sequence.

Krishna Kumar Mohbey & Malika Acharya
All rights reserved-© 2023 Bentham Science Publishers

44 Basics of Python Programming: A Quick Guide for Beginners Mohbey and Acharya

Example:

Output:

DECISION CONTROL STRUCTURES

There are a few other names for a decision control statement, including a selection
control statement and a branching statement. The condition serves as the
foundation for the selection statements. If a condition is met, then the statement
will be carried out. In addition to that, we utilize it as a checking and testing
mechanism. There are wide distinct varieties of decision control statements,
including the following:

if●

if-else●

nested if●

if-elif-else●

If Statements

If statements are utilized in programming to determine whether or not a particular
section of code should be executed. If a condition is met, the action will be
successful; otherwise, it will not.

Syntax:

Control Flow Basics of Python Programming: A Quick Guide for Beginners 45

The flow diagram for the if statement is shown in Fig. (1).

Fig. (1). Flow diagram of if statement.

Example:

IF
Condition

Set of Statements

TRUE

FALSE

#f3.1

Basics of Python Programming: A Quick Guide for Beginners, 2023, 61-76 61

CHAPTER 4

Functions

Abstract: Functions are one of the primary concepts in every programming language.
They provide an easy way to package the programming logic and use it as and when
required as many times at any place. Thus they help to reduce the redundancy in code
and increase the reproducibility. With the increase in the length of code, it is often a
good idea to divide the code into separate modules by splitting the code into different
functions based on its utility. This is a much- sought practice to organise the lengthy
code. They also help in unit testing the code as testing small units in isolation is quite
an easy task. This deliberate use of functions thus supports language flexibility and a
user-friendly interface. In this chapter the pertinent takeaways would be:

1. Understanding functions and function calls.
2. Comprehending the concept of local and global variables.
3. Programming with the recursive functions.

Keywords: Reproducibility, Redundancy, Reusability, Recurison.

INTRODUCTION

The code may be organized, made more understandable, reused, and repurposed
with the use of functions, which are a helpful approach to separate the code into
more manageable portions. In addition, a function is a piece of code that is put
into action when the function itself is invoked. It can take in data in the form of a
parameter or argument and then return the result.

Definition

A function is an area of code that comprises a block of statements that carry out a
particular operation. When creating a function, there are a few fundamental
guidelines to follow:

Function blocks start with the def keyword. After that, the function name and1.
parentheses (()) are used.
An argument or parameters should be passed inside the parentheses.2.
Any function's code block begins with a colon (:) and is indented.3.

Krishna Kumar Mohbey & Malika Acharya
All rights reserved-© 2023 Bentham Science Publishers

62 Basics of Python Programming: A Quick Guide for Beginners Mohbey and Acharya

Syntax:

There are two types of functions, as described below:

Predefined functions●

User-defined functions●

PREDEFINED FUNCTIONS

It is sometimes referred to as a built-in function because Python has its
functionality established in the language. The Python interpreter has several built-
in functions that are always available for usage. There are many kinds of built-in
functions, and here is an example of some of those built-in functions (Table 1):

Table 1. Predefined functions.

abs() It returns the absolute value of a number

bin() It returns the binary version of a number

float() It returns a floating-point number

hex() It converts a number into a hexadecimal value

int() It returns an integer number

len() It returns the length of an object

list() It returns a list

max() It returns the largest item in an iterable

min() It returns the smallest item in an iterable

oct() It converts a number into an octal

pow() It returns the value of x to the power of y

print() It prints to the standard output device

range() It returns a sequence of numbers, starting from 0 and increments by 1 (by default)

round() It rounds a numbers

#t4.1

Functions Basics of Python Programming: A Quick Guide for Beginners 63

Let's look at an example of each of the built-in functions discussed so far to better
grasp how they should be used.

Example:

Basics of Python Programming: A Quick Guide for Beginners, 2023, 77-120 77

CHAPTER 5

Sequence-String and List

Abstract: Unlike primitive data types like integers, floats and Boolean, a string is an
ordered sequence of characters each of which can be accessed easily. Further, one of
the important built-in data types of Python is lists. Lists and strings share many
similarities like, lists are a sequence of values. List indices work similarly to string
indices. But unlike strings lists are mutable. In this chapter, we introduce the core
concepts of lists and strings and several operators that are used to make programming
with these user-friendly.

Keywords: Mutable, Slicing, Ordered collection.

INTRODUCTION

When we want a collection of characters that are pretty like one another, we have
to use a sequence of characters. For instance, if you want to keep a record of your
name in the computer's memory, you will need a variable capable of storing your
name. However, it is necessary to have a series of characters because the name is
a collection of characters. This string consists of nothing more than a succession
of characters.

Python's equivalent of the sequence data type is called a list. It is the most
effective and may be expressed as a list of values delimited by commas and
enclosed in square brackets. A list is frequently utilized to store the sequence of
various kinds of data. The list is changeable, which indicates that its elements can
be altered after the list has been constructed. This chapter discusses a variety of
operations that may be carried out on a list's elements.

STRING

A series of characters is referred to as a string. Python relies heavily on this idea
to function correctly. There are a few key aspects to consider about string.

Krishna Kumar Mohbey & Malika Acharya
All rights reserved-© 2023 Bentham Science Publishers

78 Basics of Python Programming: A Quick Guide for Beginners Mohbey and Acharya

Strings are amongst the most popular types in Python.●

It can create them simply by enclosing characters in quotes (single, double, or●

triple).
Python treats single quotes the same as double quotes.●

A string is a sequence of Unicode characters, and a character is simply a symbol.●

To generate a list of names, it must type each name surrounded by quotation
marks, such as “Krishna”. The string may also be assigned to a variable to carry
out additional operations and make further use of that string. Let's start with the
most fundamental examples to grasp the idea of string.

Example:

Output:

Python does not have a character data type in its standard library. If we consider a
single character to be a string, then the length of that string would be one. You
may access the string's constituent components using square brackets ([]).

Example:

Output:

The string can use to loop through character by character.

Sequence-String and List Basics of Python Programming: A Quick Guide for Beginners 79

Example:

Output:

Other concepts about string include the len() function for getting the length of a
string, keyword in, and not in for checking whether the substring or character is
present in a string.

Example:

Output:

Basics of Python Programming: A Quick Guide for Beginners, 2023, 121-162 121

CHAPTER 6

Tuple and Dictionaries

Abstract: Another important data type of Python is dictionary. In the previous chapter,
we acquainted the readers with the lists and strings. In this chapter, we shall discuss
dictionaries and lists. lists are the ordered collection of objects but dictionaries are an
unordered collection of objects. dictionary values are referred to using key-value pair
instead of positional offset. Due to this, they have found great usage in search tables,
records and aggregation. Another concept introduced in this chapter is tuples. These are
immutable like strings and represent a stable collection of arbitrary items.

Keywords: Hash tables, Immutable and mutable, Mappings.

INTRODUCTION

One of Python's most significant data types is called the tuple, which holds
several components as an object. It is also known as an immutable data type,
which indicates that its members cannot be altered in any way after they have
been set. A dictionary is another data type that may be used in Python, and it
functions similarly to tuples and lists. An associative array is another name for
this structure. A dictionary is a collection of “key-value pairs”. Each key-value
pair connects the key to the value that corresponds to it. In this chapter, you will
learn about various operations and attributes that can be used with dictionaries
and tuples. In addition, the many features and actions of dictionaries and tuples
are broken down and illustrated using examples and codes.

TUPLE

A tuple is a group of ordered, immutable items arranged in a specific way. Tuples
are structured similarly to lists and strings. In this context, the definition of
immutable is that the components of the tuple are not subject to change. Once a
tuple has been generated, it is not possible to add or remove items from the tuple.
Even we cannot change the order in which the tuple members are presented. In
addition, the length of the tuple cannot be altered. It is necessary to generate a
new tuple if we wish to modify an existing one by adding or taking something
away from it. Unlike lists, tuples are denoted by parentheses and cannot be edited.
Tuples are a sort of sequence equivalent to strings in terms of structure. Tuples

Krishna Kumar Mohbey & Malika Acharya
All rights reserved-© 2023 Bentham Science Publishers

122 Basics of Python Programming: A Quick Guide for Beginners Mohbey and Acharya

can hold any components, in contrast to strings, which can only store characters.
It indicates that the tuple contains either a list of students' names or employee IDs,
depending on which one is selected. Tuples may also be used to store varied
elements, implying that a single tuple can contain components of several data
formats, such as decimal formats, integers, and characters. A sequence of music
files, picture files, and other data types can also be stored in tuples.

To create a tuple in Python, all the elements are enclosed in () parenthesis,
separated by a comma. A tuple can store heterogeneous data elements. Below are
examples of creating tuples.

Example:

Output:

To create a tuple of a single element, it should be followed by a comma. The
following example creates a tuple of a single element.

Tuple and Dictionaries Basics of Python Programming: A Quick Guide for Beginners 123

 Tup1 = (100,)

In the above case, if we do not put a comma after 100, then Python would treat
Tup1 as an integer rather than a tuple variable.

Example:

Output:

TheTuple ()Function

Python has a built-in function called tuple() that may be used to make tuples.
While we can build tuples without utilising this function, it offers a different
method. The tuple() function is used to construct a tuple in the following example.

Example:

Output:

Basics of Python Programming: A Quick Guide for Beginners, 2023, 163-181 163

CHAPTER 7

File Handling

Abstract: From the previous chapters, we anticipate that the readers have garnered
enough working knowledge of Python and its elementary concepts. In this chapter, we
introduce to the user the concept of files. These are one of the major built-in object
types in Python. We can create, call, work, and close the files using several functions as
enunciated below. One of the primary tasks of files is method exporting and common
file-processing tasks such as input and output display to external files, flush buffers,
etc.

Keywords: Buffering, Directory path in OS, Storage in OS.

INTRODUCTION

When information must be stored in a file in an unalterable manner, file
management is essential. A file is a designated location on the disc where data is
kept that is important to the purpose of the file. Once the program has been
closed, we will be able to retrieve the information that was previously stored. The
concept of file management has been adapted and implemented in various other
languages. However, doing so can be difficult or time-consuming, depending on
the language.

However, unlike other Python ideas, this one is not complicated and can be
understood easily. You will learn various theories and procedures about the
management of files in this chapter. In addition, we have illustrated a variety of
file actions by using examples and programs to illustrate our points.

FILE

A collection of bytes that may be used to store information is called a file. This
data is structured in a specific format, which might be anything from a
straightforward text file to an intricate program executable, depending on its
complexity. In the end, these byte files are changed into binary, consisting of 1s
and 0s so that the computer can process them more quickly. Much like many other
programming languages, Python can handle files, allowing users to read, write,
and execute many other file-related operations. This functionality is known as file
handling. It is essential to understand that Python processes files differently based

Krishna Kumar Mohbey & Malika Acharya
All rights reserved-© 2023 Bentham Science Publishers

164 Basics of Python Programming: A Quick Guide for Beginners Mohbey and Acharya

on whether they contain text or binary data. Each line of code is made up of a
string of individual characters that, when combined, make up a text file. A special
character terminates each line in a file referred to as the EOL (End of Line)
character. Examples of EOL characters include the comma and the newline
character. It signals to the interpreter that the line being read has finished and that
a new line has begun. On most of today's file systems, files are broken up into
three distinct parts:

Header: details about the file's contents (file name, size, type, and so on).●

Data: the file's contents as written by the author or writer.●

End of file: a unique character that denotes the file's termination.●

In programming, it is possible that a specific piece of input data must be created
more than once. Occasionally, it is insufficient only to display data on the
console. Large amounts of data may be presented. The console can only display a
certain amount of data; as memory is volatile, it is difficult to restore
programmatically created data frequently. The local file system, which is volatile
and always available, is where we can store things if we need to. The file-
handling capabilities of Python must be used for this. We can use our Python
application to create, modify, read, and destroy files on the local file system,
thanks to file management in Python. When accessing a file on an operating
system, a file path is necessary. A string indicates the location of a file called a
file path. There are three main sections in it:

Directory Path: the location of a file or folder on a file system, separated by a●

forward slash (/) in Linux or Unix or a backslash (\) in Windows.
File Name: the file's real name.●

Extension: it defines the file type.●

Let's say you needed to open the T1.txt file, and the position you were in now was
the same as the location. You must first travel to the Location folder, then to the
Folder1 directory, and then to the T1.txt file to access the file. The path of this
file is “Location/Folder1/T1.txt.”

Open() Function

It must be open first to perform reading and writing operations on a file. To open
a file in Python, the user must first create a file object associated with a physical
file. In addition, the open() function is used to open a file in Python. Python's
open() function takes two arguments: the file name and the access mode. The
function returns a file object, which can be used for reading, writing, and other
operations. The below syntax is used to open a file in Python.

File Handling Basics of Python Programming: A Quick Guide for Beginners 165

Opening a file is a prerequisite for performing any action on it, including reading
and writing. To access the contents of a file using Python, the user must first build
a file object corresponding to the file's actual location. In Python, opening a file is
also accomplished with the help of the open() function. Python's open() function
requires two pieces of information before it can be called: the file name and the
access mode. The method will return a file object that may be utilized for various
tasks like reading, writing, and others. In Python, opening a file is accomplished
with the syntax that is presented below:

Syntax:

Various modes, such as read, write, and append, are available for accessing the
files. The access mode to open a file is defined in Table 1.

Table 1. File Access Modes.

R The file is opened in read-only mode. The file pointer is present at the start. If no access mode is
defined, the file is opened in this mode by default.

rb It converts the binary file into a read-only mode. The file pointer is present at the start of the file.

r+ It opens the file for both reading and writing. The file pointer is present at the start of the file.

rb+ It opens the file in binary format for reading and writing. The file pointer is present at the start of the
file.

W It only allows you to write to the file. If a file with the same name already exists, it is overwritten;
otherwise, it is created. The file pointer is present at the start of the file.

wb It opens the file so it can only be written in binary format. If the file already exists, it is overwritten;
otherwise, it generates a new one. The file pointer is present at the start of the file.

w+ It opens the file for both writing and reading. It differs from r+ in that it overwrites the previous file if
one exists, while r+ leaves the previously written file alone. If no such file exists, it creates one. The
file pointer is present at the start of the file.

wb+ It opens the file in binary format for both writing and reading. The file pointer is present at the start of
the file.

A The file is opened in append mode. If there is one, the file pointer is at the end of the previously
written file. If no file with the same name exists, it creates a new one.

ab It opens the file in binary format in append mode. The pointer is at the end of the file that was
previously written. If no file of the same name remains, it produces a new binary file.

a+ It opens a file for both appending and reading. If a file exists, the file pointer stays at the end of it. If
no file with the same name exists, it produces a new one.

ab+ It opens a binary file for appending and reading. The file pointer is already at the file's end.

#t7.1

182 Basics of Python Programming: A Quick Guide for Beginners, 2023, 182-194

CHAPTER 8

Exception Handling

Abstract: In this chapter, we introduce the concept of exception handling in Python.
They are used to specify the alternate sequence of actions the program needs to jump to
at the occurrence of the event. For example, if we want to print several pages from the
printer and somewhere in the middle of the job the paper gets stuck in the printer. In
such as situation we would want to jump to the function that aborts the printing and
handles this situation by instant shut down of the printer. In such events comes the
exception handling. When the program jumps to the exception handler part the current
sequence of commands is abandoned and the commands given to the exception handler
are executed. After the exception is tackled the programming returns to the point where
the marker left.

Keywords: Error handling, Event notification.

INTRODUCTION

Error handling makes your code more robust by shielding it from the kinds of
mistakes that may result in an abrupt shutdown of your application. On the other
hand, Python exceptions can be handled in contrast to errors. Errors can be syntax
errors, and although various exceptions might happen during execution, they
aren't always unusable. An error could be a syntax mistake. An application that is
reasonable and well-designed should avoid the critical issues indicated by an
Error.

In contrast, an application that is suitable and well-designed should try to capture
the conditions that are indicated by an Exception. Programmers should avoid
handling errors wherever possible since they are a form of uncontrolled exception
that cannot be recovered from. An example of this type of error is the
ZeroDivisionError. Think about what would happen if you produced code that
was later used in production but still ended because of an error. Because the
customer would be dissatisfied, handling the exception in advance and eliminating
uncertainty is preferable. There are two different kinds of mistakes, the first being
syntax errors and the second being exceptions. A syntax error will occur when the
parser identifies a grammatical problem in your code. Syntax errors are also
commonly referred to as parsing errors. To better understand it, let's look at an
example.

Krishna Kumar Mohbey & Malika Acharya
All rights reserved-© 2023 Bentham Science Publishers

Exception Handling Basics of Python Programming: A Quick Guide for Beginners 183

Example:

Output:

The arrow in the report shows that the code parser ran into an error when
executing the program. The failure may be traced back to the token before the
arrow. Because it will output the file's name and the line number where the issue
occurred, Python will handle a significant portion of the troubleshooting work for
you when attempting to resolve errors of this type.

An error that arises as a result of the execution of a program is referred to as an
exception. Exceptions are occurrences that do not obey a general rule, which is
how non-programmers understand the term. When a statement or expression is
executed, an error through the syntax may occur. Python's exceptions are faults
that may be seen during the execution of the program but are not always
catastrophic. An exception object is created whenever a Python program generates
a runtime error. The program will be terminated unexpectedly and without
warning if the code does not expressly handle the exception. In most cases,
programs will disregard exceptions, which will lead to error messages such as the
following:

Example:

184 Basics of Python Programming: A Quick Guide for Beginners Mohbey and Acharya

Output:

Another example of division by zero exception can be seen in the below example.

Example:

Output:

Python exceptions can take several forms, indicated right next to the message they
produce. For example, the types of exceptions that have just been discussed are
TypeError and ZeroDivisionError. Both error messages include, the kind of
exception, and the name of the Python built-in exception that was encountered.
The remaining half of the error line comprises information about what led to the
mistake; the specifics of this information are determined by the type of exception
that was thrown.

HANDLING EXCEPTIONS

Python's approach to managing exceptions is similar to Java's. The code that
might result in the throwing of an exception is contained within a try block. In
Java, exceptions are handled using catch clauses, but in Python, exceptions are
handled by sentences inserted using the except keyword. Personalized deviations
from the norm can be accommodated if necessary. By utilizing the “raise”
command, it is possible to coerce the occurrence of an exception. You may
safeguard your application by enclosing any potentially malicious code that can
cause an exception in a try: block. This will prevent the exception from being
thrown. Place an except declaration after the try: block, then immediately after
that, a block of code that fixes the problem in the most elegant way possible
should follow it. The following is an example of the syntax for try...except...else
blocks:

Basics of Python Programming: A Quick Guide for Beginners, 2023, 195-207 195

CHAPTER 9

Modules and Packages

Abstract: Useful codes are often stored as separate files to increase modularity and
reusability. Modules refer to a single file of code while a package is a collection of
modules. A good programmer utilises both these aspects to enhance the program view
and manage the hierarchy. In this chapter, we introduce the basics of working with the
modules and packages.

Keywords: Scoping, Modular programming, Standalone script.

INTRODUCTION

MODULES

A complicated and unmanageable program can be broken down into several
manageable subprograms, each referred to as a module through modular
programming. One activity can be carried out by utilizing each component
individually. The creation of modules in Python may be accomplished by utilizing
Python files, which can include a variety of and statements. It is possible to define
variables, classes, and functions in a module. A module can also make use of code
that is executable. When the code is divided into modules, it is much simpler to
comprehend and more convenient to utilize. Additionally, it logically arranges the
code.

To put it another way, the file containing our Python source code with the
extension (.py) is considered the module. Python modules can store code that can
be executed. When we want to use the features of one module in another, we must
import the specific module first. Let's say you've generated a file on your
computer named module1.py, and inside it, you have the following code:

Krishna Kumar Mohbey & Malika Acharya
All rights reserved-© 2023 Bentham Science Publishers

196 Basics of Python Programming: A Quick Guide for Beginners Mohbey and Acharya

Filename: module1.py

To call the functions add_value() and sub_value() specified in the module named
file (module1.py), we must include this module in our main module. To use the
module's functionality, we must first load it into our Python code. Python has
import and from..import statement to include a module.

Import Statement

Our Python program can connect to a module by utilizing an import statement.
The import of many modules may be accomplished with a single import line;
however, despite the number of times a module has been imported into our
register, it is only loaded once each time. The syntax of the import statement is as
follows:

Syntax:

When an import statement is found the interpreter imports the module specified
within the search path. The interpreter explores every directory in the search path
when importing a module. For instance, add the following line to the program's
top to import the module module1.py.

Example:

Output:

Modules and Packages Basics of Python Programming: A Quick Guide for Beginners 197

From…Import Statement

Python enables users to import only a module's specified properties into the
namespace rather than the entire module. For this, the from…import statement
may be utilized. The following syntax makes use of the from...import expression.

Syntax:

Consider the following module, module 1, which includes the functions
add_value() and sub_add().

Example:

Filename: module1.py

If we want to import only add_value() function from this module, then the
following code will be used.

Filename: main.py

Output:

We can also import any built-in module in our program. The below example
imports the pi function from the math module.

Example:

208 Basics of Python Programming: A Quick Guide for Beginners, 2023, 208-236

CHAPTER 10

Object-Oriented Programming

Abstract: In this chapter, we explore the OOP concepts in programming that offer an
effective way of making coding more easy and comprehensive. It facilitates
redundancy and allows customizing the existing code.

Keywords: Namespace, Superclass and Subclass.

INTRODUCTION

Object-Oriented Programming, sometimes called OOP, organizes a computer
program's components into distinct objects with similar characteristics and
functions. Classes and objects are the fundamental building blocks of object-
oriented programming. The class serves as the blueprint, while the objects
themselves are living, breathing entities capable of carrying out various
operations. An object is composed of its data elements, characteristics, and
behaviour, which may include actions or functions.

In procedural programming, a program is structured similar to a recipe by
providing several stages, including functions and code blocks, that flow
sequentially to achieve a goal. This programming paradigm is one of the most
common programming paradigms. Python has always been object-oriented, much
like other languages designed for general-purpose programming. It makes it
possible for us to construct programs using an object-oriented methodology.
Python makes it very simple to create and work with objects and classes. An
object-oriented paradigm refers to building software by utilizing classes and
objects. The item is connected to things in the real world, such as a computer, a
house, a mobile phone, and so on. The definition of OOPS emphasizes the
creation of code that may be reused. Putting together new things to use as
solutions is a frequently utilized strategy. An object-oriented programming
paradigm can be broken down into its core ideas, which are as follows.

Krishna Kumar Mohbey & Malika Acharya
All rights reserved-© 2023 Bentham Science Publishers

Object-Oriented Programming Basics of Python Programming: A Quick Guide for Beginners 209

CLASS AND OBJECT

A class is a name that can be given to a collection of objects. It is a logical entity
with specific methods and unique properties. For example, a student's class should
contain an attribute and a method, such as their name, age, address, and the
classes they are enrolled in. The object functions as its independent entity,
complete with a state and a set of behaviors. It may be a notebook, computer,
pencil, or other things. In Python, everything is an object, and nearly anything
may have both attributes and methods applied to it. When a class is defined, the
class must first create an object before it may assign memory.

DATA ABSTRACTION

The practice of abstraction is a method that hides information on the system's
internal workings and shows only its functionalities. Data encapsulation and data
abstraction are two terms that are frequently used interchangeably. Because data
encapsulation is the means through which data abstraction is achieved, it is
possible to use either word interchangeably.

ENCAPSULATION

Encapsulation is a key notion in object-oriented programming, one of today's
most prevalent programming paradigms. It explains the concept of enclosing the
data and the methods that operate on the data within a single unit. This limits
direct accessing methods and variables, which helps avoid unintentional data
change. Only the object's method can change the object's variables; this is done to
prevent unintentional changes. These particular variables fall under the category
of “private variables.” Encapsulation can be illustrated by how a class stores all
information about its member functions, variables, and so on. The objective of
information hiding is to ensure that the state of an object is always valid by
regulating access to its attributes while keeping those properties hidden from the
view of the outside world.

INHERITANCE

Inheritance is the most fundamental component of object-oriented programming,
miming the inheritance process that occurs in real life. Inheritance is an essential
component. It states that all of the characteristics and behaviors of the parent
object are passed down to the child object through inheritance. Through
inheritance, we can build a class capable of taking on all of the characteristics and
actions of another class. The new class is considered to be a derived class or a
child class, whereas the base class or the parent class is regarded as the class

210 Basics of Python Programming: A Quick Guide for Beginners Mohbey and Acharya

whose properties are gained. It assures that the code can be utilized in different
applications.

POLYMORPHISM

The term “polymorphism” originates from the combination of the words “poly”
and “morphs.” The prefix poly denotes “many,” while the suffix morph refers to
“shape.” The capacity to carry out a single activity in multiple guises is what we
mean when discussing polymorphism. It employs a single category of items, such
as a method, operator, or object, to stand in for several different types in various
contexts. For example, we have a single addition operator capable of adding a
wide variety of value types.

Defining a Class

The keyword class, followed by the class name, is used to build a class in Python.
The following is the syntax for creating a class.

Syntax:

A class declares all its attributes in a new local namespace. Data members or
functions may be included as attributes.

It also contains unique attributes that start with double underscores. For example,
__doc__ returns the class's docstring. The following statement can access it.

A new class object with the same name is generated when we define a class. We
may use this class object to access the various attributes and create new objects of
that class.

Basics of Python Programming: A Quick Guide for Beginners, 2023, 237-250 237

CHAPTER 11

Python for Machine Learning

Abstract: Anticipating that the user has a good knowledge of the core elements of
Python we now explore the applicative aspect of Python. In this chapter, we will look
at Python, especially from the Machine Learning (ML) point of view. We will discuss
the various libraries and their utility in ML and then lay hands over the programming
demonstrations.

Keywords: Libraries, Machine learning, Packages, Prediction and classification.

INTRODUCTION

We assume the readers now have enough preliminary knowledge to dive deep into
programming with Python. Python has been the developer's choice, and Machine
Learning is one of the major application areas of Python. Machine Learning is the
field of computer science that allows computer programs to attain the capability
much like a human brain, i.e., learn from past experiences and perform future
tasks. In this chapter, you will learn to program Machine Learning algorithms
with Python.

Anomalous to traditional programming, Machine Learning requires no pre-
defined rules but the design of a mathematical model for decision-making rather
than human interference. Figs. (1 and 2) show the disparity between the two
paradigms of programming. In traditional programming, rules, and data are fed to
the computer, and the results are evaluated. In case of an error, the problem is
studied and analyzed, and changes are made to the rules. But in the Machine
Learning paradigm, the learning is leveraged on the training data, and results are
evaluated. The defined model is then tested over test data, and output is produced.

Fig. (1). Traditional Programming.

Krishna Kumar Mohbey & Malika Acharya
All rights reserved-© 2023 Bentham Science Publishers

RULES

DATA

CLASSICAL/TRADITIONAL
PROGRAMMING OUTPUT

PR
ED

IC
TIO

N
S

238 Basics of Python Programming: A Quick Guide for Beginners Mohbey and Acharya

Fig. (2). Machine Learning Programming Paradigm.

Self-learning is the crux of Machine Learning. The performance based on data
extraction, preprocessing, and analysis without being explicitly programmed
defines the objective of Machine Learning. It aims to facilitate the machine to
work directly without being programmed. Decision-making is an important task
that relies on pattern extraction and information modeling based on trial and error
and probabilistic reasoning. Thus, one can say that decisions are not based on the
pre-set rules but on the input data. To minimize the errors, the programmers can
tweak model settings called hyperparameter tuning. For learning, the programmer
splits the data into training and testing data. The training set helps to learn the
patterns in the data and validate the results. Finally, the developed model can be
evaluated over test data. The model can be deployed for other applications if the
performance is satisfactory.

Machine Learning has been divided into two categories based on the training
procedure. If the machine is trained with the labeled training data, i.e., the data
that has been classified under different classes, then that type is called supervised
learning. And, if the learning over training data is without human interference,
i.e., no defined classes, then that is called unsupervised learning. The difference

TRAINING DATA

VALIDATION DATA

MACHINE MODEL

LEA
R

N
IN

G

TEST DATA

MODEL

MACHINE RESULT

PR
ED

IC
TIO

N
S

Python for Machine Learning Basics of Python Programming: A Quick Guide for Beginners 239

between supervised and unsupervised learning is given in Table 1.

Table 1. Difference between Supervised and Unsupervised Learning.

Supervised Learning Unsupervised Learning

Input data is labeled Input data is unlabeled

Feedback mechanism present A feedback mechanism is absent

Data is classified Properties are assigned to data

Suitable for prediction tasks Suitable for analysis tasks

A known number of classes An unknown number of classes

Consists of explanatory and response variables Consists only of explanatory variables

Supervised learning is applicable in two major domains, namely, classification
and regression. Classification is the process of categorizing data into different
categories based on the labeled data used for training. Regression is similar to
classification except that it can also be applied to continuous data, unlike
classification, which can only be applied to discrete values. Unsupervised learning
is suitable for clustering and association tasks. Clustering is used to discover the
groups in the data, while the association is used for extracting the rules from a
large amount of data.

IMPORTANT PYTHON LIBRARIES

Now we move to some important Python libraries that are used in Machine
Learning.

• NUMPY

It's an array-processing package suitable for processing large multi-dimensional
arrays and matrices.

Example:

Output:

Basics of Python Programming: A Quick Guide for Beginners, 2023, 251-259 251

CHAPTER 12

Programming with Python

Abstract: After the successful comprehension of the different aspects of Python and its
applications in ML, it's now the time to look at how they can be combined and put to
work using common examples. This will surely increase the reader's comprehension of
the intricacies of Python and demonstrate the efficiency of the language in making the
programming simple.

Keywords: Binary search, Factorial, Time series.

INTRODUCTION

After going through the previous chapters, we are sure you have a better
understanding of the basics of Python. Now let's gear up to some programming
exercises with Python. In the beginning, we provide some simple and basic
Python programs using functions, lists, dictionaries, arrays, etc. Then we discuss
some basic machine learning applications with Python programming.

BASIC PYTHON PROGRAM

Program to Solve a Quadratic Equation

Example:

Krishna Kumar Mohbey & Malika Acharya
All rights reserved-© 2023 Bentham Science Publishers

252 Basics of Python Programming: A Quick Guide for Beginners Mohbey and Acharya

Output:

Program to Swap Two Numbers

Example:

Output:

Program to Find the Factorial of Two Numbers

Example:

Programming with Python Basics of Python Programming: A Quick Guide for Beginners 253

Output:

Program for Fibonacci Series Using Recursion

Example:

Output:

BIBLIOGRAPHY

[1] Available at: www.python.org

[2] Available at: https://docs.anaconda.com

[3] M. Lutz, Learning Python: Powerful Object-Oriented Programming. 5th O’Reilly Media, Incorporated,
2009.

[4] D.M. Beazley, Python Essential Reference. Addison-Wesley, 2009.

[5] C.P. Milliken, Python Projects for Beginners: A ten-week bootcamp approach to python
programming. (1st ed.) Apress, 2019.

[6] A. Harris, Python for Beginners: Learn Computer Programming with Python Now and How to Use It
with This Step by Step Guide That Gives You the Basics of Python Coding + Practical Exercises.
Independently Published, 2019.

[7] F. Romano, and H. Kruger, Learn Python Programming: An in-depth introduction to the fundamentals
of Python 3rd Edition. (3rd ed.). Packt Publishing, 2021.

[8] A. Müller, and S. Guido, Introduction to Machine Learning with Python: A Guide for Data Scientists.
(1st ed.). O’Reilly Media, 2016.

[9] Availabel at: https://www.nltk.org/ For a complete reference to download and usage to NLTK.

[10] D. Paper, Hands-on scikit-learn for machine learning applications. Data Science Fundamentals with
Python. Apress: Berkeley, CA, 2020.[http://dx.doi.org/10.1007/978-1-4842-5373-1]

Basics of Python Programming: A Quick Guide for Beginners, 2023, 260-260 260

Krishna Kumar Mohbey & Malika Acharya
All rights reserved-© 2023 Bentham Science Publishers

http://www.python.org
https://docs.anaconda.com
https://www.nltk.org/
http://dx.doi.org/10.1007/978-1-4842-5373-1

 Basics of Python Programming: A Quick Guide for Beginners, 2023, 261-265 261

Krishna Kumar Mohbey & Malika Acharya

All rights reserved-© 2023 Bentham Science Publishers

SUBJECT INDEX

A

Anaconda 7, 8

 navigator 8

 open-source distribution 7

Applications 1, 7, 17, 43, 142, 182, 184, 210,

238, 250, 251

 banking 43

 basic machine learning 251

 data science 250

 desktop 1

Arguments, positional 136

Arrays 20, 115, 116, 138, 239, 240, 241, 251,

254

 large multi-dimensional 239

 one-dimensional 240

 two-dimensional 241

Associativity, operator’s 34

Attributes 121, 198, 209, 210, 215, 216, 219,

233, 236

 class’s 216

 module’s 198

 particular 233

Automatic memory management allocation 4

B

Benevolent dictator for life (BDFL) 1, 3

Binary 30, 31, 165, 177, 178

 files 165, 177, 178

 left shift 30

 right shift 31

Bitwise operator 25, 30, 31

Boolean 18, 22, 27, 77, 91

 data type 22

 value 27, 91

Break statement 12, 56, 57

C

Characters 36, 37, 38, 39, 77, 78, 79, 88, 90,

91, 93, 100, 101, 122, 164, 169, 170

 alphabetical 39

 alphanumeric 38, 101

 non-alphanumeric 101

Class(s) 99, 216, 233, 234

 attributes 216, 233

 declaration 234

 string module 99

Code 2, 3, 12, 13, 15, 184, 185, 198, 208, 219,

220

 block 12, 13, 184, 185, 208

 malicious 184

 platform-independent 3

 portable 2

 program’s 219

 readability 12

 redundancy 15

 reutilization 220

 source 2, 3, 198

Collection 4, 20, 21, 23, 77, 115, 121, 138,

153, 163, 192, 195, 209, 247

 garbage 4, 192

 ordered 77, 121

 stable 121

Commands 9, 10, 11, 28, 169, 182, 184, 247

 bash 9

 raise 184

Computer 2, 7, 17, 115, 138, 139, 163, 177,

195, 208, 209, 237

 hardware 2

 languages 115, 139

 programming 17

 program’s components 208

Concatenating components 81

Condition 31, 32, 38, 44, 46, 53, 73, 182, 192

 false 32

 termination 73

Conditional processing 43

Constructor(s) 216, 217, 218, 236

262 Basics of Python Programming: A Quick Guide for Beginners Mohbey and Acharya

 default 216, 218

 function executes 216

 non-parameterized 217

Control 43, 56, 60

 flow alterations 43

 structures, sequential 60

Control statements 43, 44, 60

 decision 43, 44

Conversion 23, 24, 30, 134, 161, 201

 angle 201

 binary 30

D

Data 122, 209, 215, 238, 240, 241

 abstraction 215

 analysis 241

 encapsulation 209

 extraction 238

 formats 122

 frames 240

 mining 241

 storage 241

Data elements 122, 208

 heterogeneous 122

Data types 121, 201, 241

 container 201

 heterogeneous 241

 immutable 121

Debugging assertions 11

Deep learning algorithms 244

Dictionaries, employee’s 158

Dictionary 121, 140, 147, 152, 155, 158, 159,

161

 comparison 159

 components 147

 creation 140

 elements 158

 iteration 152

 key 140

 lookups 161

 values 121, 155

Digits, decimal 101

Directory operations 178

Download 5, 7, 8, 9, 247

 anaconda 8

 automatic 5

E

Elements 116, 122, 124, 128, 135, 237

 access 124

 container 135

 core 237

 nested 116

 searching 128

 varied 122

EMP dictionary 155

Exception(s) 4, 12, 182, 183, 184, 185, 186,

188, 189, 190, 191, 192, 193

 blocks 186

 class 193

 custom 189

 explicit 189

Execution 5, 12, 43, 72

 function call’s 72

 path 5, 43

 sequence 12

Exemption provisions 186

Expressions 25, 42

 evaluating 42

 straightforward arithmetic 25

F

Fibonacci series 253

File 122, 164, 165, 167, 174, 176, 177

 handling capabilities 164

 music 122

 path 164

 pointer 165, 167

 positions 174

 processing tasks 176

 type, binary 177

File name 164, 165, 173, 178

 absolute 178

 relative 178

File object 164, 165, 166, 173

 attributes 173

File systems 164, 166

 local 164

First python program 9

Floating 18, 62, 192

 point errors 192

 point numbers 18, 62

Flow diagram 47, 49, 57

 of break statement 57

Subject Index Basics of Python Programming: A Quick Guide for Beginners 263

 of if-elif-else statement 49

 of if-else statement 47

Format 20, 80, 81, 99, 122, 161, 163, 165, 171

 binary 165

 decimal 122

 string syntax 99

 strings 81

Formatting dictionaries 161

Function(s) 38, 61, 62, 65, 66, 73, 76, 90, 113,

119, 123, 128, 132, 135, 158, 159, 164,

166, 176, 192, 200, 201, 229

 linked 176

 logarithmic 201

 mathematical 201

 parameters and arguments 66

 polymorphism 229

H

Handy explanation 13

Hash tables 21, 121

High-level language program 3

Hyperparameter tuning 238

I

If 46, 47, 49

 elif-else statement 49

 else statements 46, 47

Imaginary components 18

Immutable strings 84

Implementation, standard 3

Indentation rules 12

Index 36, 38, 39, 88, 103, 104, 114, 124, 125,

128, 135, 138, 192, 241

 negative 124

 number 103

 offset 114

 out-of-bound 192

 positions 138

 positive 124

 row 241

Indexing 103, 125, 142

 negative 103

Information 17, 20, 132, 138, 139, 163, 165,

184, 209, 230, 233, 238

 modeling 238

Inheritance 15, 193, 209, 219, 220, 221, 222,

226, 231, 236

 hierarchical 220, 226

 hierarchy 226

 multi-level 222

 process 209, 231

 single 220, 221

Inheriting properties 219

Install 6, 247

 dictionaries 247

 NLTK 247

 python 6

Installation 1, 5, 6, 8, 9, 17, 247

 destination, default 5

 instructions 6

 of mint 6

 of supporting software 6

 Window 247

Installing 4, 7

 Anaconda on windows 7

 Python 4

Installing NLTK 247

 on Windows 247

Integer 17, 18, 23, 26, 37, 62, 77, 85, 90, 103,

122, 123, 125, 127

 hexadecimal 37, 85

 number 62

 octal 37, 85

 signed decimal 37, 85

 unsigned decimal 37, 85

J

Jupyter 9, 10

 home 9

 notebook 9, 10

L

Lambda 14, 72, 73, 148, 149

 calculus 14

 functions 72, 73, 148, 149

Language(s) 2, 3, 19, 61, 62, 82, 163, 208,

247, 251

 flexibility 61

 object-oriented 1

 object-oriented system 3

 portable 3

 processing 247

Learning 237, 238, 239, 245

 deep 245

264 Basics of Python Programming: A Quick Guide for Beginners Mohbey and Acharya

 supervised 238, 239

 unsupervised 238, 239

Libraries, text processing 247

Linux systems 9

Literals 17, 35, 140

 byte 35

 floating-point 35

 imaginary 35

Local namespace 12

M

Machine 1, 2, 238

 language 2

 virtual 1

Machine code 2, 3

 instruction 2

Machine learning 236, 237, 241

 algorithms 241

 concepts 236

 paradigm 237

Memory 4, 77

 allocation 4

 computer’s 77

 growth 4

 management 4

Modifying dictionary 143

Module(s) 205, 207

 hierarchy of 205

 implementations 207

N

NASA’s jet propulsion laboratory 1

Natural language processing 246

O

Object-oriented 207, 208, 219, 236

 framework 219

 methodology 208

 programming concepts 207, 236

Open 9

 Anaconda navigator 9

Open-source 3, 245

 framework 245

 software 3

Operands 25, 26, 28, 30, 32, 92

 numeric 25

 single 30

Operating system 1, 4, 5, 7, 16, 164, 178, 202

Operations 11, 14, 30, 77, 78, 104, 116, 120,

121, 127, 130, 161, 164, 166, 178, 181,

192

 arithmetic 116

 bitwise 30

 clearing 104

Operator 19, 25, 30, 37, 103

 arithmetic 25

 formatted string 37

 index 103

 repetition 19

 unary 25, 30

Ordered sequences 77, 148

P

Pin code 139

Polymorphism 15, 210, 229, 230, 231, 236

 in class methods 230

Probabilistic reasoning 238

Program 237, 253, 257

 for fibonacci series 253

 for linear search 257

 machine learning algorithms 237

Program’s syntax 4

Programmer splits 238

Programming 1, 237

 efficient 1

 traditional 237

Programming languages 1, 3, 7, 36, 61, 132,

153, 163

 object-oriented 1, 3

Programming paradigm 208

 object-oriented 208

Python 1, 2, 3, 4, 5, 6, 7, 16, 21, 35, 43, 54,

139, 148, 149, 163, 181, 182, 183, 194,

195, 196, 239, 245, 247, 250, 258, 259

 based library 245

 codes execute 1

 dictionary 139

 environment 245

 exception handling in 182, 194

 expressions 35

 file management 181

 installation 6, 16

 libraries 239, 250, 258

 modules 195

 object 21

Subject Index Basics of Python Programming: A Quick Guide for Beginners 265

 package manager 7

 processes files 163

 program executes 43

 programming language’s syntax 54

 programs 2, 183, 196, 250, 259

 software foundation 1

 tools 4

 universe 1

 usage 245

 versions 1, 3, 4, 5, 6, 148, 149, 247

Python source 195, 200

 code 195

 file 200

Python’s string 19

PyTorch 245

R

Random module 201

Recursive functions 61, 73, 74

S

Slice 88, 120

 object 88

 operation 88

 string methods 120

Slicing 4, 77, 88, 104, 109, 125

 operations 125

 operator 104

 process 88, 109

Software, building 208

Sony entertainment 1

Sorting 147, 150, 254

 dictionaries 147, 150

 elements of array in ascending order 254

Spyder platforms 8

Statements 11, 12, 13, 14, 35, 43, 44, 45, 46,

47, 48, 49, 50, 57, 193

 expression 11

 jump 43

Statistics module 201

String 37, 80, 85, 86, 88, 97, 98

 capwords 98

 constants 97

 conversion 37, 85

 formatting operations 85

 functions 86, 88

 method 80

 module constants 97

Support 1, 3, 4, 245, 246

 effective interface 246

 polymorphism 3

T

Time series analysis 258

Tools, software development 3

Troubleshooting work 183

Tuple 19, 124, 125, 127, 130, 137

 datatypes 19

 elements 127, 130, 137

 indexes 124

 slicing 125

 sorting 137

Tuple’s beginning 124

U

Ubuntu 6

 distribution 6

 buntu system 6

V

Voice recognition 247

W

Windows search bar 7

	Cover
	Title
	Copyright
	End User License Agreement
	Contents
	Foreword
	Preface
	Introduction to Python
	INTRODUCTION
	TECHNICAL STRENGTHS OF PYTHON
	Portability
	Object-Oriented
	Community Support
	Advanced Features
	Memory Management
	Ease of Use
	Installing Python
	Windows Installer
	Ubuntu
	Linux Mint
	Python IDLE
	Anaconda Open-source Distribution
	Installing Anaconda on Windows
	Installing Anaconda on Linux
	First Python Program
	Python Keywords
	Identifiers
	Statements
	Indentation
	Comments
	Coding Styles
	Functional
	Imperative
	Procedural
	Object-oriented

	CONCLUDING REMARKS

	Data Types, Operators, and Expressions
	INTRODUCTION
	NUMBER
	Sequence

	DICTIONARY
	BOOLEAN
	SET
	TYPE CONVERSION
	Implicit Type Conversion
	Explicit Type Conversion

	OPERATORS
	Arithmetic Operators
	Addition (+) Operator
	Subtraction (-) Operator
	Multiplication (*) Operator
	Division (/) Operator
	Modulus (%) Operator
	Exponent (**) Operator
	Floor Division (//) Operator

	Relational Operators
	Greater than (>) Operator
	Greater than or equal to (>=) Operator
	Less than (<) Operator
	Less than or equal to (<=) Operator
	Equal to (==) Operator
	Not equal to (! =) Operator

	Assignment Operator
	Assignment (=) Operator
	Add AND (+=) Operator
	Subtract AND (-=) Operator
	Multiply AND (*=) Operator
	Divide AND (/=) Operator
	Modulus AND (%=) Operator
	Exponent AND (**=) Operator
	Floor Division (//=) Operator

	Unary Operators
	Bitwise Operators
	Binary AND (&) Operator
	Binary OR (|) Operator
	Binary XOR (^) Operator
	Binary One's Complement (~) Operator
	Binary Left Shift (<<) Operator
	Binary Right Shift (>>) Operator

	Logical Operators
	Logical AND Operator
	Logical OR Operator
	Logical NOT Operator

	Membership Operators
	Operator (in)
	Operator (not)

	Identity Operators
	Operator (is)
	Operator (is not)

	Operators' Precedence and Associativity

	EXPRESSIONS
	Identifiers
	Literals
	Operators

	STRING OPERATIONS
	Accessing Values in Strings
	Triple Quotes

	CONCLUDING REMARKS

	Control Flow
	INTRODUCTION
	SEQUENTIAL STATEMENTS
	DECISION CONTROL STRUCTURES
	If Statements
	If-else Statements
	Nested if
	if-elif-else

	LOOPING STATEMENTS
	For Loop
	While Loop
	Nested Loop
	Break Statement
	Continue Statement
	The Pass Statement

	CONCLUDING REMARKS

	Functions
	INTRODUCTION
	Definition

	PREDEFINED FUNCTIONS
	USER-DEFINED FUNCTIONS
	Function Call
	Function Parameters and Arguments
	Default Arguments
	Variable Scope and Lifetime
	Scope of the Variable
	Local Scope
	Global Scope
	The Lifetime of the Variable
	Local and Global Variables
	Global Variables
	Global Statement
	Return Statement
	Lambda Functions
	Recursive Functions
	Function Redefinition

	CONCLUDING REMARKS

	Sequence-String and List
	INTRODUCTION
	STRING
	String Concatenation
	Using + Operator
	Using join() Method
	Using % Operator
	Using Format() Function
	Appending Strings
	Using += Operator
	Using Join()
	Multiplying Strings
	Immutable Strings
	String Formatting Operator
	Built-in String Functions
	Slice Operation
	The ord() Function
	The chr() Function
	String Comparison
	Using Relational Operators
	Using is and is not
	Using User-defined Function
	Iterating String
	split() Function
	re.findall() Function
	The String Module
	String Module Constants
	string.ascii_letters
	string.ascii_lowercase
	string.ascii_uppercase
	string.digits
	string.hexdigits
	string.punctuation

	String capwords() Function
	String Module Classes
	Formatter
	Template
	Regular Expression

	LISTS
	Using List Index
	List Operations
	Updating Values in Lists
	Nested List
	Aliasing
	Cloning Lists
	Cloning List using Slicing
	Cloning List using Extend()
	Cloning List using List()
	Cloning List using List Comprehension
	Cloning List using Append()
	Cloning List using Copy()
	Built-in Functions
	List Built-in List Methods
	List as Arrays
	Loops in Lists
	For Loop in the List
	While Looping in the List
	List Comprehension
	Enumerate() Method
	Numpy in Loop
	List in Functions

	CONCLUDING REMARKS

	Tuple and Dictionaries
	INTRODUCTION
	TUPLE
	TheTuple ()Function
	Accessing Tuple
	Tuple Indexes
	Tuple Slicing
	Updating Tuple
	Deleting Elements from a Tuple
	Tuple Operations
	Tuple Basic Functions
	Tuple Assignment
	Tuples and Functions
	Nesting of Tuples
	Tuples from String and List
	zip() Function
	Inverse zip(*) Function
	Tuple Sorting

	DICTIONARY
	Dictionary Creation
	Accessing Dictionary Values
	Modifying Dictionary
	Delete an Element from the Dictionary
	The Clear () Function
	Sorting Dictionaries
	Sorting Dictionary by Value
	Sorting Dictionary in Reverse Order

	Iterating Over a Dictionary
	Nested Dictionaries
	Updating Nested Dictionary
	Deleting Elements from a Nested Dictionary
	Deleting a Dictionary from the Nested Dictionary
	Iterating Through a Nested Dictionary
	Built-in Dictionary Functions
	The Copy () Method
	Formatting Dictionaries

	CONCLUDING REMARKS

	File Handling
	INTRODUCTION
	FILE
	Open() Function
	Close() Function
	Write() Function
	Writelines() Method
	Writing Numbers to a File
	Read() Method
	Readline() Method
	Readlines() Method()
	Reading Contents with a Loop
	Creating a New File
	File Object Attributes
	File Positions
	File Rename
	Deleting a File
	Binary Files
	Directory Operations
	Current Working Directory
	List of Directories
	Creating a Directory
	Change Directory
	Renaming a Directory
	Delete a Directory

	CONCLUDING REMARKS

	Exception Handling
	INTRODUCTION
	HANDLING EXCEPTIONS
	EXCEPT BLOCK
	ELSE AND FINALLY, KEYWORD
	RAISING EXCEPTIONS
	Built-in Exceptions
	User-defined Exceptions

	CONCLUDING REMARK

	Modules and Packages
	INTRODUCTION
	MODULES
	Import Statement
	From…Import Statement
	Renaming A Module
	Dir() Built-In Function
	Reload () Function
	Built-In Modules

	PACKAGE
	Creating Package
	Sub Packages

	CONCLUDING REMARK

	Object-Oriented Programming
	INTRODUCTION
	CLASS AND OBJECT
	DATA ABSTRACTION
	ENCAPSULATION
	INHERITANCE
	POLYMORPHISM
	Defining a Class
	Creating an Object
	Deleting Properties or Object
	Data Abstraction Example

	CONSTRUCTORS
	Parameterized Constructor
	Default Constructor

	INHERITANCE IN PYTHON
	TYPES OF INHERITANCE
	Single Inheritance
	Multi-level Inheritance
	Multiple Inheritance
	Hierarchical Inheritance
	The issubclass(sub,sup) method()
	The isinstance (obj, class) method()

	POLYMORPHISM IN PYTHON
	Polymorphism in Operators
	Function Polymorphism
	Polymorphism in Class Methods
	Method Overriding
	Built-in Class Functions
	Built-in Class Attributes
	Static Variables

	CONCLUDING REMARKS

	Python for Machine Learning
	INTRODUCTION
	IMPORTANT PYTHON LIBRARIES
	• NUMPY
	• PANDAS
	• SCIKIT-LEARN
	• MATPLOTLIB
	• TENSORFLOW
	• KERAS
	• PYTORCH
	• NLTK
	Installing NLTK on Mac/ Unix
	Installing NLTK on Windows

	CONCLUDING REMARKS

	Programming with Python
	INTRODUCTION
	BASIC PYTHON PROGRAM
	Program to Solve a Quadratic Equation
	Program to Swap Two Numbers
	Program to Find the Factorial of Two Numbers
	Program for Fibonacci Series Using Recursion
	Sorting Elements of Array in Ascending Order
	Program to Print the Sum of Elements of Array
	Program to Transpose a Matrix
	Program to Reverse a String
	Program to Concatenate Two Strings
	Program to Append Elements to the List
	Program to Delete an Element of List
	Program for Linear Search
	Program for Binary Search
	Program to Perform Time Series Analysis

	CONCLUDING REMARKS

	Bibliography
	Subject Index

	Back Cover

