

CHEMICAL FINGERPRINTS OF MEDICINAL PLANTS- HPTLC PROFILING

Acharya Balkrishna

Bentham Books

Authored By

Acharya Balkrishna

University of Patanjali Patanjali Research Foundation Trust Haridwar India

Author: Acharya Balkrishna

ISBN (Online): 978-981-5196-41-2

ISBN (Print): 978-981-5196-42-9

ISBN (Paperback): 978-981-5196-43-6

© 2023, Bentham Books imprint.

Published by Bentham Science Publishers Pte. Ltd. Singapore. All Rights Reserved.

First published in 2023.

BENTHAM SCIENCE PUBLISHERS LTD.

End User License Agreement (for non-institutional, personal use)

This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the book/echapter/ejournal (**"Work"**). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: permission@benthamscience.net.

Usage Rules:

- 1. All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit the Work or make the Work available for others to do any of the same, in any form or by any means, in whole or in part, in each case without the prior written permission of Bentham Science Publishers, unless stated otherwise in this License Agreement.
- 2. You may download a copy of the Work on one occasion to one personal computer (including tablet, laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it.
- 3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights.

Disclaimer:

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the Work.

Limitation of Liability:

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

General:

2. Your rights under this License Agreement will automatically terminate without notice and without the

^{1.} Any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims) will be governed by and construed in accordance with the laws of Singapore. Each party agrees that the courts of the state of Singapore shall have exclusive jurisdiction to settle any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims).

need for a court order if at any point you breach any terms of this License Agreement. In no event will any delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement constitute a waiver of any of its rights.

3. You acknowledge that you have read this License Agreement, and agree to be bound by its terms and conditions. To the extent that any other terms and conditions presented on any website of Bentham Science Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail.

Bentham Science Publishers Pte. Ltd. 80 Robinson Road #02-00 Singapore 068898 Singapore Email: subscriptions@benthamscience.net

CONTENTS

PREFACE	i
CHAPTER 1 INTRODUCTION TO HIGH-PERFORMANCE THIN LAYER	
CHROMATOGRAPHY (HPTLC)	1
INTRODUCTION	1
THIN LAYER CHROMATOGRAPHY (TLC)	1
Advantages of TLC/HPTLC	
Visual Representation and Documentation of Results	2
Parallel Analysis of Samples for Fast Screening	
Flexibility	
Detection of Multiple Samples	4
Application Fields	4
CONCLUDING REMARKS	
CHAPTER 2 HIGH-PERFORMANCE THIN LAYER CHROMATOGRAPHY	
NSTRUMENTATION	7
INTRODUCTION	
Sample Applicator	
TLC Developer	
DERIVATIZER	
VISUALIZER	
DENSITOMETRY	
CONCLUDING REMARKS	11
CHAPTER 3 PROCESS STEPS FOR HPTLC ANALYSIS	
INTRODUCTION	
Sample and standards	
Preparation of Sample Solution	
Standard Solution Preparation	
Stationary Phase	
Sample Application	
Preparation of Developing Solvent	
Development of TLC Plate	14
Visualization and Derivatization	
Detection	
CONCLUDING REMARKS	16
CHAPTER 4 STATIONARY PHASE IN HIGH PERFORMANCE THIN LAYER	
CHROMATOGRAPHY (HPTLC)	
INTRODUCTION	17
SILICA GEL	17
Silica Gel Bonded Phases	19
CONCLUDING REMARKS	20
CHAPTER 5 HYPHENATION OF HPTLC WITH OTHER TECHNIQUES	21
INTRODUCTION	
High-performance Thin Layer Chromatography (HPTLC) Hyphenated with Mass	
Spectroscopy (MS)	21
High Performance Thin Layer Chromatography (HPTLC) Hyphenated with Infrared	
Spectroscopy (IR)	
CONCLUDING REMARKS	23

TER 6 FINGERPRINTS OF MEDICINAL PLANTS	
NTRODUCTION	
Achyranthes aspera L. (Common Name: Apamarga) Acorus calamus L. (Common Name: Vach)	
Aegle marmelos (L.) Correa (Common Name: Bael)	
Albizia odoratissima (L.f.) Benth (Common Name: Siris)	
Allium sativum L. (Common Name: Garlic)	
Aloe barbadensis Mill (Common Name: Aloe Vera)	
Anacyclus pyrethrum (L.) Lag (Common Name: Akarkara)	
Andrographis paniculata (Burm. F.) Nees (Common Name: Kalmegh)	
Areca catechu L. (Common Name: Betel Nut)	
Asparagus racemosus Willd (Common Name: Shatavar)	
Azadirachta indica A.Juss (Common Name: Neem)	
Baccharoides anthelmintica (L.) Moench (Common Name: Black Cumin)	
Bacopa monnieri (L.) Wettst (Common Name: Brahmi)	
Bauhinia variegata L. (Common Name: Kachnar)	
Berberis aristata DC (Common Name: Daruhaldi)	
Berberis napaulensis (DC.) Spreng (Common Name: Mahonia)	
Boerhavia diffusa L. (Common Name: Punarnava)	
Brassica juncea (L.) Czern (Common Name: Red Mustard)	
Cannabis sativa L. (Common Name: Bhang)	
Capsicum frutescens L. (Common Name: Chilli)	
Carica papaya L. (Common Name: Papaya)	
Carissa carandas L. (Common Name: Karonda)	
Carum carvi L. (Common Name: Shah Jeera)	
Cassia fistula L. (Common Name: Amaltas)	
Catharanthus roseus (L.) G.Don (Common Name: Sadabhar)	
Cedrus deodara (Roxb. ex D.Don) G.Don (Common Name: Deodar)	
Celastrus paniculatus Willd (Common Name: Malkangani)	
Chlorophytum borivilianum Santapau & R.R.Fern (Common Name: Safed musli)	
Cinnamomum camphora (L.) J. Presl (Common Name: Camphor)	
Cinnamomum tamala (BuchHam.) T.Nees & C.H.Eberm (Common Name: Bay Leaves)	
Cinnamomum verum J. Presl (Common Name: Cinnamon)	
Cissus quadrangularis L. (Common Name: Hadjod)	
Cocculus hirsutus (L.) W. Theob (Common Name: Jalamini)	
Commiphora mukul (Hook. ex Stocks) Engl (Common Name: Guggul)	
Convolvulus prostratus Forssk (Common Name: Shankhpushpi)	
Cordia dichotoma G.Forst (Common Name: Lisoda)	
Coriandrum sativum L. (Common Name: Coriander)	
Cornus capitata Wall (Common Name: Thanboi)	
Cressa cretica L. (Common Name: Rudanti)	
Crinum latifolium L. (Common Name: Sudarshan)	
Cullen corylifolium (L.) Medik (Common Name: Bakuchi)	
Cuminum cyminum L. (Common Name: Cumin)	
Curcuma longa L. (Common Name: Turmeric)	
<i>Cyperus scariosus</i> R. Br (Common Name: Nagarmotha)	
Datura stramonium L. (Common Name: Datura)	
Daucus carota L. (Common Name: Carrot)	
Diplocyclos palmatus (L.) C.Jeffrey (Common Name: Shivlingi) Eclipta prostrata (L.) L (Common Name: Bhringraj)	

Elaeocarpus serratus L. (Common Name: Rudraksh)	96
Elettaria cardamomum (L.) Maton (Common Name: Cardamom)	98
Embelia ribes Burm. F. (Common Name: Viavidang)	99
Foeniculum vulgare Mill (Common Name: Fennel)	101
<i>Glycyrrhiza glabra</i> L. (Common Name: Licorice)	102
Habenaria intermedia D.Don (Common Name: Riddhi)	
Hemidesmus indicus (L.) R. Br (Common Name: Anantmool)	105
Holarrhena pubescens Wall (Common Name: Indrajao)	
Holarrhena pubescens Wall (Common Name: Kutaj)	
Lagenaria siceraria (Molina) Standl (Common Name: Bottle Gourd)	
Lavandula stoechas L. (Common Name: Ustekhaddus)	
Lawsonia inermis L. (Common Name: Henna)	
Leucas cephalotes (Roth) Spreng (Common Name: Dronpushpi)	
Lilium polyphyllum D.Don (Common Name: Ksheer kakoli)	114
Mentha piperita L. (Common Name: Mint)	
Momordica charantia L. (Common Name: Bitter Gourd)	
Moringa oleifera Lam (Common Name: Sahjan)	
Murraya paniculata (L.) Jack (Common Name: Gandhani)	
Myristica fragrans Houtt (Common Name: Mace)	
Myristica fragrans Houtt (Common Name: Jaiphal)	125
Nardostachys jatamansi (D.Don) DC (Common Name: Jatamansi)	126
Nymphaea nouchali Burm. F. (Common Name: Blue Lotus)	128
Ocimum basilicum L. (Common Name: Basil)	129
Ocimum tenuiflorum L. (Common Name: Basil)	131
Operculina turpethum (L.) Silva Manso (Common Name: Nisoth)	132
Phyllanthus emblica L. (Common Name: Indian gooseberry)	134
Picrorhiza kurroa Royle ex Benth (Common Name: Kutki)	
Piper longum L. (Common Name: Chhoti Pippali)	137
Piper nigrum L. (Common Name: Black pepper)	138
Piper retrofractum Vahl (Common Name: Badi Pippali)	
Pistacia chinensis subsp. Integerrima (J.L.Stewart) Rech.f (Common Name: Kakra singhi)	141
Putranjiva roxburghii Wall (Common Name: Putrajeevak)	
Raphanus raphanistrum L. subsp. Sativus (L.) Domin (Common Name: Radish)	
Rheum webbianum Royle (Common Name: Revandchini)	
Rosa indica L. (Common Name: Rose)	147
Roscoea purpurea Sm (Common Name: Kakoli)	
Saraca indica L. (Common Name: Ashok)	
Sauromatum venosum (Dryand. ex Aiton) Kunth (Common Name: Talia kand)	
Semecarpus anacardium L.f (Common Name: Bhilawa)	
Senna alexandrina Mill (Common Name: Senna)	
Senna occidentalis (L.) Link (Common Name: Kasundi)	156
Senna tora (L.) Roxb (Common Name: Panwad)	158
Solanum lycopersicum L. (Common Name: Tamatar)	159
Solanum nigrum L. (Common Name: Makoy)	161
Solanum surattense Burm. F. (Common Name: Chhoti Kateli)	162
Swertia chirayita (Roxb.) H.Karst (Common Name: Chirayita)	164
Syzygium aromaticum (L.) Merr. & L.M.Perry (Common Name: Clove)	165
Terminalia arjuna (Roxb. ex DC.) Wight & Arn (Common Name: Arjun)	167
Terminalia bellirica (Gaertn.) Roxb (Common Name: Bahera)	168
Terminalia chebula Retz (Common Name: Harad)	170
Tinospora cordifolia (Willd.) Hook.f. & Thomson (Common Name: Giloy)	171

Trachyspermum ammi (L.) Sprague (Common Name: Carom)	173
Trigonella foenum-graecum L. (Common Name: Fenugreek)	
Urtica ardens Link (Common Name: Stinging Nettle)	
Viola odorata L. (Common Name: Sweet Violet)	
Vitex negundo L. (Common Name: Nirgundi)	
Vitis vinifera L. (Common Name: Grapes)	
Withania somnifera (L.) Dunal (Common Name: Ashwagandha)	
Zanthoxylum armatum (Thunb.) Druce (Common Name: Tambru)	
Zingiber officinale Roscoe (Common Name: Ginger)	
CONCLUDING REMARKS	
	187
	10/
Solvent Systems for Screening of Phytochemical Compounds of Herbal Plants by TLC/	187
-	
	188
Derivatization Reagents for Detection of Secondary Metabolites of Herbal Plants by	100
TLC/HPTLC	
Appendix II	
List of Medicinal Plants	189
ABBREVIATIONS	193
BIBLIOGRAPHY	194
	27
SUBJECT INDEX	3;7

PREFACE

Herbs have been used for medicinal purposes since ancient time. A large number of populations in the world rely on herbs and herbal extracts for different ailments. The Indian traditional medicine system – "Ayurveda" also recognizes the importance of the herbs and their authenticity.

In the words of Sage Acharya Charaka,

Tasyāpīyamparīkṣā- Idamevamprakrtyevamguņamevamprabhāvamsmindese

jātamasminnŗtāvevam grhītamevamnihitamevamupaskŗtamanayā ca mātrayā

CarakaSamhitāVimānasthāna 8:87

"Meaning - for selection of herbs Organoleptic, physical and chemical characteristics, habitat, season, method of collection, method of preservation, processing, and dosage should be considered"

With the increasing reliance of the worldwide population on herbs, the selection of the right quality of herbs, identification, and authentication are the need of time. In the modern day, different techniques like taxonomy, biological and chemical fingerprinting are in use to validate the procedure for the selection of the right quality herb.

In the present book, we have developed and compiled the High-Performance Thin Layer Chromatography (HPTLC) fingerprints of some of the commonly used medicinal plants. HPTLC fingerprint provides a scientific approach for the identification and authentication of herbal material as it provides a unique phytochemical distribution pattern which can be seen in the form of bands and can further be used for the purpose of qualitative and quantitative checks.

I am sure that this book will be immensely helpful as a reference book for the scientific community working in this area throughout the nation and world over.

Acharya Balkrishna University of Patanjali Patanjali Research Foundation Trust Haridwar India

Introduction to High-Performance Thin Layer Chromatography (HPTLC)

Abstract: This chapter discusses chromatography, classification of chromatography, thin layer chromatography (TLC) and how high-performance thin-layer chromatography (HPTLC) is an advanced version of TLC. In brief, this chapter also discusses the advantages and the areas where the HPTLC technique can be used.

Keywords: Chromatography, Densitometry, HPTLC, TLC, TLC fingerprint, UV 254 nm, UV 366 nm, Visualization.

INTRODUCTION

Chromatography is a technique or a process that is used to separate compounds from a mixture. It consists of two different phases: one is stagnant which is the stationary phase. The other is the mobile phase which moves through the stationary phase and separates out the components on the basis of their interactions with the mobile and stationary phases. The stationary phase can be solid (silica gel) or liquid, and mobile phase can be in liquid, gas, and supercritical form.

Chromatography can be classified on the basis of the mobile phase into liquid chromatography and gas chromatography. It is also classified on the basis of separation mechanism: ion exchange, size exclusive and adsorption, and can also be categorised by the shape of the bed into column chromatography and planer chromatography (TLC).

THIN LAYER CHROMATOGRAPHY (TLC)

TLC is a chromatographic technique that is used to elute out compounds on a thin layer of stationary phase generally prepared from silica gel.

For performing TLC/ HPTLC analysis, first, we dissolved the sample in a suitable solvent. The prepared sample is then applied on the TLC plate either manually or by autosampler (in HPTLC) in the form of a band or a spot. This TLC plate is then transferred to the chamber containing the mobile phase for development.

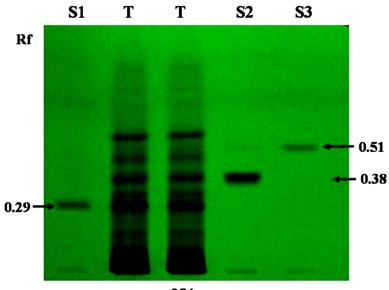
Acharya Balkrishna

As the mobile phase passes through the stationary phase, it allows the compounds to be separated on the basis of their polarity or affinity with both phases. As the mobile phase migrates toward the marked solvent front, the TLC plate is removed and dried. The developed TLC plate is then visualized under UV 254 nm, 366 nm, and white light with or without derivatization on the basis of the molecule to be detected [5].

HPTLC is the mechanized and advanced form of TLC as it allows the application of samples through the automatic sampler, with complete documentation of chromatographic data using software, and also with an auto scanner which helps in the identification of compounds. It provides both qualitative and quantitative analysis which is not possible in manual TLC methods.

The use of HPTLC allows proper separation with high resolution, repeatability, analysis of multiple samples together, visual inspection of chromatograms, and fast delivery of results.

TLC/HPTLC can successfully be hyphenated with other analytical techniques like High-performance liquid chromatography (HPLC), Mass spectroscopy (MS) and Fourier transform infrared (FTIR), which can give new dimensions to the research works [5].


Advantages of TLC/HPTLC

TLC offers several advantages:

- Visual representation and documentation of results.
- Parallel analysis of samples for fast screening.
- Flexibility.
- Detection of multiple samples.

Visual Representation and Documentation of Results

TLC provides the option to visualize the chromatograms in the form of the TLC plate image. TLC plate can be visualized under UV 254 nm and 366 nm for UV active compounds and some compounds can also be documented after derivatization using different spraying reagents on the basis of the class of compounds. Compounds are visualized in the form of bands and provide a fingerprint of that particular sample Fig. (1)

254 nm

Fig. (1). HPTLC fingerprint of *Withania somnifera* (L.) Dunal at 254 nm. Mobile phase (MP): Toluene: ethyl acetate: formic acid (5: 5: 1 v/v/v). S1: Witheferin A (Rf 0.28), T: *Withania somnifera* (L.) Dunal, S2: Withanolide A (Rf 0.20), S3: Withanolide B

Parallel Analysis of Samples for Fast Screening

This technique enables parallel analysis of multiple samples. In one TLC plate, we can apply approximately 18 different samples or same samples of different batches. TLC plate is developed under same chromatographic conditions and visualized, and it provides fast screening of multiple samples at one time Fig. (2).

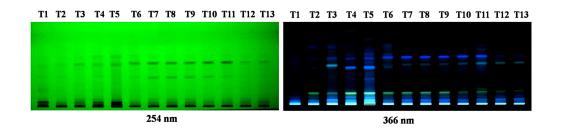


Fig. (2). Parallel analysis of multiple samples. MP: Ethyl acetate: toluene: formic acid (5: 5: 1 v/v/v). A: 254 nm, B: 366 nm.

High-Performance Thin Layer Chromatography Instrumentation

Abstract: HPTLC is one type of planar chromatography and the most advanced form of instrumental TLC. HPTLC equipment involves an autosampler for the application of a specific amount of sample on the plate, after spotting of sample the plate is developed in a TLC development chamber after development the plate is dried and visualized using visualizer. This chapter briefly discusses the equipment involved in the development of TLC.

Keywords: ATS 4, AMD 2, CAMAG, Densitometry, TLC.

INTRODUCTION

Sample Applicator

The quality of the chromatographic results depends on sample application. For quality results, samples must be positioned precisely, sample volume must be controlled and the layer must not be damaged.

Fig. (6). Instrument for sample application. (a) CAMAG Linomate 5, (b) CAMAG Automatic TLC Sampler 4.

Acharya Balkrishna All rights reserved-© 2023 Bentham Science Publishers

Acharya Balkrishna

In HPTLC, different instruments are available for semiautomatic and automatic sample application. The most widely used sample applicator featuring the sprayon technique is CAMAG Linomat 5 Fig. (6A) and CAMAG Automatic TLC Sampler 4 Fig. (6B). All application parameters are computer-controlled and programmed by CAMAG winCATS software. CAMAG Linomat 5 is semiautomatic in which the sample is loaded into the syringe manually. CAMAG ATS 4 is an automatic sample applicator as it allows the application of samples by both contact spotting and spray-on techniques [5].

TLC Developer

Chromatogram development is the key element of the process. There are different types of chambers that can be used for development: flat-bottom chamber Fig. (7A), twin-trough chamber Fig. (7B), automatic development chamber Fig. (7C) and automatic multiple development chamber Fig. (7D).

Fig. (7). Different types of development chambers. (**a**) Flat-bottom chamber, (**b**) Twin-trough chamber, (**c**) Automatic development chamber (ADC 2), (**d**) Automatic multiple development chamber (AMD 2).

Chromatography Instrumentation

A flat-bottom chamber permits the development of the plate under conditions of partial or complete saturation of the gas phase with solvent vapours.

Twin-trough chamber (TTC) is economic as well as flexible. A TTC is charged with a solvent to reach an initial level of 5 mm or 10 mm in the trough that receives the plate. The same amount is used in the rare trough if chamber saturation is established.

Automatic Development Chamber 2 (ADC 2,) is a fully automatic development chamber that generates reproducible results independent of handling errors. After placing the TLC plate into the device, the layer is automatically brought in contact with the mobile phase and development happens [4].

In automatic multiple development chamber (AMD 2), gradient mobile phase can be used. It is a fully automatic technique.

DERIVATIZER

Derivatization is performed to visualize fingerprints. This can be achieved through the gas phase and reagents. Different instruments used for derivatization in HPTLC/TLC are described below.

The glass reagent sprayer Fig. (8A) comes with a rubber pump but also be operated from a compressed air or nitrogen supply. CAMAG TLC sprayer Fig. (8B) is used for manual spraying of derivatization reagents onto TLC plates. CAMAG TLC spray cabinet Fig. (8C), ensures the complete removal of reagent mist while manually spraying onto the TLC plate. CAMAG Chromatogram immersion device Fig. (8D) is used for automatic dipping. HPTLC/TLC plates are immersed with uniform vertical speed into derivatization reagents. CAMAG TLC plate heater Fig. (8E), is designed for heating HPTLC/TLC plates at required temperature before and after derivatization [4].

VISUALIZER

TLC offers the advantage of visualizing chromatographic results directly in the form of fingerprints or chromatograms using UV light, at 254 nm and 366 nm and white light. CAMAG TLC Visualizer 2 Fig. (9) is used for imaging and documentation of TLC fingerprints (V) (https://www.camag.com).

Process Steps for HPTLC Analysis

Abstract: This chapter briefly discusses the general aspects that can affect the result of TLC. Sample preparation, application of samples, preparation of development solvents, the steps involved in the development of TLC, visualization and derivatization, and detection of analyte are the key steps of chromatographic development. This chapter focuses on the process steps for HPTLC analysis.

Keywords: Derivatization, Detection, Stationary phase, Visualization.

INTRODUCTION

Sample and standards

Appropriate sample preparation is an essential step for successful TLC analysis. A suitable solvent system was used for either dissolving or extracting a solid or liquid sample to make the target molecules present in the sample available for analytical procedures without any interference from the sample matrix.

Preparation of Sample Solution

The raw materials or extracts of the medicinal herbs were processed and extracted using the appropriate solvent system, *i.e.* water/ethanol/methanol/hydro-methanol/ethyl acetate/hexane. Approximately, 1000 mg (for raw material) or 500 mg (for extract) of the test sample was transferred to a 10 mL volumetric flask and 5 mL of the solvent was added and homogenized in an ultrasonic bath for 20 minutes. The volume of the solution was made up to 10 mL mark with the solvent. The samples were centrifuged for 10 minutes at 9000 RPM and the supernatant, devoid of any particles was transferred to the sample application tube.

Standard Solution Preparation

For the preparation of the standard solution, 10 mg of the commercially available standard was weighed and transferred into a 10 mL volumetric flask. The standard

HPTLC Analysis

was dissolved in 5 mL methanol, sonicated for 5 minutes and the volume of the standard was made up to 10 mL with methanol to obtain a concentration of 1 mg/mL.

Stationary Phase

The stationary phase is an adsorbent, material layer, usually silica gel or aluminum oxide, coated onto a surface, which is typically a glass plate or aluminum. There are a number of inert materials that are available as sorbent in TLC. To achieve optimum separation, it is very important to choose the correct material. Silica gel and aluminum oxide is mostly used for a wide range of applications. Silica gel and aluminas can also be split into a number of distinct sorbents, depending on the pore size, particle size and pH. The selection of the sorbent depends upon the nature and the type of compounds to be separated. Polarity, solubility, and molecular weight are some of the characteristic features for deciding the separation mechanism [7].

TLC silica gel 60 F_{254} (Merck KGaA, 64271 Darmstadt Germany) aluminum backed plates with a dimension of 5 × 10 cm or 10 × 10 cm or 20 × 10 cm (width × length) were used as stationary phase [7].

Sample Application

Application of sample and/or reference solution is a very critical step for obtaining quality results. This is due to the fact that precise and uniform sample application determine the overall quality of resolution and eventually the quantification values.

Band-wise spray-on technique was used for sample application on TLC plates. Suitable volumes of sample and standard were applied as 8 mm narrow bands on TLC plates using CAMAG ATS4, equipped with a 25 μ L Hamilton syringe programmed by winCATS software.

Preparation of Developing Solvent

The mobile phase or developing solvent is the liquid that flows through a chromatographic system, moving the material to be separated at different rates on the stationary phase [6].

Development solvents consisting of more than one component were prepared by measuring the required volume of each component separately and transferring them into a solvent bottle of appropriate size. The bottle is closed with a lid and shaken to ensure proper mixing of the content. For measuring volumes smaller than 1 mL, a suitable micropipette was used, and a graduated volumetric pipette

of suitable size was used for volumes up to 20 mL. A list of commonly used solvent systems is provided in Appendix Table A1.

Development of TLC Plate

TLC plates were developed in a saturated twin trough chamber (TTC) according to the following procedure:

- 1. Appropriate volume of developing solvent was prepared (10 mL for 10×10 cm, 20 mL for 20×10 cm TTC).
- 2. A piece of correct sized (10×10 cm, 20×10 cm) filter paper was placed inside the rare trough.
- 3. The solvent was transferred into a chamber so that the filter paper is thoroughly wetted and adheres to the rare wall of TTC.
- 4. Chamber was tilted to the side (about 45 degrees) to equalize the volume of solvent in both troughs.
- 5. The chamber was allowed to saturate for 10 to 15 minutes or more on the basis of method development.
- 6. The TLC plate was then placed inside the TTC and allowed to develop up to 70 mm followed by drying the developed TLC plate.

Visualization and Derivatization

After development, compounds can be visualized under white light, long UV light (366 nm), short wave UV light (254 nm), or in white light after derivatization Fig. (11). Derivatization is performed to make compounds visual that cannot be visualized under UV light. There are several derivatizing reagents, which can be used for the purpose based upon the nature of compounds [6]. A list of commonly used derivatizing reagents is provided in Appendix Table A2.

For derivatization, the developed TLC plates were sprayed with derivatizing reagents and heated using a TLC heater at 110°C for 5-10 minutes.

Detection

Detection can be performed in absorbance or fluorescent mode using a tungsten, deuterium or mercury lamp. Deuterium lamp offers a continuous spectrum of UV light from 190 to 400 nm, tungsten lamp at 370 to 800 nm, and mercury vapour lamp at 366 nm. Detection generates chromatograms that can be used for both qualitative and quantitative purposes Fig. (12).

Stationary Phase in High Performance Thin Layer Chromatography (HPTLC)

Abstract: As discussed in the first chapter, Chromatography is a separation technique based on the different affinities of the components in a mixture of two immiscible phases. One phase does not move (stationary phase) and the other moves through it in a definite direction (mobile phase). This chapter discusses the adsorbent or stationary phase used in TLC and the properties of these materials.

Keywords: Aluminium, Adsorption, Stationary phase, Silica gel.

INTRODUCTION

In TLC, the stationary phase is a thin layer of adsorbing materials, mostly silica gel or aluminum oxide, coated upon an inert glass, plastic, or aluminium plate surface. From the point of view of chemicals, silica gel is silicium dioxide, where each silicium atom is bound with four atoms of oxygen [4].

There are a number of materials that can be used as adsorbent in TLC. Some adsorbing materials can be used for all types of compounds (silica gel), while some have a limited range of applications (silica gel impregnated with caffeine for polyaromatic hydrocarbons). When we select the sorbent for analysis, the focus should be given to the class of compounds to be analyzed or separated. The polarity, solubility, molecule weight, shape and size of the targeted molecule play an important role in deciding the mechanism of separation. The separation of components depends on both the adsorbing material and solvent system [5].

The most widely used sorbent is silica gel, followed by cellulose and alumina. With time, there is an evolution in silica gel also, which results in opening up new separation. Some sorbents that can be used on the basis of class of compounds are shown below (4) (Table 1).

SILICA GEL

Silica gel is also known as silicic acid and kieselgel gel. From the chemical point, silica gel is silicium dioxide, where each silicium atom is bound with four atoms

Acharya Balkrishna

of oxygen. The process of formation of silica gel starts with sand. When sand reacts with sodium hydroxide or sodium carbonate, it is converted into soluble sodium silicate. When this silicate solution is acidified, it gets hydrolyzed to form silicic acid which condensates to very tiny polysilicic acid hydrosol. With time, the hydrogel gets aggregated, establishes siloxane bonds and takes the shape of a cake. This cake is pulverized and washed to remove soluble impurities and salts of sodium [5].

S. NO.	Adsorbing Material	Class of Compounds	
1	1 Silica gel All types of compounds: Phenols, alkaloids, carbohydrates, aron compounds.		
2	Aluminium oxide	Alkaloids, amines, steroids, aromatic compounds, aliphatic hydrocarbons.	
3	Cellulose	Amino acids, carbohydrates	
4	Reversed phase silica gel	Fatty acids, lipids, tetracycline's	

Table 1. List of some commonly used adsorbing materials used as stationary phases.

The size and distribution of silica gel are primary properties of TLC. Smaller particles with narrow size distribution yield highly efficient chromatographic beds. Silica gel used for TLC usually has a particle size of 15 to 20 μ m. HPTLC plates are prepared with smaller particles of silica gel ranging from 5 to 7 μ m.

Pore size plays an important role in the chromatographic performance of silica gel. TLC material has an average pore size of 60 Å or 6 nm that is why the term Si 60.

Silica is porous, hydrated silicon dioxide, where each silicon atom is surrounded with four oxygen atoms. Some of these bonds are present on the surface of the pores [4]. These structures under chromatographic conditions allow silica gel to interact with analytes of different types. Some following types of interactions are possible:

- Proton donor or acceptor interactions.
- Dipole dipole interactions.
- Interaction with dipoles induced by the stationary phase.
- Interactions based on dispersion forces.

Thin Layer Chromatography

Silica Gel Bonded Phases

Silica gel provides a wide range of possibilities to separate different classes of compounds on silica gel. However, there are some bonded phases that can be grouped into polar and non-polar phases (Table 2).

Some non-polar and polar bonded phases:

S. No.	Name	Functionality	Polarity
1	RP ₂	Dimethyl	Non polar
2	RP ₈	Octyl	Non polar
3	RP ₁₈	Octadecyl	Non polar
4	Whatman	Diphenyl Non polar	
5	Amino	3- Aminopropyl Polar	
6	Cyano	3- Cyanopropyl Polar	
7	Diol	Spacer bonded propanediol	Polar

These bonded phases can be produced easily. By boiling silica gel in water, number of free hydroxyl groups can be generated. The silica gel is than hydrolyzed using inert organic solvent for example C18 chain. On the basis of the type of silane, the bonding, the surface coverage and degree of cross linking also vary.

Some other commonly used stationary phase sorbents are aluminium oxide and cellulose. Aluminium oxide is prepared by dehydration of aluminium hydroxide at a high temperature. It contains acidic aluminium ions, basic oxide ions and polar AI-OH group. This is useful for the separation of alkaloids, amines, steroids, aromatic compounds, and aliphatic hydrocarbons.

Cellulose is available in microcrystalline or in fibrous form. As it is a carbohydrate, it works well with water and lower alcohols. It provides good separation when the solvent system is aqueous or water based. It can also separate very polar compounds, but its migration speed is very slow. It takes a lot of time to reach the solvent front. It is used for amino acids, and carbohydrates separation.

CHAPTER 5

Hyphenation of HPTLC with other Techniques

Abstract: Hyphenation techniques are those where two different analytical techniques are combined together to give synergy. The advantage includes high separation efficiency, and the detection of compounds with high sensitivity and specificity. HPTLC can be combined with liquid chromatography (LC), infrared (IR) spectroscopy, ultra violate (UV) spectroscopy, and mass spectroscopy (MS). This chapter briefly discusses the hyphenation of HPTLC with other analytical techniques, its uses, advantages and areas of application of HPTLC coupled with other analytical techniques.

Keywords: HPTLC, LC, IR, MS, MS-Interface, Hyphenation.

INTRODUCTION

A hyphenation is a combinational approach, which means combining one technique with another. The combination of two different techniques can lead to the production of a large number of compounds with a wide range of spectral diversity in a short span of time. HPTLC can be hyphenated with high-pressure liquid chromatography (HPLC), mass spectroscopy (MS), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy.

High-performance Thin Layer Chromatography (HPTLC) Hyphenated with Mass Spectroscopy (MS)

HPTLC in combination with MS, brings an added level of information to the chromatographic results and it also makes the identification and detection of molecules much easier. HPTLC coupled with MS allows verification of the chemical structure of molecules. By using the HPTLC-MS-Interface Fig. (13), the analyte can be directly eluted out from the developed TLC plate.

Compounds are separated on the TLC plate, after that the targeted molecules are marked either under UV 254 nm, 366 nm or white light. TLC is manually positioned on HPTLC-MS, the piston is then lowered by pressing the push button. The piston should lock the marked or targeted zone. Pushing the lever starts the solvent flow.

Acharya Balkrishna

The solvent passes through the locked zone on TLC, and then the molecule is dissolved with the solvent that can directly be injected into MS or collected in a separate sample storage tube. Hyphenating HPTLC with MS provides new dimensions for the technique and makes it more prestigious from a scientific point of view. HPTLC-MS can be used for screening phyto-metabolites, identification of bio-active molecules, and detection and identification of unknown impurities present in samples [4].

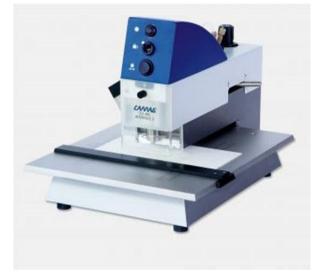
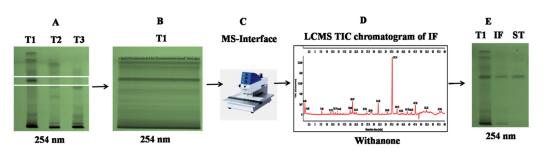



Fig. (13). CAMAG HPTLC-MS-Interface.

In the field of medicinal plants, this technique can be very useful, as the herbal plant material and extracts contain a very complex matrix, there are a number of compounds present in herbal materials, and isolation of these compounds by column chromatography takes a lot of time. Moreover, the isolation of each compound is not possible. By using TLC, the compounds can be separated and separated molecules can be easily identified by HPTLC-MS Fig. (14).

High Performance Thin Layer Chromatography (HPTLC) Hyphenated with Infrared Spectroscopy (IR)

HPTLC in combination with IR can be a great technique for the identification of the molecule or the functional group present in the sample. IR works on the principle that when IR radiation passes through the sample, some of the radiation is absorbed, and the radiation that passes by the sample is recorded in the form of spectra. As different molecule has different spectra, and on the basis of spectra, the molecule can be easily identified. Hyphenation of HPTLC

Fig. (14). Showing the application of HPTLC-MS-Interface in the field of medicinal plants for the identification of compounds. HPTLC fingerprint of *Withania somnifera* (Ashwagandha) at 254 nm along with the LCMS TIC chromatogram of isolated compound (by MS-Interface) and TLC of that isolated compound with withanone standard. M.P.: Ethyl acetate: toluene: formic acid (10: 1: 1 v/v/v). A: TLC fingerprint of T1: Ashwagandha mature leaves extract, T2: Ashwagandha juvenile leaves extract, T3: Ashwagandha whole plant extract. The marked compound is only present in T1 (Ashwagandha mature leaves extract), B: Preparative TLC of T1 (Ashwagandha mature leaves extract), C: MS-Interface for collection of the marked compound from TLC, D: LCMS TIC chromatogram of the collected compound (which is identified as withanone on the basis of its mass), E: HPTLC fingerprint of (T1) Ashwagandha mature leaves extract, (T2) Isolated fraction from T1 by MS-Interface, (ST) Standard withanone which is re-confirming the identified compound is withanone.

The HPTLC IR coupling can be categorized into two groups, direct and indirect hyphenation. Direct method is based on the direct hyphenation of HPTLC-FTIR, while in the indirect method, the targeted zone is collected from the TLC and transferred to IR. The spectra is then recorded. The HPTLC-FTIR, spectra make possible the detection and quantification of UV as well as non-UV compounds on the TLC plate.

Other analytical techniques that can be hyphenated with HPTLC are LC, UV spectroscopy and laser. Coupling of this technique can make the detection of molecules more simple and advanced. Coupling of HPTLC with other analytical techniques can be useful in food, chemical, biology, environmental and herbal or natural product areas.

CONCLUDING REMARKS

HPTLC is one of the most versatile techniques. It can easily handle various types of samples without consuming a lot of time. The hyphenation of HPTLC with other analytical techniques such as, UV, FTIR, LC and MS open various ways of the detection of molecules. It also gives new dimensions and makes hyphenation more prestigious from scientific point of view.

Fingerprints of Medicinal Plants

Abstract: Medicinal plants are considered a rich source of phytochemicals, which can be used in drug development. For this purpose, the selection of correctly identified herbs is of significance as each herb has a unique phytochemical distribution pattern. High-Performance Thin Layer Chromatography (HPTLC) is one of the simplest yet robust techniques for the identification of herbs, as it can provide unique phytochemical fingerprints for each herb. However, process parameters of generating HPTLC fingerprints require rigorous optimization for each plant. This chapter provides HPTLC fingerprints for 108 medicinal plants together with their botanical name and common Hindi names. Besides providing optimized HPTLC conditions for generating these unique 108 fingerprints, this book also offers a list of solvent systems and derivatizing reagents for screening of phytochemicals. With classical taxonomical features and HPTLC fingerprinting methodology compiled, this chapter aims to serve as a guide for the identity verification of medicinal plants.

Keywords: Adsorbent, Canvas painting, HPTLC fingerprint, Medicinal Value, Solvent system.

INTRODUCTION

HPTLC fingerprint is a chromatographic pattern of phyto-active molecules that is specific for each and every medicinal plant. Chemical fingerprints provide an accurate method for the identification and authentication of herbal plant materials.

Achyranthes aspera L. (Common Name: Apamarga)

Plant Part: Whole plant.

Solvent System: Chloroform: methanol (9: 1 v/v).

Adsorbent: TLC silica gel 60 F₂₅₄ (Merck).

Standard Solution Preparation: 10 mg of oleanolic acid was dissolved in 10 mL of methanol, and 10μ L of the standard solution was applied on the TLC plate.

Medicinal Plants

Sample Solution Preparation: 100 mg of sample was dissolved in 10 mL methanol, sonicated and centrifuged, and 20 μ L of the solution was applied on the TLC plate.

Derivating Reagent: Anisaldehyde sulfuric acid.

Medicinal Value: Useful in urinary ract disorders, indigestion and cold (1).

Conclusion: Rf 0.51 confirms the presence of bio-active marker oleanolic acid in Apamarga by HPTLC fingerprinting (Fig. **15a**, **b**).

Fig. (15a). Canvas painting of Apamarga illustrated by Patanjali Research Foundation, Haridwar, India.

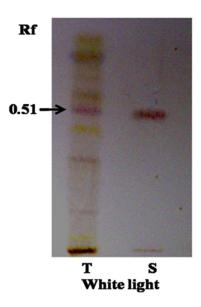


Fig. (15b). HPTLC fingerprinting of Apamarga: T: Apamarga whole plant, S: Oleanolic acid.

Acharya Balkrishna

Acorus calamus L. (Common Name: Vach)

Plant Part: Rhizome.

Solvent System: Toluene: ethyl acetate: formic acid (5: 5: 1 v/v/v).

Adsorbent: TLC Silica gel 60F₂₅₄ (Merck).

Sample Solution Preparation: 1000 mg sample dissolved in 10 mL of methanol, sonicated and centrifuged. 10µl of solution was applied on the TLC plate.

Derivatizing Reagent: Anisaldehyde sulfuric acid.

Medicinal Value: Used in skin diseases, respiratory and gastrointestinal diseases (3).

Conclusion: HPTLC fingerprint of Vach shows bands of phytochemicals under white light after derivatization (Fig. 16a, b).

Fig. (16a). Canvas painting of Vach illustrated by Patanjali Research Foundation, Haridwar, India.

APPENDIX

Solvent Systems for Screening of Phytochemical Compounds of Herbal Plants by TLC/ HPTLC

Table A1. Solvent system for screening of phytochemical compounds of herbal plants by TLC/HPTLC.

Class of Compound	Mobile Phase	Derivatization
Alkaloids	Toluene: ethyl acetate: diethyl amine (7: 2: 1 v/v/v)	Dragendroff's reagent
	Toluene: methanol: diethyl amine (8: 1: 1 v/v/v)	
	Toluene: ethyl acetate: methanol: ammonia (25%) (3: 3: 1.5: 0.1 v/v/v/v)	
	Butanol: acetic acid: water (6: 2: 1 v/v/v)	
Essential oils	Toluene: ethyl acetate (9.3: 0.7 v/v)	Vanillin sulfuric acid
Flavonoids	Ethyl acetate: formic acid: glacial acetic acid: water (10: 1.1: 1.1: 2.3 v/v/v/v)	10 % methanolic sulfuric acid / Natural product reagent
	Toluene: ethyl acetate: formic acid (5: 5: 1 v/v/v)]
	Tetra hydrofuran: toluene: formic acid: water (1.6: 0.8: 0.2: 0.1 v/v/v/v)	
Glycosides	Ethyl acetate: methanol: water (20: 2.8: 2 v/v/v)	Alcoholic potassium hydroxide
Saponins	Chloroform: acetic acid: methanol: water (6.4: 3.2: 1.2: 0.8 v/v/v/v)	Anisaldehyde sulfuric acid
	Butanol: water: acetic acid (5: 4: 1 v/v/v)	
Steroids	Butanol: methanol: water (3: 1: 1 v/v/v)	Anisaldehyde sulfuric acid
Sterols	Ethyl acetate: chloroform (6: 4 v/v)	Anisaldehyde sulfuric acid
	Chloroform: methanol (9: 1 v/v)	

Appendix I

Derivatization Reagents for Detection of Secondary Metabolites of Herbal Plants by TLC/HPTLC

Table A2. Derivatization reagents for detection of secondary metabolites of herbal plan	ts
by TLC/HPTLC.	

Name of Reagent	Procedure	Examination	Detection of
Alcoholic iron chloride	2 g iron chloride is dissolved in 10 mL water and diluted to 200 mL with ethanol.	White light	Alkaloids, flavonoids, plant acids, phenols and tannins.
Alcoholic potassium hydroxide	5-10 g potassium hydroxide is dissolved in 10 mL of water and diluted to 100 mL with ethanol.	White light, UV 366 nm	Anthraquinones, coumarins and flavonoids.
Anisaldehyde sulfuric acid	Place 170 mL of methanol in 200 mL glass bottle and cool it down in water-ice cube bath. To the ice cold methanol, slowly and carefully add 20 mL glacial acetic acid and 10 mL sulphuric acid. Allow it to cool to room temperature, then add 1 mL para-anisaldehyde.	White light	Sterols, terpenoides and Saponins
Copper sulphate	20 g copper sulphate is dissolved in 180 mL water containing 16 mL ortho- phosphoric acid (80% in water).	ning 16 mL ortho- White light	
Dregendroff's reagent	Solution A- 0.85 g basic bismuth nitrate is dissolved in 10 mL acetic acid and 40 mL water under heating. Solution B- 8 g potassium iodide is dissolved in 30 mL water. Just before spraying, 1 mL of each solution is mixed with 4 mL acetic acid and 20 mL water.	White light	Alkaloids
Natural product reagent			Flavonoids, carbohydrates, anthocyanines, plant acids
Ninhydrin reagent	0.6 g ninhydrin is dissolved in 190 mL isopropanol, then 10 mL acetic acid is added.	White light	Amino acid, ephedrins

Name of Reagent	Procedure	Examination	Detection of
Vanillin sulphuric acid	1 g of vanillin is dissolved in 100 mL of 96 % ethanol add 2 mL of concentrated sulphuric acid.	White light, UV 366 nm	Terpenoids, ergot alkaloids, sterols

Appendix II

S. No.	Botanical Name	Hindi Name	Sanskrit Name (Phonetics)
1	Achyranthes aspera L.	Apamarga	Apāmārgakaḥ kharamañjikaḥ
2	Acorus calamus L.	Vach	Ugragandhakaḥ vacaḥ
3	Aegle marmelos (L.) Corrêa	Bael	Bilvakaḥ tripatraḥ
4	Albizia odoratissima (L.f.) Benth.	Siris	Mṛdusumakam jāliśimbam
5	Allium sativum L.	Lehsun	Gandhālukaḥ rasonaḥ
6	Aloe vera (L.) Burm.f.	Aloe Vera	Majjapatrakam angārasumam
7	Anacyclus pyrethrum (L.) Lag.	Akarkara	Ākārakarabhakah chinnapatrah
8	Andrographis paniculata (Burm.f.) Nees	Kalmegh	Kālameghakaḥ tiktayavaḥ
9	Areca catechu L.	Supari	Pūgaphalakam vartulam
10	Asparagus racemosus Willd.	Shatavar	Śatāvarakaḥ adharakaṇṭaḥ
11	Azadirachta indica A.Juss.	Neem	Picumardakah nimbah
12	Baccharoides anthelmintica (L.) Moench	Kali jeera	Gandhimūlakam Kṛmighnam
13	Bacopa monnieri (L.) Wettst.	Brahmi	Brāhmikā medhyā
14	Bauhinia variegata L.	Kachnar	Yugmapatrakam bhinnadalam
15	Berberis aristata DC.	Daruhaldi	Pītadrukah haridruh
16	Berberis napaulensis (DC.) Spreng.	Mahonia	Pītadrukaḥ daravalkaḥ
17	Boerhavia diffusa L.	Punarnava	Punarnavakaḥ raktakāṇḍaḥ
18	Brassica juncea (L.) Czern.	Lal sarson	Sarşapakahrājikah
19	<i>Cannabis sativa</i> L.	Bhang	Bhaṅgikā pītasapatrā
20	Capsicum frutescens L.	Mirch	Kațuvīrakā aņḍapatrā
21	<i>Carica papaya</i> L.	Papita	Kumbhakarkațikā kṛṣṇerūḥ
22	Carissa carandas L.	Karonda	Karamardakaḥ pravṛttaphalaḥ
23	Carum carvi L.	Shah jeera	Jīrakam kapilam
24	Cassia fistula L.	Amaltas	Hemapuṣpakam kṛtamālam

 Table A5.
 Nkuvof o gf kekpcniplanvu0

Appendix (Table A2) cont..

Acharya Balkrishna

Table A3) c S. No.	Botanical Name	Hindi Name	Sanskrit Name (Phonetics)	
25		Sadabhar		
-	Catharanthus roseus (L.) G.Don		Sadāpuspakam pāṭalākṣam	
26	Cedrus deodara (Roxb. ex D.Don) G.Don	Deodar	Devadrujah drdhakāsthah	
27	Celastrus paniculatus Willd.	Malkangani	Kākāņḍakaḥ gucchikramaḥ	
28	Chlorophytum borivilianum Santapau & R.R.Fern.	Safed musli	Sitamuśalikā bhallapatrā	
29	Cinnamomum camphora (L.) J.Presl	Kapoor	Gandhajātakam karpūram	
30	<i>Cinnamomum tamala</i> (BuchHam.) T.Nees & Tejpatta Gandhajātakam tam C.H.Eberm.			
31	Cinnamomum verum J.Presl	Dalchini	Gandhajātakam tvak	
32	Cissus quadrangularis L.	Hadjod	Vajravalī asthisamhārī	
33	Cocculus hirsutus (L.) W.Theob.	Jaljamini	Śapherukaḥ mahāmūlaḥ	
34	Commiphora mukul (Hook. ex Stocks) Engl.	Guggul	Guggulakaḥ devadhūpaḥ	
35	Convolvulus prostratus Forssk.	Shankhpushpi	Kambumālakaḥ śaṅkhapuṣpaḥ	
36	Cordia dichotoma G.Forst.	Lisoda	Śleșmātakaḥ śeluḥ	
37	Coriandrum sativum L. Dhania		Dhāneyakaḥ kustumburuḥ	
38	Cornus capitata Wall. Thank		Cirāngaphalakam carmipatram	
39	Cressa cretica L.	Cressa cretica L. Rudanti Rudantakah canapa		
40	Crinum latifolium L. Sudarshan Sudarsa		Sudarśanakaḥ urupatraḥ	
41	Cullen corylifolium (L.) Medik. Bakuchi Ind		Indulekhikā bākucī	
42	Cuminum cyminum L.	Jeera	Ajājikā jīrakā	
43	Curcuma longa L.	Haldi	Haridrakā pītāṅgā	
44	Cyperus scariosus R.Br.	Nagarmotha	Jalamuk nāgaramustakaķ	
45	Datura stramonium L.	Datura	Dhattūrakaḥ kṛṣṇḥ	
46	Daucus carota L.	Gajar	Garjarakaḥ nāraṅgaḥ	
47	Diplocyclos palmatus (L.) C.Jeffrey	Shivlingi	Śivalingikā karapatrā	
48	Eclipta prostrata (L.) L.	Bhringraj	Bhṛṅgarājakaḥ keśyaḥ	
49	Elaeocarpus serratus L.	Rudraksha	Rudrāksh ārīpatrah	
50	Elettaria cardamomum (L.) Maton	Elaichi	Elikā truțiķ	
51	Embelia ribes Burm.f.	Viavidang	Viḍaṅgakaḥ kṛmighnaḥ	
52	Foeniculum vulgare Mill.	Saunf	Miśreyakā śatāhvā	
53	Glycyrrhiza glabra L. Mulethi		Yașțimadhukaḥ aroma	
54	Habenaria intermedia D.Don	Riddhi	Ŗddhikārcī tușțiḥ	
55	Hemidesmus indicus (L.) R.Br.	Anantmool	Sārivakā sitaśirā	

Appendix (Table A3) con	Chemical Fingerprints of Medicinal Plants - HPTLC Profiling 191				
S. No.	Botanical Name	Hindi Name	Sanskrit Name (Phonetics) Kuṭajakaḥ yavaphalaḥ		
56	Holarrhena pubescens Wall. ex G.Don	Indrajao (Seeds)			
57	Holarrhena pubescens Wall. ex G.Don	Kutaj (Bark)	Kutajakah yavaphalah		
58	Lagenaria siceraria (Molina) Standl.	Lauki	Kūpyālābukā pratumbī		
59	Lavandula stoechas L.	Ustekhaddus	Phullakā rājisumā		
60	Lawsonia inermis L.	Henna	Madayantikā rañjanā		
61	Leucas cephalotes (Roth) Spreng.	Dronpushpi	Droņapuspakam śīrsakramam		
62	Lilium polyphyllum D.Don	Ksheer kakoli	Lalāmakaḥ bahupatraḥ		
63	Mentha \times piperita L.	Mint	Pūtihākā tailapatrā		
64	Momordica charantia L.	Karela	Kāravellakaḥ dīrghaphalaḥ		
65	Moringa oleifera Lam.	Sahjan	Śigrukaḥ sitapuṣpaḥ		
66	Murraya paniculata (L.) Jack	Gandhani	Kaidaryakaḥ pūgapuṣpaḥ		
67	Myristica fragrans Houtt.	Javatri (Aril)	Gandhacolakaḥ raktaḥ		
68	Myristica fragrans Houtt.	Jaiphal (Fruit)	Gandhacolakaḥ raktaḥ		
69	Nardostachys jatamansi (D.Don) DC.	Jatamansi	Jațālakaḥ naladaḥ		
70	Nymphaea nouchali Burm.f.	haea nouchali Burm.f. Neel kamal Kumudaka			
71	Ocimum basilicum L.	Tulsi	Sumañjarikā śyāmā		
72	Ocimum tenuiflorum L.	Tulsi	Sumañjarikā rāmā		
73	Operculina turpethum (L.) Silva Manso	Nisoth	Pīnaśalkam tāmrakali		
74	Phyllanthus emblica L.	Phyllanthus emblica L. Amla Āmalakaḥ c			
75	Picrorhiza kurroa Royle ex Benth.	Kutki	Kațukā tiktā		
76	Piper longum L.	Piper longum L. Chhoti pippali Kaṇikā pippalī			
77	Piper nigrum L.	Marich	Kaņikā maricā		
78	Piper retrofractum Vahl Badi pippali Kaṇikā		Kaņikā golasapatrā		
79	Pistacia chinensis subsp. integerrima (J.L.Stewart) Rech.f.				
80	Putranjiva roxburghii Wall.	Putrajeevak	Putraņjīvakaḥ tigmāntaḥ		
81	Raphanus raphanistrum subsp. sativus (L.) Domin				
82	Rheum emodi Wall.	Revandchini Gucchikramakah pītamūlah			
83	Rosa indica L.	Gulab	Taruņikā pāțalā		
84	Roscoea purpurea Sm.	Roscoea purpurea Sm. Kakoli Kākolikā vŗntākā			
85	Saraca indica L.	Ashok	Tāmrapallavakaḥ aṅgārakaḥ		

Chemical Fingerprints of Medicinal Plants - HPTLC Profiling 191

192 Chemical Fingerprints of Medicinal Plants - HPTLC Profiling (Table A3) cont.....

Acharya Balkrishna

S. No.	Botanical Name	Hindi Name	Sanskrit Name (Phonetics) Saraţāṅkaḥ vṛntākaḥ	
86	Sauromatum venosum (Dryand. ex Aiton) Kunth	Talia kand		
87	Semecarpus anacardium L.f.	Bhilawa	Bhallātakaḥ sphoṭalaḥ	
88	Senna alexandrina Mill.	Senna	Cakramardakaḥ tanupatraḥ	
89	Senna occidentalis (L.) Link	Kasundi	Cakramardakaḥ nāraṅgaśiraḥ	
90	Senna tora (L.) Roxb.	Panwad	Cakramardakaḥ aṇḍadalaḥ	
91	Solanum lycopersicum L.	Tamatar	Yukpañcakam rasapūram	
92	Solanum nigrum L.	Yukpañcakam kṛṣṇaphalam		
93	Solanum virginianum L.	Chhoti kateli	Yukpañcakam pītaprakaņțam	
94	Swertia chirayita (Roxb.) H.Karst.	Chirayita	Ghūrņobhadalakam tiktam	
95	Syzygium aromaticum (L.) Merr. & L.M.Perry Laung		Jambukaḥ lavaṅgaḥ	
96	<i>Terminalia arjuna</i> (Roxb. ex DC.) Wight & Arjun Vīrakaḥ a Arn.		Vīrakaḥ arjunaḥ	
97	Terminalia bellirica (Gaertn.) Roxb.	Bahera	Vīrakaḥ akaṣaḥ	
98	Terminalia chebula Retz.	Harad	Vīrakaḥ harītakaḥ	
99	Tinospora cordifolia (Willd.) Hook.f. & Giloy Saptaśirikā aron Thomson Saptaśirikā aron		Saptaśirikā aromapatrā	
100	Trachyspermum ammi (L.) Sprague Ajwain Yavānikā ugra		Yavānikā ugragandhā	
101	Trigonella foenum-graecum L. Methi Me		Methikā gandhibījā	
102	Urtica ardens Link Bichu ghas Alipa		Alipatrakam sajātam	
103	Viola odorata L. Banafsha Vanapsikā nīla		Vanapsikā nīlapuspā	
104	Vitex negundo L.	Vitex negundo L. Nirgundi Nirgundikā madhupa		
105	Vitis vinifera L.	Vitis vinifera L. Angoor Drākşikā gostanī		
106	Withania somnifera (L.) Dunal	Withania somnifera (L.) Dunal Ashwagandha Aśvagandhakaḥ svāpakaral		
107	Zanthoxylum armatum DC.	Zanthoxylum armatum DC. Tambru Tumburukah kantikānda		
108	Zingiber officinale Roscoe	Sunthi	Ārdrakam sitaustham	

ABBREVIATIONS

ADC	=	Automatic development chamber
AMD	=	Automatic multiple development chamber
Fig	=	Figure
HPLC	=	High pressure liquid chromatography
HPTLC	=	High performance thin layer chromatography
Mg	=	Milligram
mL	=	Milliliter
mm	=	Millimeter
MP	=	Mobile phase
MS	=	Mass spectroscopy
nm	=	Nanometer
Rf	=	Retardation factor
RPM	=	Rotation per minute
S	=	Standard
Т	=	Test sample
TLC	=	Thin layer chromatography
TTC	=	Twin trough chamber
UV	=	Ultraviolet
V	=	Volume
μm	=	Micrometer
254	=	Short wave length UV light, reflection
366	=	Long wave length UV light, reflection

BIBLIOGRAPHY

- [1] Balkrishna, A. Ayurveda Jadi Booti Rahasya., 2014; 1: 1-467.
- [2] Balkrishna, A. Ayurveda Jadi Booti Rahasya., 2014; 2: 575-1077.
- [3] Balkrishna, A. Ayurveda Jadi Booti Rahasya., 2014; 3: 1097-1572.
- [4] Poole, C.F. Instrumental Thin-Layer Chromatography., 2015; 31-105.
- [5] Reich, E.; Schibli, A. *High-Performance Thin Layer Chromatography for the Analysis of Medicinal Plants.*, **2006**; 1-240.
- [6] Wagner, H.; Bladt, S. Plant Drug Analysis: A Thin Layer Chromatography Atlas., 1995; 2: 349-369.
- [7] Wall, P.E. *Thin-layer Chromatography: A Modern Practical Approach.*, **2005**; 6-170.[http://dx.doi.org/10.1039/9781847552464]
- [8] https://powo.science.kew.org
- [9] https://www.camag.com

SUBJECT INDEX

А

Abdominal pain 68, 89 Acid(s) 5, 17, 18, 19, 24, 25, 26, 35, 36, 38, 42, 44, 45, 47, 66, 68, 69, 70, 80, 81, 96, 102, 110, 131, 132, 134, 135, 143, 144, 162, 163, 167, 168, 169, 170, 171, 173, 176, 177, 179, 187, 188, 189 acetic 45, 47, 96, 102, 110, 167, 171, 173, 179, 187, 188 Amino 18, 19, 188 Anisaldehyde sulfuric 25, 26, 35, 36, 38, 42, 44, 66, 68, 143, 144, 176, 177, 187, 188 arjunic 167, 168 caffeic 131, 132, 162, 163 chebulinic 170, 171 cinnamic 5, 69, 70 fatty 18 gallic 5, 80, 81, 132, 134, 135, 168, 169, 170, 171 glacial acetic 187 oleanolic 24, 25 plant 188 rosmarinic 131, 132 silicic 17 sulphuric 188, 189 vanillin sulfuric 187 Acne 32, 39, 86, 144 problem 86 treating 32 Acorus calamus 26, 189 Akarkara 33, 34 roots 34 Albizia odoratissima 29, 189 Alcoholic 187, 188 iron chloride 188 potassium hydroxide 187, 188 Allium sativum 30, 189 Aluminium 13, 17, 19, 20 hydroxide 19 oxide 19, 20 oxide 13, 17

Anacyclus pyrethrum 33, 189 Anantmool 105, 106 root 106 Andrographis paniculata 35, 189 Anisaldehyde sulfuric acid reagent 4 Anti-inflammatory properties 27, 53, 71, 80, 87, 114, 167, 179 Anti-malarial property 164 Anti-viral effects 54 Antifungal 36, 111, 120, 129, 156, 183 activities 111, 120 properties 36 Antioxidant 42, 50, 53, 80, 87, 111, 120, 152, 156, 167, 176 activity 50 properties 152 Anxiety 42, 126, 171, 182 reducing 126 Apamarga by HPTLC fingerprinting 25 Areca catechu 36, 189 Arthritis pain 185 Ashwagandha 23, 183 juvenile 23 roots 183 Asparagus racemosus willd 38, 189 Asthma 33, 48, 68, 69, 74, 81, 116, 123, 125, 135, 137, 141, 161 bronchial 81, 116, 141 treating 161

B

Bakuchi 84, 85 Basil 129, 130, 131, 132 *Bauhinia variegata* 44, 189 Berberine, bio-active marker 45 Berberis napaulensis 47, 189 Betel nut fruit 37 Bhilawa 153, 154 Bhringraj 95, 96 Bitter gourd fruit 120 Black cumin 41, 42

seeds 42 Black pepper 138, 139 seeds 139 Bleeding disorders 128 Blood 29, 56, 134 disorders 29, 56 purifier 134 Blue lotus flower 129 Body ache 128, 174 Bowel diseases 165 Brain functions 42 *Brassica juncea* 50, 189 Bronchitis 74, 132, 137, 177 Burning sensations 128

С

CAMAG 8, 9, 10 chromatogram immersion device 9, 10 winCATS software 8 CAMAG TLC 9. 10. 11 plate heater 9, 10 Scanner 10, 11 sprayer 9, 10 Visualizer 9, 10 Cannabis sativa 51, 189 Canvas painting 24, 25, 26, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 44 Capsicum frutescens 53, 189 Carbohydrates 18, 19, 188 Cardamom 98, 99 seeds 99 Cardiac health 86 Cardiovascular disorders 66 Carica papaya 54, 189 Carom seeds 174 Carrot 92, 93 fingerprint 92 root 93 Catharanthus roseus 60, 190 Cellulose 17, 18, 19, 20 Chamber 1, 8, 9, 14

automatic development 8, 9 automatic multiple development 8, 9 saturated twin trough 14 Chhoti 137, 138, 162, 163 kateli 162, 163 pippali 137, 138 Chilli fruit 54 Chirayita 164, 165 Chromatogram development 8 Chromatographic 2, 3, 7, 13, 18, 21, 41, 101, 113, 126, 149 conditions 3, 18, 41, 101, 126, 149 data 2 fingerprint 113 performance 18 results 7, 21 system 13 Chromatography 1, 10, 17, 22 column 1, 22 gas 1 high-performance thin-layer 1 planer 1 thin layer 1, 10 Cinnamomum 15, 66, 68, 69, 190 camphora 15, 66, 190 tamala 68, 190 verum 69 Cinnamon bark 69 Cissus quadrangularis 71, 190 Clove buds 166 Cocculus hirsutus 72, 190 Commiphora mukul 74, 190 Compounds 1, 2, 4, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 35, 187 aromatic 18, 19 non-UV 23 phytochemical 35, 187 Compressed air 9 Copper sulphate 188 Coriander seeds 79 Coriandrum sativum 78, 190

Acharya Balkrishna

Subject Index

Cough 35, 38, 41, 68, 69, 122, 123, 125, 131, 132, 135, 137, 138, 140, 168, 170, 177 colds 138, 140, 177 Coupling of HPTLC 23 *Cressa cretica* 81, 190 *Crinum latifolium* 83, 190 *Cullen corylifolium* 84, 190 Cumin 86, 87 seeds 87 *Cuminum cyminum* 86, 190 *Curcuma longa* 87, 190 *Cyperus scariosus* 89

D

Daruhaldi 45, 46 stem water extract 45 Datura stem 91 Datura stramonium 90, 190 Daucus carota 92, 190 Dental health 117 Development 12, 14 chromatographic 12 of TLC Plate 14 Diarrhoea 35, 38, 105, 107, 108, 122, 123, 125, 141, 146, 149 Digestive 57, 78, 98, 101, 147 health 57, 101 problems 98 system 78, 147 **Dispersion forces 18** Dragendroff's reagent 187 Dysentery 122, 146

E

Ear infection 83 Eclipta prostrata 95, 190 Elaeocarpus serratus 96, 190 Elettaria cardamomum 98, 190

F

Fenugreek seeds 175 Fertility booster 93, 143 Fever 45, 47, 54, 62, 66, 107, 108, 137, 138, 140, 149, 150, 162, 164, 168, 170, 171 chronic 171 dengue 54 treating 45, 47 Fingerprint images 11 Fingerprinting 27, 29 Fluorescent bands 39, 81, 86, 90, 99, 105, 111, 125, 128, 132, 183 Food industry 4 Fourier transform 2, 21

G

Garlic 30, 31 Gastrointestinal diseases 26, 39, 144 Ginger 185, 186 rhizome 186 *Glycyrrhiza glabra* 102, 190 Gum problems 33

Η

Hair 84, 95, 147, 174 care 147, 174 growth 84, 95 Headache 177 Healing fractures 71 Hemidesmus indicus 105, 190 Herbal 6, 187, 188 plants 6, 187, 188 sources 6 Herbs, medicinal 12 High-performance liquid chromatography (HPLC) 2, 21 HPTLC 1, 4, 7, 11, 186 equipment 7 technique 1, 4, 186 visualization 11

HPTLC fingerprinting 25, 27, 30, 31, 32, 33, 36, 39, 42, 61, 64, 66, 67, 70, 72, 73, 76, 78, 79, 81, 82, 84, 160 of black cumin 42 of camphor 67 of cinnamon 70 of coriander 79 of garlic 31 of hadjod 72 of jaljamini 73 of kalmegh 36 of lisoda 78 of malkangani 64 of rudanti 82 of sadabhar 61 of safed musli 66 of shankhpushpi 76 of shatavar 39 of siris 30 of sudarshan 84 of thanboi 81 of tomato 160 of vach 27 Hyphenation techniques 21

I

Immunity booster 116, 182 Immuno suppression activity 156 Indian gooseberry 134, 135 Infections, bacterial 39, 144 Insecticidal activities 129 Irritable bowel syndrome 77, 123, 125, 155 Isolated fraction 23

J

Jatamansi roots 127

K

Kidney diseases 48

Kutki root 136 ethanolic extract 136 water extract 136

L

Lawsonia inermis 113, 191 Liquid chromatography (LC) 1, 21, 23 high-pressure 21 Lisoda fruit 78 Liver 87, 146, 161 disease 161 disorders 146 function 87

Μ

Makoy fruit 162 Malkangani seeds 64 Mass spectroscopy (MS) 2, 21, 22, 23 Menstrual 150, 185 cycle, irregular 150 pain 185 *Mentha piperita* 117 Molecules, phytochemical 108, 120 *Momordica charantia* 119, 191 Mustard oil 5

Ν

Natural product reagent 187, 188 Nausea 117, 165 Neem 39, 40 Ninhydrin reagent 188

0

Ocimum 129, 131, 191 *basilicum* 129, 191 *tenuiflorum* 131, 191 *Operculina turpethum* 132, 191 Oral health 32, 131

Acharya Balkrishna

Subject Index

Ortho-phosphoric acid 188

P

Phyllanthus emblica 134, 191 Piles, curing 62 Piper 137, 138, 191 longum 137, 191 nigrum 138, 191 Polyaromatic hydrocarbons 17

R

Raman spectroscopy 21 *Raphanus raphanistrum* 144 Respiratory 57, 66, 81, 102, 116, 131, 138, 140 diseases 66, 81, 102, 131, 138, 140 disorders, treating 116 system 57 Rheumatic diseases 158

S

Sauromatum venosum 152, 192 Scalp infection 95 Secondary metabolites 188 Semecarpus anacardium 153, 192 Senna occidentalis 156, 192 Skin 26, 29, 30, 45, 47, 48, 57, 65, 72, 75, 83, 84, 86, 87, 90, 96, 99, 102, 113, 168, 170 134, 147, 150, 180 allergies 150 blemishes 134 diseases 26, 45, 47, 57, 72, 75, 87, 96, 99, 102, 113 disorders 29, 65, 90, 168, 170 health 30 problems 48, 83, 84 Skin-related 105, 119 diseases 119

Chemical Fingerprints of Medicinal Plants - HPTLC Profiling 199

problems 105 *Solanum* 159, 161, 192 *lycopersicum* 159, 192 *nigrum* 161, 192 Spectroscopy 2, 21, 22 infrared 21, 22 mass 2, 21 Steroids 18, 19, 187 Stomach 165, 173 acid 173 disorders 165 Stress 171, 182 *Syzygium aromaticum* 165, 192

Т

Technique, chromatographic 1 Throat 33, 69, 74, 99, 102, 122, 123, 125, 137, 162 sore 69, 74, 122, 137, 162 infection 99 pain 33, 102, 123, 125 Tinospora cordifolia 171, 192 TLC 1, 5, 7, 9, 11, 12, 14, 16, 23, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47 chromatograms 11 development chamber 7 development of 7, 12 fingerprints 1, 9, 11, 16, 23 heater 14 instrumental 7 performing 1 scanner 11 silica gel 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47 technique 5 Trachyspermum ammi 173, 192 Trigonella foenum-graecum 174, 192

U

Acharya Balkrishna

Ulcer(s) 27, 38, 78, 98, 110, 113 healing 27 mouth 78, 113 Urinary 72, 162, 176 disorders 72 track disorders 162, 176 UV 16, 23 absorbance 16 spectroscopy 23

V

Vomiting flatulence 165

W

Worms, intestinal 77, 99, 164 Wound healing properties 59, 60, 63

Z

Zanthoxylum armatum 183

Medicinal plants are considered a rich source of phytochemicals for drug development. For this purpose, the selection of correctly identified herbs is significant, as each herb has a unique phytochemical distribution fingerprint. High-Performance Thin-Layer Chromatography (HPTLC) is one of the simplest yet robust techniques for herb identification, providing unique phytochemical fingerprints for each herb. However, the process parameters for generating HPTLC fingerprints require rigorous optimization for each plant. The book 'Chemical Fingerprints of Medicinal Plants - HPTLC Profiling' aims to meet this technical need in the present herbal medicinal world.

The HPTLC technique has been long in use for phytochemical identification. However, a systematic compilation of the process parameters for identifying different medicinal plants is missing. This book precisely fulfills those specific requirements and serves as an analytical guide for the identification and characterization of medicinal plants at large."

Professor Y. K. Gupta MBBS, MD, FAMS, FNASc, FIPS, FIAN, FST

Acharya Balkrishna

Acharya Balkrishna, a person of humble demeanour, was born on July 25, 1972 to Nepalese parents – Shrimati Sumitra Devi and Shri Jay Vallabh in Uttarakhand, India. He serves as the Founder Secretary of Patanjali Yogpeeth Trust, holds the position of General Secretary of Patanjali Research Foundation and Vice-Chancellor at the University of Patanjali.

From a young age, he displayed a profound love for nature, turning it into a lifelong passion and dedicating his existence to the realm of Ayurveda. In recognition of his commitment to bringing Ayurveda to the global forefront, he received the UNSDG 10 Most Influential People in Healthcare Award at the United Nations (UN) headquarters in Geneva, Switzerland, on May 25, 2019. Additionally, Acharya Balkrishna has earned acknowledgment as one of the world's top 2% scientists in consecutive years 2022 and 2023 for his ground breaking research contributions to the field of Ayurveda.

Guided by Acharya Balkrishna's visionary leadership, the avant-garde Patanjali Research Foundation, nestled in Haridwar, stands as a beacon of pioneering research in the realm of evidence-based Ayurvedic medicine. The distinguished institution meticulously conducts ground breaking studies on Ayurvedic formulations, progressing from rigorous laboratory and animal trials to human trials, strictly adhering to international protocols.

Acharya Balkrishna's profound expertise serves as the cornerstone of inspiration driving all research pursuits at the Patanjali Research Foundation. Under his dynamic guidance, the foundation has contributed a wealth of knowledge to the global scientific community, boasting the publication of over 300 peer reviewed research articles in esteemed international scientific journals. Furthermore, his intellectual prowess is underscored by an impressive portfolio of 45 patents, a testament to his innovative contributions in the field.

His extensive literary legacy includes authoring more than 120 books on Yoga and Ayurveda, coupled with the meticulous scripting of over 25 unpublished ancient Ayurveda manuscripts. His extensive contributions extend to diverse projects, including Herbal Garden & Herbarium, the inaugural World Botanical Dictionary, Wealth of Food Crops, Identification of Rare Herbs with Medicinal Properties, Vegetation Survey of India, and the comprehensive multivolume World Herbal Encyclopaedia.

The book 'Chemical Fingerprints of Medicinal Plants – HPTLC Profiling' stands as a testament to their mission, bridging a technological gap with finesse. Through High-Performance Thin-Layer Chromatography (HPTLC), this literary masterpiece underlines a pivotal role in precisely identifying and characterizing medicinal herbs. Credit for this achievement lies with Acharya Balkrishna, whose profound analytical grasp of the 5000-year-old Ayurvedic system propels this endeavour. His expertise, a guiding light, ensures the meticulous analysis of medicinal plants, offering invaluable insights to practitioners of herbal medicine.