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FOREWORD

The fact that Python programming is employed across most fields contributes to its growing
popularity in recent years. It is possible to generate software at any level, from the simplest of
programs to a fully functional application. Even every company, institution, organization, or
researcher uses Python programming in their work, albeit they may do so in various methods.
Python makes it possible to develop algorithms that are both effective and efficient as well as
to  manage  more  significant  amounts  of  data  in  today's  world.  The  proposed  book  covers
various  Python  programming  topics,  ranging  from  the  fundamentals  to  more  advanced
techniques.  This  book,  which  serves  as  a  helpful  guide  to  becoming  a  programmer,  will
significantly benefit the community.

D. S. Rajput

School of Information Technology and Engineering
Vellore Institute of Technology

Vellore, India
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PREFACE

It  gives  immense  pleasure  to  bring  the  book  "Basics  of  Python Programming:  A Quick
Guide for Beginners." The most extensively used programming language today is Python,
which  also  happens  to  be  the  most  popular  programming  language.  Students  enrolled  in
various classes who can efficiently use this high-level programming language as a problem-
solving  tool  are  this  Book's  target  audience.  Python  is  not  only  employed  in  the  field  of
computer science; instead, it is used in the development of applications for all areas.

Python programming can be swiftly learned by anybody with a fundamental understanding of
computers and the ability to reason logically. Because of this inspiration, we could write this
Book  clearly  and  concisely.  After  reading  the  Book,  you  will  have  a  fundamental
understanding  of  how  to  do  programming  in  Python.  We  have  attempted  to  present  the
intricacies of Python in a very colloquial language such that the potential readers require no
special expertise to refer to the book. It is apt for beginners as the concepts are explained in
simple language with suitable demonstrative examples to facilitate both theory and practical
learning.

Our primary goal in writing this book is to provide an approachable resource for beginners
new  to  programming  or  with  limited  coding  experience.  We  understand  that  learning  a
programming language can be intimidating, especially for those starting from scratch. With
"Basics  of  Python  Programming:  A  Quick  Guide  for  Beginners",  we  have  consciously
designed  the  content  to  be  beginner-friendly,  focusing  on  simplicity  and  clarity  of
explanations. We believe that our book's accessible style will empower beginners to grasp the
fundamental concepts of Python programming swiftly and confidently.

We recognize that many aspiring programmers are looking for a resource that allows them to
learn Python quickly and efficiently. While there are extensive books available that provide
in-depth coverage of Python, our book takes a different approach. We have distilled the core
concepts and essential components of Python programming into a concise guide that can be
absorbed  quickly.  By  focusing  on  the  basics,  we  aim  to  provide  beginners  with  a  solid
foundation in Python programming without overwhelming them with excessive information.

We  firmly  believe  that  practical  application  is  critical  to  mastering  Python  programming.
Therefore,  our  book  emphasizes  hands-on  learning  and  incorporates  numerous  practical
examples throughout the chapters. By engaging in coding exercises and mini-projects, readers
can actively  apply  the  concepts  they learn,  solidifying their  understanding of  Python.  Our
approach encourages learners to gain practical experience alongside theoretical knowledge,
enabling them to build their coding skills from the very beginning.
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&

Malika Acharya
Department of Computer Science

Central University of Rajasthan
Rajasthan, India

We firmly believe that "Basics of Python Programming: A Quick Guide for Beginners" offers
a  unique  value  proposition  to  individuals  looking  to  kick-start  their  journey  in  Python
programming.  Its  simplicity,  efficiency,  hands-on  approach,  clear  progression,  and
supplementary resources set it apart from other books. We hope this book is a valuable tool
for learning Python programming and unlocks the door to exciting possibilities.

Krishna Kumar Mohbey
Department of Computer Science

Central University of Rajasthan
Rajasthan, India
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CHAPTER 1

Introduction to Python

Abstract: Python is an object-oriented programming language that can support a wide
range  of  applications  like  web  development,  desktop  applications,  etc.  Its  general-
purpose programming features make coding easy, comprehensive and readable even for
beginners.

Keywords: Development environments, Object-oriented programming, Operating
system, Shuffle exchange network, Virtual machine.

INTRODUCTION

Python  has  grown  to  be  a  mainstream  language.  Its  simple  syntax  and
comprehensible code make it a popular general-purpose programming language
among developers, engineers, and amateurs with limited programming skills. Its
open-source  features  with  a  wide  variety  of  libraries  facilitate  efficient
programming.  The  first  chapter  of  this  book  provides  a  brief  introduction  to
Python along with a stepwise guide to installation on Windows and Linux. It will
familiarize  you  with  the  Python  IDE  and  editors,  thus  paving  your  journey  to
Python programming.

Guido van Rossum, Python's Benevolent Dictator for Life, developed Python in
the 1990s. After that, several versions of Python were released. With the end of
life of version 2.7, currently, versions 3.6 and 3.9 are widely used. Python is an
open-source project maintained by the Python Software Foundation. We can take
a tour of the Python universe at www.python.org.

Python is an object-oriented language that, due to its interoperability with existing
codes  in  C and Fortran,  gears  up  to  the  developer's  demands  and enhances  the
programmer's  productivity  while  cutting  down  the  time  consumed.  Python  has
become  the  developer's  choice  in  various  fields.  For  example,  some  of  the
prominent areas where Python is used are NASA's Jet Propulsion Laboratory, the
Lawrence  Livermore  National  Laboratory,  Shell  Research  Boeing,  Industrial
Light and Magic, Sony Entertainment, and Procter & Gamble. Python is a high-
level  language;  thus,  the  programs  coded  in  it  are  easy  and  comprehensible.
Python  codes  execute  on  a  virtual machine; hence, a layer of abstraction exists

Krishna Kumar Mohbey & Malika Acharya
All rights reserved-© 2023 Bentham Science Publishers

http://www.python.org
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between  the  code  and  the  executing  platform.  Thus,  Python  is  an  interpreted
language and produces portable codes that are cross-platform executable. Fig. (1)
depicts  the  execution  of  a  simple  Python program.  Unlike  Fortran,  Python is  a
dynamically typed language that uses an interpreter to interpret the representative
types  at  the  run  time.  The  layer  of  abstraction  abstracts  the  underlying
optimization  from  the  code.  Python  binds  Fortran  and  C  libraries  using  an
interpreter  to  perform  intensive  computation.

Fig. (1).  Execution schematic of Python code.

You  must  have  previously  understood  various  languages  like  C++,  Java,  Perl,
Scheme, or BASIC. All these languages are high-level languages. Nevertheless,
computer  hardware  understands  only  low-level  language  called  machine
language. So, high-level language needs to be converted into machine language.
For this, we have two translators: a compiler and an interpreter. A compiler is a
program that translates the entire program into machine language. The high-level
program  is  known  as  the  source  code,  and  the  output  is  machine  code.  An
interpreter is also a program that takes high-level language and converts it  into
machine code instruction by instruction. Compiled code can be run any number of
times without repeated compiling or the source code.

print("Hello World") COMPILER

BYTE CODE

VIRTUAL
MACHINE

Hello World

Library Modules

Interpreter

Input

Output
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In contrast, interpreted code requires an interpreter and source code every time.
Thus, interpreted code makes the programming environment more user-friendly
and enhances portability. Every CPU has its machine code, but we can run a high-
level language program with the interpreter.

TECHNICAL STRENGTHS OF PYTHON

Portability

As already discussed, Python is a portable language that requires Byte Code for
execution on any platform. An executable byte code converts the source code to
platform-independent code. Python consists of a Tkinter toolkit to support the Tk
GUI  interface  so  the  graphical  user  interface  can  run  on  all  GUI's  supported
platforms without program changes. Python's original, standard implementation
was given in ANSI C, making it executable on all major platforms ranging from
PDAs to supercomputers.

Object-Oriented

Python is an object-oriented programming language. The language is extensible,
i.e., the programs can be extended to C, C++, and Java. It uses a class model to
support polymorphism, operator overloading, and other notions. It is a powerful
scripting tool for other object-oriented system languages, like C++, Java, and C#.
The recent versions of Python also support functional programming. This includes
generators, comprehensions, closures, maps, etc.

Community Support

Python community  support  is  quite  active  and  responsive  to  the  user's  queries.
The  community  consists  of  Python  creator  Guido  van  Rossum,  the  Benevolent
Dictator for Life (BDFL), and a crew of thousands of workers.  Python is more
conservative than other languages in terms of changes, i.e., the changes need to be
approved by the community, especially BDFL.

Advanced Features

Python provides full support for features of scripting languages like PERL. The
scheme facilitates the use of software development tools that are easily found in
compiled languages.  It  is  a  product  of  the FLOSS community,  i.e.,  Python is  a
Free, Libre, and Open-Source Software that assists in knowledge sharing. Some
of the salient features of Python are:
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CHAPTER 2

Data Types, Operators, and Expressions

Abstract:  Now  that  you  have  been  familiarised  with  the  installation  and  basics  of
Python programming, it's time to dig in a little more and understand the different data
types  that  are  available  along  with  the  operators  and  expressions  that  make  the
programming  more  user-friendly.  In  this  chapter,  we  will  learn  about  data  type
categorization and the operators present. Here you will learn the following nuances:

1. Data types supported by the Python.
2. Use of variables to store and access the data.
3. Operators do mathematical works and logical functions.
4. Variety of expressions to serve the range of applications.

Keywords: Associativity, Literals, Operators, Precedence.

INTRODUCTION

In  computer  programming,  a  data  type  is  a  classification  of  the  many kinds  of
information that may be saved in a variable. Since Python is a dynamically typed
language, we do not need to specify the variable type when we declare it.

The  value  is  bound  to  its  type  in  a  way  that  the  interpreter  does  not  explicitly
specify—for example, X=100. We did not declare the type of the variable X, yet it
now holds the integer value 100. In Python, the integers are by default treated to
be of integer data type. To check the type of the variable, we use type() function
available to us in Python, and it returns the type of the variable that was handed
in. The following example illustrates how to specify the values for a variable and
to check their types.

Example:
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Output:

Python has a wide variety of standard data types, each of which can have a unique
storage  mechanism  defined  for  it.  The  data  types  defined  in  Python  are  listed
below:

Numbers1.
Sequence2.
Dictionary3.
Boolean4.
Set5.

NUMBER

The number is responsible for storing numerical values. A Python Numbers data
type is responsible for storing all integer, float, and complex values. To check the
data  type  of  a  variable,  Python  has  a  function  called  type().  It  also  has  the
isinstance()  function that checks whether or not an object belongs to a specific
class.  When a  number  is  assigned  to  a  variable  in  Python,  Number  objects  are
created automatically. A number data type can store int, float, and complex type
values.

The integer value can be any length. There is no limitation on the length of an●

integer in Python.
Float is used to store floating-point numbers which is accurate up to 15 decimal●

points.
A complex number is specified in the form of a + ib, where a and b stand for the●

real and imaginary components of the number, respectively.
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Example:

Output:

Sequence

The language treats Python's string, list,  and tuple datatypes as sequence types.
The  character  sequence  enclosed  in  quote  marks  is  an  example  of  the  string,
which may be defined as that sequence. When defining a string, Python allows us
to  use  single  quotes,  double  quotes,  or  triple  quotations.  As  Python  includes
predefined functions and operators that may be used to execute various actions on
strings, managing strings in Python is a simple process. The “Hello World!” is the
result of the operation “Hello” + “World!”, which uses the plus (+) operator to
concatenate  the  two  strings.  Similarly  to  repeat  the  strings  we  can  use  the
repetition  operator  (*).  For  example  “India”  *7  outputs
IndiaIndiaIndiaIndiaIndiaIndiaIndia  '.

Example:

Output:
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CHAPTER 3

Control Flow

Abstract: It's now the time for the readers to acquaint themselves with the control flow
in the programming. So far the users have seen the linear path of execution, where the
execution commences from the top and moves sequentially to the bottom. Further, our
world is filled with tasks required to run in loops, for example in banking applications,
unless the user enters the correct password the system prompts the dialogue “Please
enter the correct password”. In this chapter, we introduce the concept of control flow
through which the users can decide the execution path for the program and the looping
constructs to iterate through the tasks. Our key takeaways from this chapter are listed
below:

1. Understanding the decision control statements.
2. Programming with if-else ladder and its variants.
3. A hand on for, and while loop statements.
4. Understanding the control flow alterations the jump statements like break, continue
and pass.

Keywords: Control flow, Conditional processing, Looping constructs.

INTRODUCTION

The control  flow of a  program is  illustrated by a statement known as a  control
flow statement. In addition, it determines the sequence in which the code of the
program  is  executed.  Conditional  statements,  loops,  and  function  calls  are  the
primary mechanisms that direct how a Python program executes its instructions.
Python programming utilizes three distinct types of control structures in its many
applications.

Sequential statements1.
Decision control statements2.
Looping statements3.

SEQUENTIAL STATEMENTS

It uses a default mode because the control will move line by line in a program.
Moreover, it is a series of statements that are executed in a sequence.
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Example:

Output:

DECISION CONTROL STRUCTURES

There are a few other names for a decision control statement, including a selection
control  statement  and  a  branching  statement.  The  condition  serves  as  the
foundation for the selection statements. If a condition is met, then the statement
will  be  carried  out.  In  addition  to  that,  we  utilize  it  as  a  checking  and  testing
mechanism.  There  are  wide  distinct  varieties  of  decision  control  statements,
including  the  following:

if●

if-else●

nested if●

if-elif-else●

If Statements

If statements are utilized in programming to determine whether or not a particular
section  of  code  should  be  executed.  If  a  condition  is  met,  the  action  will  be
successful;  otherwise,  it  will  not.

Syntax:
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The flow diagram for the if statement is shown in Fig. (1).

Fig. (1).  Flow diagram of if statement.

Example:

IF
Condition

Set of Statements

TRUE

FALSE

#f3.1
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CHAPTER 4

Functions

Abstract: Functions are one of the primary concepts in every programming language.
They provide an easy way to package the programming logic and use it as and when
required as many times at any place. Thus they help to reduce the redundancy in code
and increase the reproducibility. With the increase in the length of code, it is often a
good idea to divide the code into separate modules by splitting the code into different
functions based on its utility. This is a much- sought practice to organise the lengthy
code. They also help in unit testing the code as testing small units in isolation is quite
an easy task. This deliberate use of functions thus supports language flexibility and a
user-friendly interface. In this chapter the pertinent takeaways would be:

1. Understanding functions and function calls.
2. Comprehending the concept of local and global variables.
3. Programming with the recursive functions.

Keywords: Reproducibility, Redundancy, Reusability, Recurison.

INTRODUCTION

The code may be organized, made more understandable, reused, and repurposed
with the use of functions, which are a helpful approach to separate the code into
more manageable portions. In addition, a function is a piece of code that is put
into action when the function itself is invoked. It can take in data in the form of a
parameter or argument and then return the result.

Definition

A function is an area of code that comprises a block of statements that carry out a
particular  operation.  When  creating  a  function,  there  are  a  few  fundamental
guidelines  to  follow:

Function blocks start with the def keyword. After that, the function name and1.
parentheses (()) are used.
An argument or parameters should be passed inside the parentheses.2.
Any function's code block begins with a colon (:) and is indented.3.
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Syntax:

There are two types of functions, as described below:

Predefined functions●

User-defined functions●

PREDEFINED FUNCTIONS

It  is  sometimes  referred  to  as  a  built-in  function  because  Python  has  its
functionality established in the language. The Python interpreter has several built-
in functions that are always available for usage. There are many kinds of built-in
functions, and here is an example of some of those built-in functions (Table 1):

Table 1. Predefined functions.

abs() It returns the absolute value of a number

bin() It returns the binary version of a number

float() It returns a floating-point number

hex() It converts a number into a hexadecimal value

int() It returns an integer number

len() It returns the length of an object

list() It returns a list

max() It returns the largest item in an iterable

min() It returns the smallest item in an iterable

oct() It converts a number into an octal

pow() It returns the value of x to the power of y

print() It prints to the standard output device

range() It returns a sequence of numbers, starting from 0 and increments by 1 (by default)

round() It rounds a numbers

#t4.1
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Let's look at an example of each of the built-in functions discussed so far to better
grasp how they should be used.

Example:
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CHAPTER 5

Sequence-String and List

Abstract: Unlike primitive data types like integers, floats and Boolean, a string is an
ordered sequence of characters each of which can be accessed easily. Further, one of
the  important  built-in  data  types  of  Python  is  lists.  Lists  and  strings  share  many
similarities  like,  lists  are  a  sequence of  values.  List  indices  work similarly  to  string
indices.  But  unlike  strings  lists  are  mutable.  In  this  chapter,  we  introduce  the  core
concepts of lists and strings and several operators that are used to make programming
with these user-friendly.

Keywords: Mutable, Slicing, Ordered collection.

INTRODUCTION

When we want a collection of characters that are pretty like one another, we have
to use a sequence of characters. For instance, if you want to keep a record of your
name in the computer's memory, you will need a variable capable of storing your
name. However, it is necessary to have a series of characters because the name is
a collection of characters. This string consists of nothing more than a succession
of characters.

Python's  equivalent  of  the  sequence  data  type  is  called  a  list.  It  is  the  most
effective  and  may  be  expressed  as  a  list  of  values  delimited  by  commas  and
enclosed in square brackets. A list is frequently utilized to store the sequence of
various kinds of data. The list is changeable, which indicates that its elements can
be altered after the list has been constructed. This chapter discusses a variety of
operations that may be carried out on a list's elements.

STRING

A series of characters is referred to as a string. Python relies heavily on this idea
to function correctly. There are a few key aspects to consider about string.
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Strings are amongst the most popular types in Python.●

It can create them simply by enclosing characters in quotes (single, double, or●

triple).
Python treats single quotes the same as double quotes.●

A string is a sequence of Unicode characters, and a character is simply a symbol.●

To  generate  a  list  of  names,  it  must  type  each  name  surrounded  by  quotation
marks, such as “Krishna”. The string may also be assigned to a variable to carry
out additional operations and make further use of that string. Let's start with the
most fundamental examples to grasp the idea of string.

Example:

Output:

Python does not have a character data type in its standard library. If we consider a
single character to be a string, then the length of that string would be one. You
may access the string's constituent components using square brackets ([]).

Example:

Output:

The string can use to loop through character by character.
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Example:

Output:

Other concepts about string include the len() function for getting the length of a
string, keyword in, and not in for checking whether the substring or character is
present in a string.

Example:

Output:
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CHAPTER 6

Tuple and Dictionaries

Abstract: Another important data type of Python is dictionary. In the previous chapter,
we acquainted the readers with the lists and strings. In this chapter, we shall discuss
dictionaries and lists. lists are the ordered collection of objects but dictionaries are an
unordered collection of objects. dictionary values are referred to using key-value pair
instead of positional offset. Due to this, they have found great usage in search tables,
records and aggregation. Another concept introduced in this chapter is tuples. These are
immutable like strings and represent a stable collection of arbitrary items.

Keywords: Hash tables, Immutable and mutable, Mappings.

INTRODUCTION

One  of  Python's  most  significant  data  types  is  called  the  tuple,  which  holds
several  components  as  an  object.  It  is  also  known  as  an  immutable  data  type,
which  indicates  that  its  members  cannot  be  altered  in  any  way  after  they  have
been  set.  A  dictionary  is  another  data  type  that  may  be  used  in  Python,  and  it
functions similarly to tuples and lists.  An associative array is another name for
this structure. A dictionary is a collection of “key-value pairs”. Each key-value
pair connects the key to the value that corresponds to it. In this chapter, you will
learn about  various  operations  and attributes  that  can be used with  dictionaries
and tuples. In addition, the many features and actions of dictionaries and tuples
are broken down and illustrated using examples and codes.

TUPLE

A tuple is a group of ordered, immutable items arranged in a specific way. Tuples
are  structured  similarly  to  lists  and  strings.  In  this  context,  the  definition  of
immutable is that the components of the tuple are not subject to change. Once a
tuple has been generated, it is not possible to add or remove items from the tuple.
Even we cannot change the order in which the tuple members are presented. In
addition,  the length of  the tuple cannot be altered.  It  is  necessary to generate a
new tuple if  we wish to modify an existing one by adding or taking something
away from it. Unlike lists, tuples are denoted by parentheses and cannot be edited.
Tuples  are  a  sort  of  sequence equivalent to strings in terms of structure. Tuples
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can hold any components, in contrast to strings, which can only store characters.
It indicates that the tuple contains either a list of students' names or employee IDs,
depending  on  which  one  is  selected.  Tuples  may  also  be  used  to  store  varied
elements,  implying  that  a  single  tuple  can  contain  components  of  several  data
formats, such as decimal formats, integers, and characters. A sequence of music
files, picture files, and other data types can also be stored in tuples.

To  create  a  tuple  in  Python,  all  the  elements  are  enclosed  in  ()  parenthesis,
separated by a comma. A tuple can store heterogeneous data elements. Below are
examples of creating tuples.

Example:

Output:

To  create  a  tuple  of  a  single  element,  it  should  be  followed  by  a  comma.  The
following example creates a tuple of a single element.
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                                                 Tup1 = (100,)              

In the above case, if we do not put a comma after 100, then Python would treat
Tup1 as an integer rather than a tuple variable.

Example:

Output:

TheTuple ()Function

Python  has  a  built-in  function  called  tuple()  that  may  be  used  to  make  tuples.
While  we  can  build  tuples  without  utilising  this  function,  it  offers  a  different
method. The tuple() function is used to construct a tuple in the following example.

Example:

Output:
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CHAPTER 7

File Handling

Abstract:  From the  previous  chapters,  we anticipate  that  the  readers  have  garnered
enough working knowledge of Python and its elementary concepts. In this chapter, we
introduce to the user the concept of files.  These are one of the major built-in object
types in Python. We can create, call, work, and close the files using several functions as
enunciated below. One of the primary tasks of files is method exporting and common
file-processing tasks such as input and output display to external files, flush buffers,
etc.

Keywords: Buffering, Directory path in OS, Storage in OS.

INTRODUCTION

When  information  must  be  stored  in  a  file  in  an  unalterable  manner,  file
management is essential. A file is a designated location on the disc where data is
kept  that  is  important  to  the  purpose  of  the  file.  Once  the  program  has  been
closed, we will be able to retrieve the information that was previously stored. The
concept of file management has been adapted and implemented in various other
languages. However, doing so can be difficult or time-consuming, depending on
the language.

However,  unlike  other  Python  ideas,  this  one  is  not  complicated  and  can  be
understood  easily.  You  will  learn  various  theories  and  procedures  about  the
management of files in this chapter. In addition, we have illustrated a variety of
file actions by using examples and programs to illustrate our points.

FILE

A collection of bytes that may be used to store information is called a file. This
data  is  structured  in  a  specific  format,  which  might  be  anything  from  a
straightforward  text  file  to  an  intricate  program  executable,  depending  on  its
complexity. In the end, these byte files are changed into binary, consisting of 1s
and 0s so that the computer can process them more quickly. Much like many other
programming languages, Python can handle files, allowing users to read, write,
and execute many other file-related operations. This functionality is known as file
handling. It is essential to understand that Python processes files differently based
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on whether they contain text  or  binary data.  Each line of  code is  made up of a
string of individual characters that, when combined, make up a text file. A special
character  terminates  each  line  in  a  file  referred  to  as  the  EOL  (End  of  Line)
character.  Examples  of  EOL  characters  include  the  comma  and  the  newline
character. It signals to the interpreter that the line being read has finished and that
a new line has begun. On most of today's file systems, files are broken up into
three distinct parts:

Header: details about the file's contents (file name, size, type, and so on).●

Data: the file's contents as written by the author or writer.●

End of file: a unique character that denotes the file's termination.●

In programming, it is possible that a specific piece of input data must be created
more  than  once.  Occasionally,  it  is  insufficient  only  to  display  data  on  the
console. Large amounts of data may be presented. The console can only display a
certain  amount  of  data;  as  memory  is  volatile,  it  is  difficult  to  restore
programmatically created data frequently. The local file system, which is volatile
and  always  available,  is  where  we  can  store  things  if  we  need  to.  The  file-
handling  capabilities  of  Python  must  be  used  for  this.  We  can  use  our  Python
application  to  create,  modify,  read,  and  destroy  files  on  the  local  file  system,
thanks  to  file  management  in  Python.  When  accessing  a  file  on  an  operating
system, a file path is necessary. A string indicates the location of a file called a
file path. There are three main sections in it:

Directory Path: the location of a file or folder on a file system, separated by a●

forward slash (/) in Linux or Unix or a backslash (\) in Windows.
File Name: the file's real name.●

Extension: it defines the file type.●

Let's say you needed to open the T1.txt file, and the position you were in now was
the same as the location. You must first travel to the Location folder, then to the
Folder1 directory, and then to the T1.txt file to access the file. The path of this
file is “Location/Folder1/T1.txt.”

Open() Function

It must be open first to perform reading and writing operations on a file. To open
a file in Python, the user must first create a file object associated with a physical
file.  In  addition,  the  open()  function  is  used  to  open  a  file  in  Python.  Python's
open()  function  takes  two  arguments:  the  file  name  and  the  access  mode.  The
function returns a file object, which can be used for reading, writing, and other
operations. The below syntax is used to open a file in Python.
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Opening a file is a prerequisite for performing any action on it, including reading
and writing. To access the contents of a file using Python, the user must first build
a file object corresponding to the file's actual location. In Python, opening a file is
also accomplished with the help of the open() function. Python's open() function
requires two pieces of information before it can be called: the file name and the
access mode. The method will return a file object that may be utilized for various
tasks like reading, writing, and others. In Python, opening a file is accomplished
with the syntax that is presented below:

Syntax:

Various modes, such as read, write, and append, are available for accessing the
files. The access mode to open a file is defined in Table 1.

Table 1. File Access Modes.

R The file is opened in read-only mode. The file pointer is present at the start. If no access mode is
defined, the file is opened in this mode by default.

rb It converts the binary file into a read-only mode. The file pointer is present at the start of the file.

r+ It opens the file for both reading and writing. The file pointer is present at the start of the file.

rb+ It opens the file in binary format for reading and writing. The file pointer is present at the start of the
file.

W It only allows you to write to the file. If a file with the same name already exists, it is overwritten;
otherwise, it is created. The file pointer is present at the start of the file.

wb It opens the file so it can only be written in binary format. If the file already exists, it is overwritten;
otherwise, it generates a new one. The file pointer is present at the start of the file.

w+ It opens the file for both writing and reading. It differs from r+ in that it overwrites the previous file if
one exists, while r+ leaves the previously written file alone. If no such file exists, it creates one. The
file pointer is present at the start of the file.

wb+ It opens the file in binary format for both writing and reading. The file pointer is present at the start of
the file.

A The file is opened in append mode. If there is one, the file pointer is at the end of the previously
written file. If no file with the same name exists, it creates a new one.

ab It opens the file in binary format in append mode. The pointer is at the end of the file that was
previously written. If no file of the same name remains, it produces a new binary file.

a+ It opens a file for both appending and reading. If a file exists, the file pointer stays at the end of it. If
no file with the same name exists, it produces a new one.

ab+ It opens a binary file for appending and reading. The file pointer is already at the file's end.

#t7.1
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CHAPTER 8

Exception Handling

Abstract: In this chapter, we introduce the concept of exception handling in Python.
They are used to specify the alternate sequence of actions the program needs to jump to
at the occurrence of the event. For example, if we want to print several pages from the
printer and somewhere in the middle of the job the paper gets stuck in the printer. In
such as situation we would want to jump to the function that aborts the printing and
handles  this  situation  by instant  shut  down of  the  printer.  In  such events  comes the
exception handling. When the program jumps to the exception handler part the current
sequence of commands is abandoned and the commands given to the exception handler
are executed. After the exception is tackled the programming returns to the point where
the marker left.

Keywords: Error handling, Event notification.

INTRODUCTION

Error  handling  makes  your  code  more  robust  by  shielding  it  from the  kinds  of
mistakes that may result in an abrupt shutdown of your application. On the other
hand, Python exceptions can be handled in contrast to errors. Errors can be syntax
errors,  and  although  various  exceptions  might  happen  during  execution,  they
aren't always unusable. An error could be a syntax mistake. An application that is
reasonable  and  well-designed  should  avoid  the  critical  issues  indicated  by  an
Error.

In contrast, an application that is suitable and well-designed should try to capture
the  conditions  that  are  indicated  by  an  Exception.  Programmers  should  avoid
handling errors wherever possible since they are a form of uncontrolled exception
that  cannot  be  recovered  from.  An  example  of  this  type  of  error  is  the
ZeroDivisionError. Think about what would happen if you produced code that
was  later  used  in  production  but  still  ended  because  of  an  error.  Because  the
customer would be dissatisfied, handling the exception in advance and eliminating
uncertainty is preferable. There are two different kinds of mistakes, the first being
syntax errors and the second being exceptions. A syntax error will occur when the
parser  identifies  a  grammatical  problem  in  your  code.  Syntax  errors  are  also
commonly referred to as parsing errors. To better understand it,  let's look at an
example.
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Example:

Output:

The  arrow  in  the  report  shows  that  the  code  parser  ran  into  an  error  when
executing the  program.  The failure  may be  traced back to  the  token before  the
arrow. Because it will output the file's name and the line number where the issue
occurred, Python will handle a significant portion of the troubleshooting work for
you when attempting to resolve errors of this type.

An error that arises as a result of the execution of a program is referred to as an
exception.  Exceptions are occurrences that do not obey a general rule, which is
how non-programmers understand the term.  When a  statement  or  expression is
executed, an error through the syntax may occur. Python's exceptions are faults
that  may  be  seen  during  the  execution  of  the  program  but  are  not  always
catastrophic. An exception object is created whenever a Python program generates
a  runtime  error.  The  program  will  be  terminated  unexpectedly  and  without
warning  if  the  code  does  not  expressly  handle  the  exception.  In  most  cases,
programs will disregard exceptions, which will lead to error messages such as the
following:

Example:
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Output:

Another example of division by zero exception can be seen in the below example.

Example:

Output:

Python exceptions can take several forms, indicated right next to the message they
produce. For example, the types of exceptions that have just been discussed are
TypeError  and  ZeroDivisionError.  Both  error  messages  include,  the  kind  of
exception, and the name of the Python built-in exception that was encountered.
The remaining half of the error line comprises information about what led to the
mistake; the specifics of this information are determined by the type of exception
that was thrown.

HANDLING EXCEPTIONS

Python's  approach  to  managing  exceptions  is  similar  to  Java's.  The  code  that
might result in the throwing of an exception is contained within a try block. In
Java,  exceptions are handled using catch clauses,  but in Python, exceptions are
handled by sentences inserted using the except keyword. Personalized deviations
from  the  norm  can  be  accommodated  if  necessary.  By  utilizing  the  “raise”
command,  it  is  possible  to  coerce  the  occurrence  of  an  exception.  You  may
safeguard your application by enclosing any potentially malicious code that can
cause  an  exception  in  a  try:  block.  This  will  prevent  the  exception  from being
thrown. Place an except declaration after  the try:  block,  then immediately after
that,  a  block  of  code  that  fixes  the  problem  in  the  most  elegant  way  possible
should follow it. The following is an example of the syntax for try...except...else
blocks:
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CHAPTER 9

Modules and Packages

Abstract: Useful codes are often stored as separate files to increase modularity and
reusability.  Modules refer to a single file of code while a package is a collection of
modules. A good programmer utilises both these aspects to enhance the program view
and manage the hierarchy. In this chapter, we introduce the basics of working with the
modules and packages.

Keywords: Scoping, Modular programming, Standalone script.

INTRODUCTION

MODULES

A  complicated  and  unmanageable  program  can  be  broken  down  into  several
manageable  subprograms,  each  referred  to  as  a  module  through  modular
programming.  One  activity  can  be  carried  out  by  utilizing  each  component
individually. The creation of modules in Python may be accomplished by utilizing
Python files, which can include a variety of and statements. It is possible to define
variables, classes, and functions in a module. A module can also make use of code
that is executable. When the code is divided into modules, it is much simpler to
comprehend and more convenient to utilize. Additionally, it logically arranges the
code.

To  put  it  another  way,  the  file  containing  our  Python  source  code  with  the
extension (.py) is considered the module. Python modules can store code that can
be executed. When we want to use the features of one module in another, we must
import  the  specific  module  first.  Let's  say  you've  generated  a  file  on  your
computer  named  module1.py,  and  inside  it,  you  have  the  following  code:
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Filename: module1.py

To call the functions add_value() and sub_value() specified in the module named
file (module1.py), we must include this module in our main module. To use the
module's  functionality,  we  must  first  load  it  into  our  Python  code.  Python  has
import and from..import statement to include a module.

Import Statement

Our Python program can connect to a module by utilizing an import statement.
The  import  of  many  modules  may  be  accomplished  with  a  single  import  line;
however,  despite  the  number  of  times  a  module  has  been  imported  into  our
register, it is only loaded once each time. The syntax of the import statement is as
follows:

Syntax:

When an import statement is found the interpreter imports the module specified
within the search path. The interpreter explores every directory in the search path
when importing a module. For instance, add the following line to the program's
top to import the module module1.py.

Example:

Output:
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From…Import Statement

Python  enables  users  to  import  only  a  module's  specified  properties  into  the
namespace  rather  than the  entire  module.  For  this,  the  from…import  statement
may be utilized. The following syntax makes use of the from...import expression.

Syntax:

Consider  the  following  module,  module  1,  which  includes  the  functions
add_value()  and  sub_add().

Example:

Filename: module1.py

If  we  want  to  import  only  add_value()  function  from  this  module,  then  the
following  code  will  be  used.

Filename: main.py

Output:

We  can  also  import  any  built-in  module  in  our  program.  The  below  example
imports the pi function from the math module.

Example:
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CHAPTER 10

Object-Oriented Programming

Abstract: In this chapter, we explore the OOP concepts in programming that offer an
effective  way  of  making  coding  more  easy  and  comprehensive.  It  facilitates
redundancy  and  allows  customizing  the  existing  code.

Keywords: Namespace, Superclass and Subclass.

INTRODUCTION

Object-Oriented  Programming,  sometimes  called  OOP,  organizes  a  computer
program's  components  into  distinct  objects  with  similar  characteristics  and
functions.  Classes  and  objects  are  the  fundamental  building  blocks  of  object-
oriented  programming.  The  class  serves  as  the  blueprint,  while  the  objects
themselves  are  living,  breathing  entities  capable  of  carrying  out  various
operations.  An  object  is  composed  of  its  data  elements,  characteristics,  and
behaviour,  which  may  include  actions  or  functions.

In  procedural  programming,  a  program  is  structured  similar  to  a  recipe  by
providing  several  stages,  including  functions  and  code  blocks,  that  flow
sequentially  to  achieve  a  goal.  This  programming paradigm is  one  of  the  most
common programming paradigms. Python has always been object-oriented, much
like  other  languages  designed  for  general-purpose  programming.  It  makes  it
possible  for  us  to  construct  programs  using  an  object-oriented  methodology.
Python  makes  it  very  simple  to  create  and  work  with  objects  and  classes.  An
object-oriented  paradigm  refers  to  building  software  by  utilizing  classes  and
objects. The item is connected to things in the real world, such as a computer, a
house,  a  mobile  phone,  and  so  on.  The  definition  of  OOPS  emphasizes  the
creation  of  code  that  may  be  reused.  Putting  together  new  things  to  use  as
solutions  is  a  frequently  utilized  strategy.  An  object-oriented  programming
paradigm  can  be  broken  down  into  its  core  ideas,  which  are  as  follows.
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CLASS AND OBJECT

A class is a name that can be given to a collection of objects. It is a logical entity
with specific methods and unique properties. For example, a student's class should
contain  an  attribute  and  a  method,  such  as  their  name,  age,  address,  and  the
classes  they  are  enrolled  in.  The  object  functions  as  its  independent  entity,
complete  with  a  state  and  a  set  of  behaviors.  It  may  be  a  notebook,  computer,
pencil,  or  other  things.  In  Python,  everything is  an  object,  and nearly  anything
may have both attributes and methods applied to it. When a class is defined, the
class must first create an object before it may assign memory.

DATA ABSTRACTION

The  practice  of  abstraction  is  a  method  that  hides  information  on  the  system's
internal workings and shows only its functionalities. Data encapsulation and data
abstraction are two terms that are frequently used interchangeably. Because data
encapsulation  is  the  means  through  which  data  abstraction  is  achieved,  it  is
possible  to  use  either  word  interchangeably.

ENCAPSULATION

Encapsulation  is  a  key  notion  in  object-oriented  programming,  one  of  today's
most prevalent programming paradigms. It explains the concept of enclosing the
data  and  the  methods  that  operate  on  the  data  within  a  single  unit.  This  limits
direct  accessing  methods  and  variables,  which  helps  avoid  unintentional  data
change. Only the object's method can change the object's variables; this is done to
prevent unintentional changes. These particular variables fall under the category
of “private variables.” Encapsulation can be illustrated by how a class stores all
information about  its  member functions,  variables,  and so on.  The objective of
information  hiding  is  to  ensure  that  the  state  of  an  object  is  always  valid  by
regulating access to its attributes while keeping those properties hidden from the
view of the outside world.

INHERITANCE

Inheritance is the most fundamental component of object-oriented programming,
miming the inheritance process that occurs in real life. Inheritance is an essential
component.  It  states  that  all  of  the  characteristics  and  behaviors  of  the  parent
object  are  passed  down  to  the  child  object  through  inheritance.  Through
inheritance, we can build a class capable of taking on all of the characteristics and
actions of another class.  The new class is  considered to be a derived class or a
child class, whereas  the base  class or  the  parent  class  is  regarded  as the  class
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whose properties are gained. It assures that the code can be utilized in different
applications.

POLYMORPHISM

The term “polymorphism” originates from the combination of the words “poly”
and “morphs.” The prefix poly denotes “many,” while the suffix morph refers to
“shape.” The capacity to carry out a single activity in multiple guises is what we
mean when discussing polymorphism. It employs a single category of items, such
as a method, operator, or object, to stand in for several different types in various
contexts.  For  example,  we  have  a  single  addition  operator  capable  of  adding  a
wide variety of value types.

Defining a Class

The keyword class, followed by the class name, is used to build a class in Python.
The following is the syntax for creating a class.

Syntax:

A  class  declares  all  its  attributes  in  a  new  local  namespace.  Data  members  or
functions may be included as attributes.

It also contains unique attributes that start with double underscores. For example,
__doc__ returns the class's docstring. The following statement can access it.

A new class object with the same name is generated when we define a class. We
may use this class object to access the various attributes and create new objects of
that class.
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CHAPTER 11

Python for Machine Learning

Abstract:  Anticipating  that  the  user  has  a  good  knowledge  of  the  core  elements  of
Python we now explore the applicative aspect of Python. In this chapter, we will look
at Python, especially from the Machine Learning (ML) point of view. We will discuss
the various libraries and their utility in ML and then lay hands over the programming
demonstrations.

Keywords: Libraries, Machine learning, Packages, Prediction and classification.

INTRODUCTION

We assume the readers now have enough preliminary knowledge to dive deep into
programming with Python. Python has been the developer's choice, and Machine
Learning is one of the major application areas of Python. Machine Learning is the
field of computer science that allows computer programs to attain the capability
much  like  a  human  brain,  i.e.,  learn  from  past  experiences  and  perform  future
tasks.  In  this  chapter,  you  will  learn  to  program  Machine  Learning  algorithms
with Python.

Anomalous  to  traditional  programming,  Machine  Learning  requires  no  pre-
defined rules but the design of a mathematical model for decision-making rather
than  human  interference.  Figs.  (1  and  2)  show  the  disparity  between  the  two
paradigms of programming. In traditional programming, rules, and data are fed to
the computer,  and the results  are  evaluated.  In  case  of  an error,  the  problem is
studied  and  analyzed,  and  changes  are  made  to  the  rules.  But  in  the  Machine
Learning paradigm, the learning is leveraged on the training data, and results are
evaluated. The defined model is then tested over test data, and output is produced.

Fig. (1).  Traditional Programming.
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Fig. (2).  Machine Learning Programming Paradigm.

Self-learning is  the  crux of  Machine Learning.  The performance based on data
extraction,  preprocessing,  and  analysis  without  being  explicitly  programmed
defines  the  objective  of  Machine  Learning.  It  aims  to  facilitate  the  machine  to
work directly without being programmed. Decision-making is an important task
that relies on pattern extraction and information modeling based on trial and error
and probabilistic reasoning. Thus, one can say that decisions are not based on the
pre-set rules but on the input data. To minimize the errors, the programmers can
tweak model settings called hyperparameter tuning. For learning, the programmer
splits  the data  into training and testing data.  The training set  helps  to  learn the
patterns in the data and validate the results. Finally, the developed model can be
evaluated over test data. The model can be deployed for other applications if the
performance is satisfactory.

Machine  Learning  has  been  divided  into  two  categories  based  on  the  training
procedure. If the machine is trained with the labeled training data, i.e., the data
that has been classified under different classes, then that type is called supervised
learning.  And,  if  the learning over  training data  is  without  human interference,
i.e., no defined classes, then that is called unsupervised learning. The difference
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between supervised and unsupervised learning is given in Table 1.

Table 1. Difference between Supervised and Unsupervised Learning.

Supervised Learning Unsupervised Learning

Input data is labeled Input data is unlabeled

Feedback mechanism present A feedback mechanism is absent

Data is classified Properties are assigned to data

Suitable for prediction tasks Suitable for analysis tasks

A known number of classes An unknown number of classes

Consists of explanatory and response variables Consists only of explanatory variables

Supervised  learning  is  applicable  in  two major  domains,  namely,  classification
and  regression.  Classification  is  the  process  of  categorizing  data  into  different
categories  based  on  the  labeled  data  used  for  training.  Regression  is  similar  to
classification  except  that  it  can  also  be  applied  to  continuous  data,  unlike
classification, which can only be applied to discrete values. Unsupervised learning
is suitable for clustering and association tasks. Clustering is used to discover the
groups in the data,  while the association is used for extracting the rules from a
large amount of data.

IMPORTANT PYTHON LIBRARIES

Now  we  move  to  some  important  Python  libraries  that  are  used  in  Machine
Learning.

• NUMPY

It's an array-processing package suitable for processing large multi-dimensional
arrays and matrices.

Example:

Output:
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CHAPTER 12

Programming with Python

Abstract: After the successful comprehension of the different aspects of Python and its
applications in ML, it's now the time to look at how they can be combined and put to
work using common examples. This will surely increase the reader's comprehension of
the intricacies of Python and demonstrate the efficiency of the language in making the
programming simple.

Keywords: Binary search, Factorial, Time series.

INTRODUCTION

After  going  through  the  previous  chapters,  we  are  sure  you  have  a  better
understanding of the basics of Python. Now let's gear up to some programming
exercises  with  Python.  In  the  beginning,  we  provide  some  simple  and  basic
Python programs using functions, lists, dictionaries, arrays, etc. Then we discuss
some basic machine learning applications with Python programming.

BASIC PYTHON PROGRAM

Program to Solve a Quadratic Equation

Example:
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Output:

Program to Swap Two Numbers

Example:

Output:

Program to Find the Factorial of Two Numbers

Example:
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Output:

Program for Fibonacci Series Using Recursion

Example:

Output:
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