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FOREWORD 

 

Rigorous description of biological phenomena through physics and mathematics 

is a daunting task both theoretically and computationally. One has to simplify 

usually very complex biological systems so as to be able to write equations that 

can be solved at least via numerical methods. There is always a high level of 

difficulty in physical understanding of a complicated biological process: how 

much the system is simplified, which degrees of freedom are chosen and which 

are discarded, and then how the numerical solution methods are implemented all 

contribute to the success or failure in understanding the particular biological 

system through physics and mathematics. Biological systems with their many 

degrees of freedom thus bring a highest possible challenge to a working physicist. 

This book contains state of the art theoretical and numerical techniques for 

analysis of several biological phenomena by a biophysical approach. In it, readers 
would find many invaluable insights into the biological processes, which can be 

utilized in diverse applications, including the spread of disease in a pandemic 

situation. 

This book discusses three biological processes utilizing the techniques of 

biophysics: melting and vitrification of DNA molecules which can be described 

collectively as the chemistry of nucleic acids, theoretical discussion of percolation 

model and the description of folding of protein Crambin via two different 

methods. In chapter 1, Morse potential is used to describe the hydrogen bond 

interaction between nucleic acid base pairs in DNA molecule, and then a 

metropolis algorithm is used for the total potential energy as well as including the 

quantum fluctuation in terms of random displacement of the 𝜋 electrons. This way 

the melting temperature of base pairs is calculated. Then in chapter 5, the same 

principles are used together with the inclusion of effect of longitudinal phonon 

vibrations to calculate the vitrification temperature of the base pairs. In chapter 2, 

an analytical analysis for a percolation simulation is presented: in a bit-string 

model of invading species in a random environment, the Hausdorff dimensions 

are calculated for the fractals and the conditions on invasion are analyzed 

analytically. Chapters 3 and 4 are reserved for analysis of the folding dynamics of 

the plant-seed protein Crambin in a liquid environment. A stochastic approach 

used to take into account the viscosity results in a 2D-Langevin equation, solution 

of which is established with a Molecular Dynamics simulation, accompanied by a 

delicate Monte Carlo technique. The final image of folded protein is found to be 

in very good geometric agreement with the real shape of the protein chain. 



ii  

Finally, a much useful discussion of the well known 10-12 potential of hydrogen-

hydrogen covalent bond is shared in the appendix. 

This book consists of the research articles the author published during his postdoc 
studies at the Feza Gürsey Institute. Feza Gürsey Institute was a major center for 

theoretical physics and mathematics in Turkey. During the first decade of this 
century many top level research was conducted in this institute, and Dr. Taneri’s 
work was up there with the very best. As in any good work, this book has many 

layers. It can be a valuable tool for the graduate students learning the subject, or it 

can be equally useful for established researchers. 

Cemsinan Deliduman 

Physics Department, Mimar Sinan University 

İstanbul, Türkiye 
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PREFACE 

 

The present book is intended to lay out research in Applied Biomathematics 

carried out by the author at the beginning of this millennium. It involves sample 

Monte Carlo simulations which have been widely used among scientists to 

understand stochastic   molecular  dynamics  in biological  matter  of living 

systems. The subject material contains research essentially on three aspects of 

biomolecular structure and dynamics: (i) DNA Melting and DNA Vitrification, 

(ii) Evolutionary Genetics and Gene Mutation, and (iii) Protein Folding. The book 

consists of five chapters and an appendix. There have been some extensions to the 

collection of previous research articles published in International Journal of 

Modern Physics C and in Modern Physics Letters B which are World Scientific 

Publishing Journals. The collection of articles benefits from simple computer 

algorithms for hard mathematical physics problems of the past such as 

mesoscopic, fractals, percolation, metropolis algorithm and Langevin Dynamics. 

It can be useful for understanding the pandemic as the consequence of the spread 

of epidemic, and for understanding the recovery as the result of computer-aided 

drug discovery and cryopreservation. 
 

Sencer Taneri 

University of Southern California 

Los Angeles 

USA 
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CHAPTER 1 

A Stochastic Mechanism for DNA Melting 

Abstract: In Chapter 1, we have 𝐷𝑁𝐴 as a kind of nucleic acid consisting of two strands which 

are made up of two Watson-Crick base pairs: adenine-thymine (𝐴𝑇) and guanine-cytosine 

(𝐺𝐶). There are three components of the total energy. These are the inharmonic stacking 

interaction,  hydrogen  bond  interaction  and  kinetic  energy. Morse potential is used to mimic 

the hydrogen bond interaction between bases on the opposite strands for the overlapping 𝜋 

electrons, when two neighboring bases move out of the stack. The 𝐴𝑇 pair has 2 hydrogen 

bonds and the 𝐺𝐶 pair has 3 of them. The 𝜋 electrons obey 𝐵𝑜𝑠𝑒 − 𝐸𝑖𝑛𝑠𝑡𝑒𝑖𝑛 (𝐵𝐸) statistics, 

and the overlapping of them results in quantum fluctuation. It will be shown that this can be 

simplified into < Δ𝑦(𝑡)Δ𝑦(𝑡) >= 2𝐷𝑞Δ𝑡 type fluctuation between the base pairs. Thus, a 

metropolis algorithm can be developed for the total potential energy by superposing two 

potential energy terms as well as including the quantum fluctuation in terms of random 

displacement of the 𝜋 electrons. So, one can calculate the melting temperature of base pairs. 

Keywords: Biological matter, Living systems, Stochastic analysis methods. 

INTRODUCTION 

Deoxyribonucleic acid (𝐷𝑁𝐴) melting is a widely addressed topic that has been 

intensively studied both experimentally, and theoretically/computationally. DNA 

melting has been lately studied from molecular dynamics point of view [1-6]. In 

these studies mesoscopic models for stretching are developed and Langevin 

equation is solved numerically for both of with and without solvent cases. Diffusion 

constant is facilitated during the solution of Langevin equation. Path integral 

formulation is developed to gain advantage in tedious numerical computations [5]. 

DNA melting transition has been recently studied by utilizing both Poland-

Scheraga (𝑃𝑆) and Peyrard-Dauxois-Bishop (𝑃𝐷𝐵) models of DNA, and 

theoretical techniques (mean field analysis) as well as numerical ones (Monte Carlo 

(𝑀𝐶) and Brownian Dynamics (𝐵𝐷) simulations) are elaborated for various types 

of comparison [6]. Fourth-order Runge-Kutta method is used in numerical solution 

of equations of motion for PS model. 𝑃𝐷𝐵 and 𝑃𝑆 models are simulated using 𝐵𝐷 

and Metropolis 𝑀𝐶 algorithm respectively with periodic boundary conditions for 

simplicity. Instead, Metropolis 𝑀𝐶 algorithm for PDB model of DNA will be 

utilized in this article to investigate how DNA behaves and melts. Instead of 

calculating the mean separation of strand we will calculate the separation of the 

single nucleotide in the strand. 
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As it is well known, DNA has helical structure made up of two strands each of 

which consists of deoxyribonucleic acids in Fig. (1). 

 

Fig. (1). DNA strand, opened helix as a planar ladder diagram of either uniform homopolymer 𝐴𝑇 

or homopolymer 𝐺𝐶. Here, the upper strand is assumed to do a similar motion during the motion of 

lower one (𝑦𝑛 is the vertical separation of the 𝑛𝑡ℎ monomer, the total stretch is 𝑏 = 𝑏1 + 𝑏2 = 2𝐴𝑜, 

𝑎 is the radius of monomer, 𝑐 is the horizontal separation of monomers) [21]. 

These acids being on opposite strands are paired against one another as adenine-

thymine (𝐴𝑇) and guanine-cytosine (𝐺𝐶) pairs. The 𝐴𝑇 pair has 2 hydrogen bonds 

and the 𝐺𝐶 pair has 3 of them [7]. There are two types of interactions going on 

between those base pairs which give rise to Peyrard-Bishop Model [8, 9]. The first 

one is the inharmonic stacking interaction between the neighboring base pairs, due 

to (𝑈𝑉) absorption process where the energy for each neighboring base pair can be 

expressed as, when one of the base pairs has a transverse stretching of amount 𝑦𝑛 

and the neighboring base pair has 𝑦𝑛+1 [1, 10]. Here, 𝑛 is the pair index, 𝐾 is the 

backbone harmonic coupling constant, 𝜌 and 𝛼 are non-linear positive parameters 

independent of the type of the base pair. The harmonic portion denotes the effective 

potential for the optical branch, and the inharmonic coupling is due to the coupling 

20A
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of the probability of bound states. This term, in general, represents several effects 

including the stacking, backbone flexibility, hydrophilic/hydrophobic interactions 

and any long range interactions [6]. The second one is the hydrogen bond energy 

which is, due to probability of the bound electron shared between the hydrogen 

atom pairs when one of the base pairs has a vertical separation of 𝑦𝑛. Here, 𝐷 is the 

dissociation energy of the base pair and 𝑎 is the inverse length defining the spatial 

scale of the potential. This term, in general, is an on-site Morse potential describing 

the net attraction between strands due to a combination of hydrogen bonding, 

solvent interactions, and the repulsion of negatively charged phosphate groups [6]. 

𝑊1(𝑦𝑛, 𝑦𝑛+1) =
𝐾

2
(𝑦𝑛 − 𝑦𝑛+1)2(1 + 𝜌𝑒𝑥𝑝(−𝛼(𝑦𝑛 + 𝑦𝑛+1)))             (1) 

𝑊2(𝑦𝑛) = 𝐷(1 − 𝑒−𝑎𝑦𝑛)2                                          (2) 

Another relevant quantity to be calculated is the spatial fluctuation which is closely 

related to the diffusion constant utilized in solution of the Langevin equation 

mentioned in the beginning of the article [2-6]. That is, in 𝐵𝐷, the system evolves 

via the Langevin equation, 

𝑚𝑦̈𝑛 = −∇̂𝑉(𝑦𝑛) − 𝛾𝑦̇𝑛 + 𝜉(𝑡)                                    (3) 

where the noise 𝜉(𝑡) is random Gaussian white noise with < 𝜉(𝑡) >= 0 and <
𝜉(𝑡)𝜉(𝑡′) >= 2𝐷𝑐𝛿(𝑡 − 𝑡′) = 2𝛾𝑘𝐵𝑇𝛿(𝑡 − 𝑡′) , and 𝑚 mass of the 𝑛𝑡ℎ nucleotide, 

𝑉 is the potential (𝑉(𝑦𝑛) = 𝑊1(𝑦𝑛−1, 𝑦𝑛) + 𝑊1(𝑦𝑛, 𝑦𝑛+1) + 𝑊2(𝑦𝑛)), 𝛾 is the 

damping constant, 𝐷𝑐 is the classical diffusion coefficient, 𝑘𝐵 is Boltzmann 

constant and 𝑇 is temperature. Note that, due to the definition of the diffusion 

coefficient, the spatial fluctuation obeys < Δ𝑦𝑛Δ𝑦𝑛 >= 2𝐷𝑐Δ𝑡. 

On the other hand in Fig. (2), the spatial fluctuation of 𝜋 electrons obeys, 

𝐼Δ𝑡→𝜏𝑐
=< Δ𝑦Δ𝑦 > ~

24ℏ4

𝑘2𝑚𝑒
2𝑒4

1

𝑒𝑥𝑝(
2𝜀2𝑒
𝑘𝐵𝑇

)−1
                          (4) 

where 𝜏𝑐 is the characteristic time, 𝑘 is the dielectric constant of free space, 𝑚𝑒 is 

the mass of the electron, and 2𝜀2𝑒 is the total energy of the electron doublet which 

are boson, with respect to chemical potential level. Then, one ends up with quantum 

diffusion constant, 

 



16 Applied Biomathematics For Nucleic Acid Chemistry, 2023, 16-25  

 
 

CHAPTER 2 

A Theoretical Analysis of a Percolation Model 

Abstract: In Chapter 2, we demonstrate an analytical analysis of a previously published 

research for a percolation simulation. In that research the effect of mutations on adaptability 

was investigated in a bit-string model of invading species in a random environment. However, 

analytical analysis was missing which will be the topic here. The Hausdorff dimensions are 

calculated for the fractals and the conditions on invasion are analyzed analytically by 

manipulation of partial differential equations. Thus, various conclusions may be reached 

without having to run long simulations. 

Keywords: Boundary value problems, Fractals, Hausdorff dimension, Monte carlo 

methods, Ordinary and partial differential equations, Percolation. 

INTRODUCTION 

Much progress has been made since 1950′𝑠 when percolation was a child and many 

open problems of the last decade have been solved. With such solutions we have 

seen the evolution of new techniques and questions and the consequent knowledge 

has shifted the ground under percolation. The mathematics of percolation is now 

fairly mature although there are mature questions which remain largely 

unanswered. Percolation technology has emerged as a cornerstone of the theory of 

disordered physical systems [1]. 

Percolation of a bit-string model [2] was developed by the author long ago in which 

evolution of invading species was simulated [3]. There, it was observed that 

mutations enabled the invasion of species even in environments with a high fitness 

threshold value. However, if the decay of species is introduced, the invasion sets 

still in a more simple manner. Huge amount of computer time is spent to get simple 

but as well as accurate results in those simulations. Lots of results can be attained 

by mathematical analysis which will be our task in this paper. 

CALCULATION 

In the bit-string model different mutants and the local ideal type are represented by 

random bit-strings consisting of 1’s and 0’s , which can be written as 𝑣⃗𝑖(0,1, . . . . ) 

( length description of genes in genome of the organism ) and ℎ⃗⃗𝑖(0,1, . . . . )( length 

description of genes in genome of the ideal type ) at site 𝑖 respectively [2]. The 

Sencer Taneri 
All rights reserved-© 2023 Bentham Science Publishers 
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fitness function is defined as 𝑓(𝑑𝑖𝑗) = 1 − 𝑑𝑖𝑗 where 𝑗 is the site as the nearest 

neighbor and 𝑑𝑖𝑗 is the Hamming distance introduced as, 

𝑑𝑖𝑗 =
1

𝑙
∑𝑙

𝛼=1 |𝑣𝑖𝛼 − ℎ𝑗𝛼|                                                   (1) 

with 𝑙 = 16. The fitness function and the barrier height have the relation 𝑓(𝑑𝑖𝑗) ≥

𝑟 as there is invasion to the nearest neighbor. When this condition is not satisfied, 

it is set vacant. In the presence of mutations, there is a chance to bring the 

neighboring organism to the target site. Two variants as with decay (𝑊𝐷) and 

without decay (𝑊𝑂𝐷) are simulated, when 𝑔2(𝑟) = 1 − 𝑔1(𝑟) is the probability 

to decay, and 𝑔1(𝑟) is the probability to invade the nearest neighbor. If we have the 

fitness threshold 𝑟 =
𝑚

𝑙
 where 𝑚 is the number of matching alleles and the number 

of mismatching alleles is 𝑛, then the probability of the case will be, 

𝑃(𝑛) =
1

2𝑙

𝑙!

(𝑙−𝑛)!𝑛!
.                                                   (2) 

So, the probability that the fitness function is larger than the fitness threshold 𝑟, 

namely 𝑙 − 𝑛 ≥ 𝑚 is, 

 

𝑔1(𝑟) =
1

2𝑙
∑𝑙−𝑚−1

0
𝑙!

(𝑙−𝑛)!𝑛!
    f𝑜𝑟    

𝑚

𝑙
≤ 𝑟 <

𝑚+1

𝑙
.                       (3) 

Various values for 𝑔1(𝑟) are calculated in Table 1 for the following Monte Carlo 

Simulation (𝑀𝐶𝑆). 

RESULTS 

The organisms are allowed to start from the center of 513 × 513 lattice by various 

different threshold values 𝑟. As for the inclusion of mutations, organisms 

occupying the sites are mutated with a probability 𝜇 per bit at each time step 

according to 𝑚𝑜𝑑(𝑥 + 1,2) where 𝑥 is 0 or 1. The results are run 1000 times for 

different initial conditions of 𝑣⃗𝑖 for 𝑊𝐷 and 𝑊𝑂𝐷 cases and averaged, see Tables 

1-2. In the absence of mutations there is percolation for 𝑟 ≤ 0.5 in our model. This 

is always the case (e.g no restrictions on 𝑟) when there is mutation for the 𝑊𝑂𝐷. 

Whatever mutation rate is used, there is no percolation when 𝑟 > 0.5625 for the 

𝑊𝐷 case, which is a more humble result in comparison to the 𝑊𝑂𝐷 case. These 
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results in Table 1-2 can be obtained by analytical methods as will be discussed in 

the next section. 

Table 1. Percolation times for the method without decay (WOD) case for various fitness 

threshold and mutation rates [2, 10]. 

r g1(r) µ MCS Time 

0.0625 1.000 0.00 256 ± 0 

0.125 0.998 0.00 256 ± 0 

0.1875 0.989 0.00 256.0 ± 0.2 

0.25 0.962 0.00 256.9 ± 0.7 

0.3125 0.895 0.00 260.4 ± 1.1 

0.375 0.773 0.00 270.9 ± 1.7 

0.4375 0.598 0.00 298.2 ± 3.0 

0.5 0.402 0.00 493.7 ± 63.7  (g1eff (r) = 0.5) 

0.5 0.402 0.01 324.3 ± 2.7 

0.5625 0.227 0.01 408.8 ± 4.3 

0.625 0.105 0.01 609.8 ± 8.8 

0.6875 0.038 0.01 1152.0 ± 17.9 

 

Table 2. Percolation times for the model with decay (WD) for various fitness treshold and 

mutation rates [2, 10]. 

r µ MCS Time 

0.5 0.01 330.2 ± 3.1 

0.5 0.5 326.4 ± 2.9 

0.5625 0.01 465.7 ± 7.8 
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CHAPTER 3 

A Monte Carlo Assisted Simulation of Stochastic 

Molecular Dynamics for Folding of the Protein 

Crambin in a Viscous Environment 

Abstract: In Chapter 3, we investigate the folding dynamics of the plant-seed protein Crambin 

in a liquid environment, that usually happens to be water with some certain viscosity. To take 

into account the viscosity, necessitates a stochastic approach. This can be summarized by a 2D-

Langevin equation, even though the simulation is still carried out in 3D. Solution of the 

Langevin equation will be the basic task in order to proceed with a Molecular Dynamics 

simulation, which will accompany a delicate Monte Carlo technique. The potential wells, used 

to engineer the energy space assuming the interaction of monomers constituting the protein-

chain, are simply modeled by a combination of two parabola. This combination will 

approximate the real physical interactions, that are given by the well known Lennard-Jones 

potential. Contributions to the total potential from torsion, bending and distance dependent 

potentials are good to the fourth nearest neighbor. The final image is in very good geometric 

agreement with the real shape of the protein chain, which can be obtained from the protein data 

bank. The quantitative measure of this agreement is the similarity parameter with the native 

structure, which is found to be 0.91 < 1 for the best sample. The folding time can be 

determined from Debye-relaxation process. We apply two regimes and calculate the folding 

time, corresponding to the elastic domain mode, which yields 5.2𝑝𝑠 for the same sample. 

Keywords: Computer simulation, Diffusion, Theory and modeling. 

INTRODUCTION 

We propose a molecular dynamic simulation (𝑀𝐷𝑆) of the plant seed protein 

𝐶𝑟𝑎𝑚𝑏𝑖𝑛 which is made up of 46 amino acids. Experiments are done in liquid 

environments, usually in water with viscosity 0.89𝑐𝑝 at 25𝐶. The protein is made 

up of monomers where the 𝐶𝛼‘s are centered. These monomers constitute the 
backbone of the protein chain in continuum space [1], not on a cubic lattice, which 

is the case mostly studied in literature [2-6]. In these studies, the monomers of the 

chain are considered to lie on the points forming the cubic lattice, corresponding to 

a self-avoiding walk, where the Metropolis Algorithm [7] is used in Monte Carlo 

Simulation (𝑀𝐶𝑆). 

This is how our 𝑀𝐷𝑆 will progress: Certain physical interactions are present as the 

Van der Waals interaction and the repulsive interaction which can be summoned 

with the Lennard-Jones 6 − 12 potential. There are also Hydrogen bonds that are 

represented by 10 − 12 potential in the absence of solvent [8]. We also include 
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elastic collisions with the surrounding water molecules, giving rise to a Gaussian 

white noise [9-12]. The viscosity of water causes the velocity proportional 

frictional force during the motion of the backbone, in response to thermal 

excitations. All these effects are to be summarized under one equation known as 

the Langevin equation that will demand a delicate 𝑀𝐶𝑆 technique to solve. Since 

the backbone length is assumed to stay constant as a constraint, the angular 

variables will be presented in spherical coordinates and the Langevin equation will 

be two dimensional per monomer. 

One can attain the time dependence of internal energy as the result of 𝑀𝐷𝑆 and 

make a Debye relaxation fit to get the time constants of the folding process. The 

internal energy stems from the springs that are used to model the physical 

interactions. It is recognized as the elastic domain modes, which are known to take 

100𝑓𝑠 to several 𝑝𝑠 [13]. The final folded sequence consists of two 𝛼 helices and 

a 𝛽 sheet. All of the final images are not in good geometric agreement with the 

native shape of the protein chain. Nevertheless, we hope that our results regarding 

the dynamics, probed by means of our hybrid Monte Carlo and Molecular 

Dynamics approach, will be found interesting. 

METHODS 

The protein chain is modeled as a connected sequence of rods. A monomer is 

located at each edge of the rod, which can be oriented arbitrarily within the 

constraint of self-avoidance. The orientation of the polymer can be defined by the 

bending angles 𝜃𝑖 and the relative azimuthal angels 𝜙𝑖 as shown in Fig. (1). Then, 

we consider a potential, which depends on these angles and the distances between 

the rod centers up to the fourth neighbors. The kind of monomers in the 

neighborhood determines the parameters of this potential. The bending potential 

and the torsion potential depend on 𝜃𝑖 and 𝜙𝑖 and the arguments of the distance 

dependent potential are simply the distances between the centers of the neighboring 

rods that join the different types of monomers up to the fourth neighbors. There is 

also the constraint of self avoidance. Then, the total potential can be written as: 

𝑉cℎ𝑎𝑖𝑛 = ∑
𝑁
𝑖=2 𝑉B(𝑡𝑖−1, 𝑡𝑖 , 𝜃𝑖) + ∑

𝑁
𝑖=3 𝑉T(𝑡𝑖−2, 𝑡𝑖−1, 𝑡𝑖 , 𝜙𝑖) + ∑

4
𝑛=1 ∑

    (𝑑)
𝑖𝑗 𝑉N

(𝑑)(𝑡𝑖, 𝑡𝑗 , 𝑑𝑖𝑗)    (1) 

                            

where 𝑉B is the bending, 𝑉T is the torsion potential and 𝑉N is the distance dependent 

potential. 
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Fig. (1).  Definitions of the relative angles used in our model. The bending angle 𝜃𝑖 is the angle 

between the 𝑖 − 1 st and 𝑖 th monomer. The torsion angle 𝜙𝑖 is the azimuthal angle between the 

projection of 𝑖 th monomer onto the 𝑥-𝑦 plane and 𝑖 − 2 nd monomer when the 𝑖 − 1 st monomer 

lies along the -𝑧 axis and the 𝑖 − 2 nd monomer lies in the 𝑥-𝑧 plane [29]. 

Here 𝑡𝑖 is the type of the monomer, 𝑑 is the neighbor type, 𝑑𝑖𝑗 is the distance 

between centers of the rods joining the monomer centers (𝐶𝛼). The potentials are 

weighted by 0.8692 for distance dependent potentials and by 1.6085 for the angle 

dependent potentials so that the distance dependent spring constant is 

10kcal/mol/𝐴𝑜2 and angular dependent spring constant is 30kcal/mol/𝑟𝑎𝑑2 

[14,15]. The superscript (𝑑) on the summation sign shows that the summation runs 

on that type of neighbors. The first and the second term depicts the emphasized 

short range, and the third term depicts interactions between close by pairs of 

monomers depending long range effects arising from adjustment of angular 

variables down the chain. I should still point out that 44 bending,43 torsion(the 

first and the second terms), and 3 center of mass degrees of freedom, are good 

enough to span the configuration space, so that 3(46 − 1) degrees of freedom, 

minus (46 − 1) constraints which yields 90 dimensional space again. 
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CHAPTER 4 

Continuum Space Model for Folding of the Protein 

Crambin 

Abstract: In Chapter 4, we have studied the chain length dependence of folding time for 

proteins by implementing a novel Monte Carlo (MC) method. The physical parameters in our 

model are derived from the statistics for bending and torsion angles and distances between the 

centers of the monomers up to the fourth neighborhood. By assigning potential wells to each 

of the physical parameters, we are able to use a modified Metropolis algorithm to efficiently 

trace the later conformations of the proteins as time evolves. Our prescription for microscopic 

dynamics for the protein "Crambin" results in an increase in folding times with increasing chain 

length. The folding times are determined via Debye relaxation process. 

Keywords: Crambin, Debye, Folding, Metropolis. 

INTRODUCTION 

Protein folding problem continues to be interesting for the computationalists 

because of the unique conformation of the native state. One may take a sequence 

of amino acids and may expect to get the native conformation by a simulation. 

However, problems arise because, a minimization of the energy will lead to a final 

state which may be very different from the native state due to kinetics of the folding 

process [1]. Thus, the final state may very well be a trap in the folding pathway to 

the native conformation [2] and the protein is said to have made a collapse 

transition. This displays the importance of kinetics of folding. Because of this 

practical problem and due to fundamental interest, the relevant kinetics have been 

analyzed extensively and in particular on a cubic lattice [2-6]. In these studies, the 

monomers of the polymer are assumed to lie on the points forming the cubic lattice, 

corresponding to a self-avoiding walk. The degrees of freedom for the kinetics are 

then taken as the corner flip and the crankshaft moves [3-5]. The Metropolis 

algorithm [7] is used for the Monte Carlo M𝐶 simulation. 

A natural extension of the M𝐶 procedure to continuum space involves small local 

modifications in the configurations of monomers in two dimensional space [8]. 

Because of the large amount of time necessary for the accumulation of small 

changes to result in a major change in the structure of the polymer, the computer 

time necessary to analyze such processes grows prohibitively large as the size of 

the polymer increases. 
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We hope to illuminate the kinetics of folding in the early stages of folding process 

by analyzing the Debye relaxation process. We are introducing a different type of 

method, in which parameters modified in the M𝐶 procedure are relative, and 

therefore modifications propagate to all parts of the system rapidly. Although this 

approach would model the physical folding process only under limited 

circumstances due to the allowed deviation used in the statistics, it does produce a 

very efficient method and folding time does increase with the chain length by a 

power law. 

In our present work we have developed a M𝐶 simulation based on a simple 

continuum space model. In this model, the monomers that make up the protein  

Crambin are used.  Crambin is a plant seed protein that consists of 46 amino acids. 

Empirical potentials are derived from the statistics obtained from  Crambin itself 

which is used to define the kinetics. These statistics include implicitly the 

information about several kinds of interaction such as the Van der Waals interaction 

and the hydrogen bonds [2]. Current methods often aim to fold  Crambin, but most 

real proteins of interest have hundreds of amino acids. 

The Model 

The polymer is modeled as a joined sequence of rods of lengths corresponding to 

particular monomers, which can be oriented arbitrarily within the constraint of  self 

avoidance. The orientational state of the polymer can be defined by the bending 

angles {𝜃𝑖} between the monomers and the relative azimuthal angles {𝜙𝑖} as shown 

in Fig. (1). 

We then assume a potential which depends on these angles and the distances 

between the monomer centers up to the fourth neighbors. The parameters of this 

potential depend on the types of monomers in the neighborhood: The parameters 

of the bending potential and torsion potential which are functions of 𝜃𝑖 and 𝜙𝑖 

depend on the types of the monomers 𝑖, 𝑖 − 1 and 𝑖 − 2 and the parameters of the 

distance dependent potential depend on the two types of monomers that it relates. 

There are no longer range interactions in the model apart from the constraint of self 

avoidance. The total potential describing the chain may then be written as: 

 

𝑉cℎ𝑎𝑖𝑛 = ∑𝑁
𝑖=2 𝑉B(𝑡𝑖−1, 𝑡𝑖 , 𝜃𝑖) + ∑𝑁

𝑖=3 𝑉T(𝑡𝑖−2, 𝑡𝑖−1, 𝑡𝑖 , 𝜙𝑖) + ∑4
𝑛=1 ∑    (𝑛)

𝑖𝑗 𝑉N
(𝑛)

(𝑡𝑖 , 𝑡𝑗, 𝑑𝑖𝑗)      (1) 
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Fig. (1). Definitions of the relative angles used in our model. The bending angle 𝜃𝑖 is the angle 

between the 𝑖 − 1 st and 𝑖 th monomer. The torsion angle 𝜙𝑖 is the azimuthal angle between the 

projection of 𝑖 th monomer onto the 𝑥-𝑦 plane and 𝑖 − 2 nd monomer when the 𝑖 − 1 st monomer 

lies along the -𝑧 axis and the 𝑖 − 2 nd monomer lies in the 𝑥-𝑧 plane [15]. 

where 𝑉B is the bending, 𝑉T is the torsion potential and 𝑉N is the distance dependent 

potential. Here 𝑡𝑖 is the type of the monomer, 𝑛 is the neighbor type (1 for the 

nearest neighbor, (2) for the second nearest neighbor, etc.), 𝑑𝑖𝑗 is the distance 

between centers of the rods joining the monomers (𝐶𝛼) 𝑖, 𝑖 + 1 and 𝑗 − 1, 𝑗. The 

potentials for 𝑛 = 1 and 𝑛 = 2 are weighted by 0.5 and the rest by unity. The 

weighting numbers are determined in an empirical way. Superscript (𝑛) on the 

summation sign indicates that the summation runs on that type of neighbors. 

This potential covers the approximation to the hydrogen bond and the collapse 

energy terms of the total Hamiltonian around the equilibrium point of the total 

energy surface which is a good approximation for the 𝛼- helices [9,10]. Bending or 

torsion terms mostly represent the hydrogen bonds in the absence of solvent (10 −
12 potential, see Appendix ) while distance dependent potentials mostly represent 

the collapse energy (6 − 12 Lennard-Jones potential, see Appendix ). That the 

distance dependent potential assumes interactions up to the fourth neighbor is 

justified by the fact that the collapse energy including the hydrophobic interactions 
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CHAPTER 5 

A Stochastic Mechanism for DNA Vitrification 

Abstract: In Chapter 5, DNA is a kind of nucleic acid consisting of two strands which are 

made up of two Watson-Crick base pairs: adenine-thymine (𝐴𝑇) and guanine-cytosine (𝐺𝐶). 

Vitrification (from Latin  vitreum, "glass") on the other hand is the transformation of a 

substance into a glass. DNA vitrification is achieved by rapidly cooling DNA in a liquid state 

through the glass transition. The quantum fluctuation in terms of random displacement and 

specific heat capacity of the 𝜋 electrons in hydrogen bonds was studied earlier to calculate the 

DNA  melting  temperature. Same  principles  along  with  the  inclusion  of  longitudinal 

phonon vibrations will be used here in order to calculate the vitrification temperature (glass 

transition temperature) of base pairs. This has an important application in cryonics and 

cryopreservation. 

Keywords: Biological physics, Statistical physics. 

INTRODUCTION 

As it is well known, Deoxyribonucleic acid (𝐷𝑁𝐴) is an organic nanomaterial with 

a helical structure of twin strands of nucleic acids, see Fig. (1) [1]. 𝐷𝑁𝐴 melting 

has been lately studied both experimentally and computationally [2-13]. A 

stochastic mechanism for 𝐷𝑁𝐴 melting has also been studied by the author before 

[14]. There, inharmonic stacking interaction, hydrogen bond interaction and kinetic 

energy components of the total energy were used to implement a metropolis 

algorithm. Morse potential was used to mimic the hydrogen bond interaction 

between the basis on the opposite strands for the overlapping 𝜋 electrons. The 𝐴𝑇 

pair had 2 bonds and the 𝐺𝐶 pair had 3 of them. The 𝜋 electrons obeyed 𝐵𝑜𝑠𝑒 −
𝐸𝑖𝑛𝑠𝑡𝑒𝑖𝑛 (𝐵𝐸) statistics, and the overlapping of them resulted in quantum 

fluctuation. It was shown that this could be simplified into < Δ𝑦(𝑡)Δ𝑦(𝑡) >=
2𝐷𝑞Δ𝑡 type fluctuation between the base pairs. Thus, a metropolis algorithm was 

developed for the total potential energy by superposing two potential energy terms 

as well as including the quantum fluctuation in terms of random displacement of 

the 𝜋 electrons, see Fig. (2). Here, the quantum diffusion constant 𝐷𝑞, is given by,  

𝐷𝑞~
12ℏ4

𝑘2𝑚𝑒
2𝑒4𝜏𝑐

1

𝑒𝑥𝑝(
2𝜀2𝑒
𝑘𝐵𝑇

)−1
,                                            (1) 

and 𝜏𝑐 is the characteristic time. The previous parameters along with potential 

parameters can be found in literature. 
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Fig. (1). DNA strand, opened helix as a planar ladder diagram of either uniform homopolymer 𝐴𝑇 

or homopolymer 𝐺𝐶. Here, the upper strand is assumed to do a similar motion during the motion of 

lower one (𝑦𝑛 is the vertical separation of the 𝑛𝑡ℎ monomer, the total stretch is 𝑏 = 𝑏1 + 𝑏2 = 2𝐴𝑜, 

𝑎 is the radius of monomer, 𝑐 is the horizontal separation of monomers) [14]. 

 

Fig. (2).  Δ𝑦 = ±√2𝐷𝑞Δ𝑡 is the quantum fluctuation in the mesoscopic scale, 𝜉 is the random force 

exerted to hydrogen atom and thus to monomers by the electron pair of hydrogen bond. r and r’ are 
coordinate labels of electrons 𝜋 and 𝜋′ with respect to protons a and 𝑏 [14]. 
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As 𝐷𝑁𝐴 melts, we confront second order Arrhenius equation. The height of the 

energy barrier Δ𝐸𝑚 that 𝐷𝑁𝐴 base pairs have to fall down to get melted can be 

regarded as approximately same as the height of the energy barrier Δ𝐸𝑔 that 𝐷𝑁𝐴 

base pairs aiming the liquid state have to climb up for glass transition, see Fig. (3). 

 

Fig. (3). Stiffness versus temperature curve. Stiffness 𝐸𝛼𝑁𝑝 is proportional to population of paired 

𝐷𝑁𝐴 molecules 𝑁𝑝. Note the difference between the glass transition temperature and melting 

temperature. Also, the energy difference in glass transition and in melting processes are assumed to 

be approximately equal (Δ𝐸𝑔~Δ𝐸𝑚) [16]. 

A glass has the random structure of the liquid from which it is derived by cooling 

below the freezing point, without crystallization [15]. So, vitrification temperature 

(glass transition temperature) of the base pairs can be calculated by superposing the 

specific heat capacity of electrons in hydrogen bonds and longitudinal vibrations 

of DNA strands (acoustic phonons). The rationale here is that the thermal motion 

in liquids can be decomposed into elementary longitudinal vibrations (or acoustic 

phonons) while transverse vibrations (or shear waves) were originally described 

only in elastic solids exhibiting the highly ordered crystalline state of matter [16]. 

At the end of the day, this crude scheme is still good enough to offer us kilo base-

pair limitation for the model. 

THEORY 

The heat capacity or the thermal kinetic energy of the electrons in the Fermi gas of 

the hydrogen bonds is given by,  
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CHAPTER 6 

A Theoretical Investigation on 10-12 Potential of 

Hydrogen-Hydrogen Covalent Bond 

Abstract: In Appendix, we have an analytical investigation of the well-known 10-12 potential 

of hydrogen-hydrogen covalent bond. In this research, we will make an elaboration of the well-

known 6-12 Lennard-Jones potential in case of this type of bond. Though the results are 

illustrated  in many text books and literature, an analytical analysis of these potentials is missing 

almost everywhere. The power laws are valid for small radial distances, which are calculated 

to some extent. The internuclear separation as well as the binding energy of the hydrogen 

molecule are evaluated with success. 

Keywords: Electronic structure and bonding characteristics, Materials, Molecular 

hydrogen and isotopes, Solid state.  

INTRODUCTION 

The fact that 𝐻2 is explained quantum mechanically by the behavior of the 

electronic eigenfunction is described by the charge distribution of the system, as 

two hydrogen atoms approach one another. The resulting charge distribution does 

lead to electrostatic attraction, but it is a charge distribution that can be interpreted 

as a sharing of electrons by both atoms. The binding is called covalent, [1]. One can 

write the total potential energy of two hydrogen atoms at separation 𝑅 as the 10 −
12 potential for the hydrogen-hydrogen covalent bond that differs from the non-

covalent hydrogen bond which is important in protein interactions, See Refs. [2-6]. 

An example of such non-covalent hydrogen bonds is illustrated in literature, [7]. 

Likewise, one may also consider two identical inert gas atoms at separation 𝑅 large 

in comparison with the radii of the atoms. The atoms induce oscillating dipole 

moments in each other, and the induced moments cause an attractive interaction 

between the atoms. The attractive interaction varies as the minus sixth power of the 

separation of the two oscillators which is called the van der Waals interaction, 

known also as the London interaction. An analytical proof for this interaction which 

will be our guide for evaluation of 10 − 12 potentials is given in some solid state 

books, [8]. 

As two atoms are brought together, their charge distributions gradually overlap, 

thereby changing the electrostatic energy of the system. At sufficiently close 

separations the overlap energy is repulsive, mostly because of the Pauli exclusion 
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principle. The elementary statement of the principle is that two electrons can not 

have all their quantum numbers equal, [8]. This repulsive interaction varies as the 

minus twelfth power of the separation of the two electrons. So, the attractive and 

the repulsive potentials can be summarized in one equation as the Lennard-Jones 

potential, which is valid for inert gases. Here, 𝜀 and 𝜎 are some parameters. A 

detailed discussion about such interatomic potential models can be found in 

literature, [9]. 

𝑉(𝑅) = 4𝜀((
𝜎

𝑅
)12 − (

𝜎

𝑅
)6)                                                            (1) 

THE THEORY 

One can refer to Fig. (1) to calculate the "10" attractive interaction part of 10 − 12 

potential by taking into account the dipole-dipole interaction. The total potential 

due to this dipole-dipole interaction may be written as, 

𝑉𝑑𝑑 =
1

2
𝐶𝑥1

2 +
1

2
𝐶𝑥2

2 − 𝑘𝑞2 (
1

𝑅−
𝑥1+𝑥2

2

−
1

𝑅+
𝑥2−𝑥1

2

−
1

𝑅−
𝑥2−𝑥1

2

+
1

𝑅+
𝑥1+𝑥2

2

)        (2) 

where 𝐶 is the force constant for the hydrogen atom, 𝑥1 and 𝑥2 are separation of 

dipoles, 𝑘 is the electromagnetic force constant, 𝑞 = −(−𝑒) is minus the electronic 

charge and 𝑅 is the inter-dipole coordinate and by making Taylor series expansions 

for the radial part when 𝑥1, 𝑥2 ≪ 𝑅, one finds leading to fourth order in 𝑥, 

𝑉𝑑𝑑 =
1

2
𝐶𝑥1

2 +
1

2
𝐶𝑥2

2 −
2𝑘𝑞2𝑥1𝑥2

𝑅3 −
𝑘𝑞2𝑥1𝑥2(𝑥1

2+𝑥2
2)

𝑅5 .                        (3) 

Here, the force constant can be evaluated by writing the effective interatomic 

potentials for each dipole as, 

 

Fig. (1). Coordinates of dipole oscillators modeling the electromagnetic interaction between the 

charge clouds of hydrogen molecule [12]. 
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𝑉0 =
ℏ2𝐽(𝐽+1)

2𝑚𝑒𝑥2 −
𝑘𝑞2

𝑥
                                                  (4) 

where ℏ is the Planck constant, J is the total angular momentum of the electron, 𝑚𝑒 

is the electron mass for the rotational kinetic energy, [10]. This effective potential 

may also be written as, around equilibrium value of 𝑥𝑒𝑞 and by equating the first 

derivative of the potential to zero the equilibrium value yields. 

 

𝑉0 = 𝑉(𝑥𝑒𝑞) +
𝑑𝑉(𝑥)

𝑑𝑥
|𝑥𝑒𝑞

(𝑥 − 𝑥𝑒𝑞) +
𝑑2𝑉(𝑥)

2𝑑𝑥2 |𝑥𝑒𝑞
(𝑥 − 𝑥𝑒𝑞)2.              (5) 

𝑥𝑒𝑞 =
ℏ2𝐽(𝐽+1)

𝑘𝑞2𝑚𝑒
.                                                      (6) 

Plugging this into the second derivative of the potential, 

𝐶 =
𝑘4𝑞8𝑚𝑒

3

ℏ6𝐽3(𝐽+1)3.                                                      (7) 

On the other hand, one should remember that 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 − 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 wavefunctions 

overlap to give the resultant wavefunction. Fig. (2) depicts this generation, [10, 11]. 

So, one can superpose 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 − 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 pairs in place of the spatial coordinates 

where the probability distribution peaks. Thus, one can evaluate the 

electromagnetic interaction of electron pairs with nuclei to model the correlation 

because of overlapping of two electron wavefunctions. Fig. (3) shows how this is 

handled. Now, one can write for the pair-pair interaction, 

 

𝑉𝑝𝑝 =
1

2
𝐶′𝑥1

′2 +
1

2
𝐶𝑥2

′2 − 𝑘𝑞2(
2

𝑅′−
𝑥′1+𝑥′2

2

−
4

𝑅′+
𝑥′2−𝑥′1

2

−
1

𝑅′−
𝑥′2−𝑥′1

2

+
2

𝑅′+
𝑥′1+𝑥′2

2

)  (8) 

where 𝐶′ is the force constant for 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑝𝑎𝑖𝑟 − 𝑛𝑢𝑐𝑙𝑒𝑢𝑠, 𝑥′1 and 𝑥′2 are 

separation of dipoles and 𝑅′ is the inter-atomic coordinate and by making Taylor 

series expansions for the radial part when 𝑥′1, 𝑥′2 ≪ 𝑅′ one finds leading to second 

order in 𝑥′, 

𝑉𝑝𝑝 =
1

2
𝐶′𝑥1

′2 +
1

2
𝐶′𝑥2

′2 +
𝑘𝑞2

𝑅′
−

3𝑘𝑞2(𝑥′2−𝑥′1)

2𝑅′2 −
4𝑘𝑞2𝑥′1𝑥′2

𝑅′3 +
𝑘𝑞2(𝑥′2−𝑥′1)2

4𝑅′3 .      (9) 
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